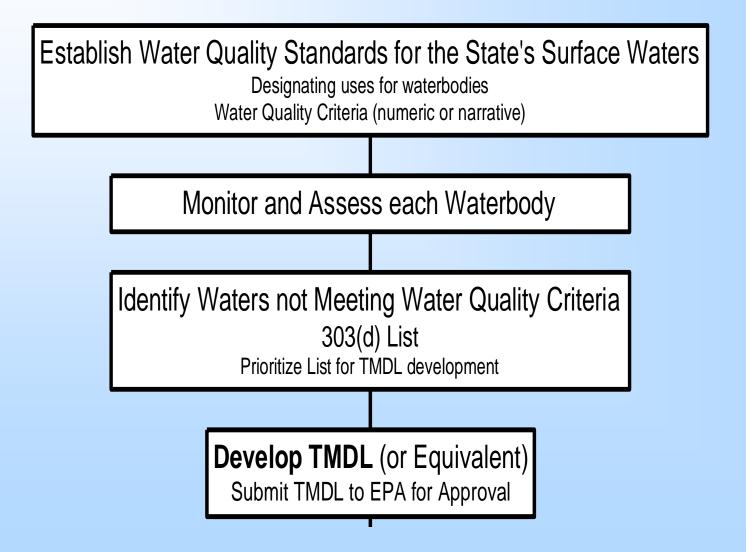


Newport Water Supply Reservoirs Total Phosphorus and Total Organic Carbon TMDLs

RIDEM Office of Water Resources June 23, 2021 3-5 PM

Overview of Meeting

- Federal Clean Water Act Requirements
- Overview of Newport Reservoir TMDL Study Area
- Water Quality Problems Addressed by TMDL
- Overview of Draft TMDL Study
 - Development of total phosphorus targets
 - Determining existing phosphorus loads
 - Calculating load capacities
 - Allocating TMDLs between point and non-point sources
 - Evaluating sources/source categories of phosphorus
 - Identifying and describing actions to reduce phosphorus loads
- Overview of RIDEM Watershed Planning for Aquidneck Island


Federal Clean Water Act

Restore and maintain the chemical, physical, and biological integrity of the nation's waters.

Clean Water Act Water Quality Standards Program

Designated Uses for Class AA Drinking Water Supplies

	Designated Use	Applicable Classifications	Designated Use Definitions
	Drinking Water Supply	AA	Supply safe drinking water with conventional treatment.
<u>.</u>	Primary Contact Recreation/Swimming	All surface waters	Swimming, water skiing, surfing or other recreational activities with prolonged and intimate contact by the human body with water.
1	Secondary Contact Recreation/Boating	All surface waters	Boating, canoeing, fishing, kayaking or other recreational activities with minimal contact by the human body with the water and the probability of ingestion of the water is minimal.
X	Aquatic Life Support/ Fish, other Aquatic Life and Wildlife	All surface waters	Waters suitable for the protection, maintenance, and propagation of a viable community of aquatic life and wildlife.
×	Fish Consumption	All surface waters	Supports fish free from contamination that could pose a human health risk to consumers.

All nine reservoirs identified as impaired:

- Drinking Water Use Support (assessed by RIDOH CDWQ)
 - Total Organic Carbon (contributes to elevated levels of trihalomethanes in finished drinking water)
- Aquatic Life Use Support (assessed by RIDEM utilizing 2011 and 2012 data)
 - Total Phosphorus (contributes to periodic low dissolved oxygen levels and frequent and excessive algal and cyanobacteria blooms)

TMDL – Plans for Restoring Impaired Waters

TOTAL MAXIMUM DAILY LOAD ANALYSIS FOR Blackstone River Watershed

Pathogen and Trace Metals Impairments

Final Report February 2013

303(d) listings addressed in this study: Blackstone River (R10001003R-01A): Pathogens, Cadmium, Lead Blackstone River (R10001003R-01B): Cadmium, Lead Cherry Brook (R10001003R-02): Pathogens, Copper Mill River (R10001003R-04): Pathogens Peters River (R10001003R-04): Pathogens, Copper

 Federally mandated Water Quality Restoration Study for an Impaired Waterbody

What is a Total Maximum

Daily Load?

 Determines maximum amount of a pollutant(s) that a body of water can receive and still meet water quality standards

Rhode Island Department of Environmental Management Office of Water Resources 235 Fromenade Street Providence. Rhode Island 02/08

TOTAL MAXIMUM DAILY LOAD ANALYSIS FOR THE TEN MILE RIVER WATERSHED

UPPER TEN MILE RIVER, CENTRAL POND, TURNER RESERVOIR, LOWER TEN MILE RIVER, OMEGA POND

Final Report April 2014

RHODE ISLAND DEPARMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF WATER RESOURCES 235 PROMENADE STREET PROVIDENCE, RI 02908

Rhode Island Statewide Total Maximum Daily Load (TMDL) for Bacteria Impaired Waters

TMDL Equation

IΑ

Load Allocation

("Nonpoint Sources")

TMDL

Total Maximum Daily Load (Total Loading Capacity)

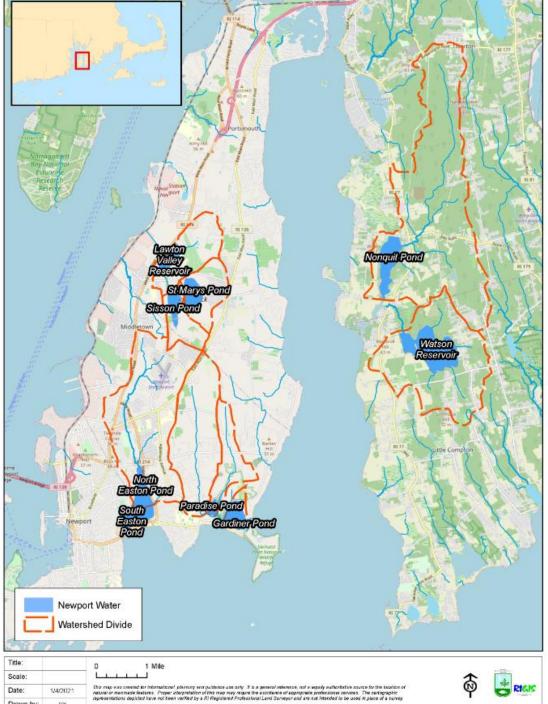
The amount of pollution a waterbody can receive and still meet water quality standards. WLA

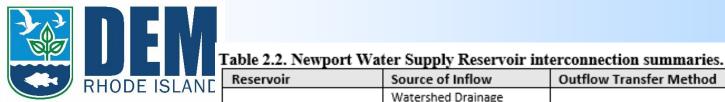
Wasteload Allocation ("Point Sources")

Achieved by required permits or other regulations. Achieved by regulatory or Non-regulatory methods. Requires "reasonable assurances"

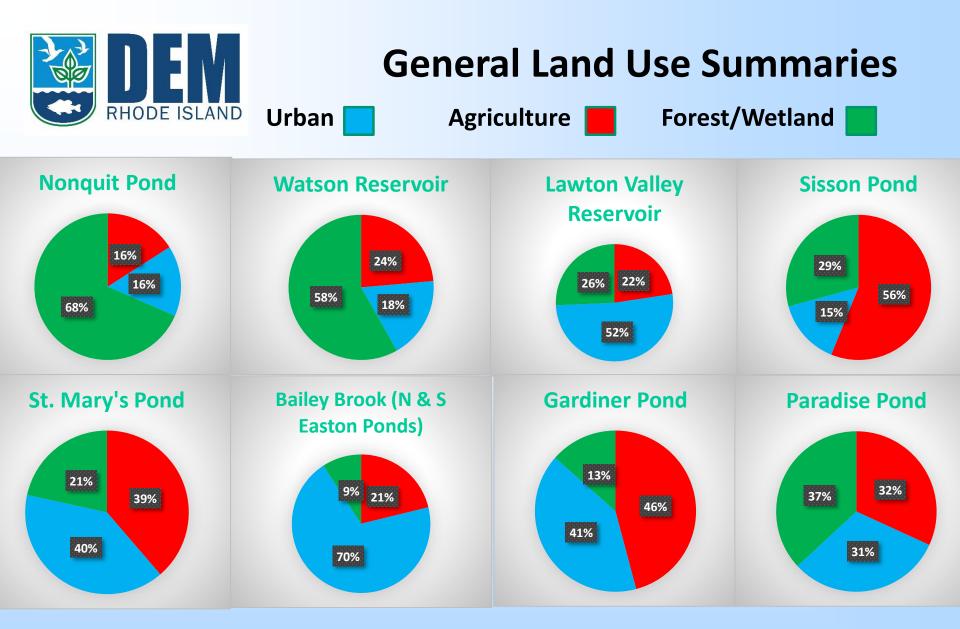
MOS

Margin of Safety


Examples Wastewater Discharges Municipal Separate Storm Sewer Systems (MS4s) RIDOT Stormwater Landfill Permit

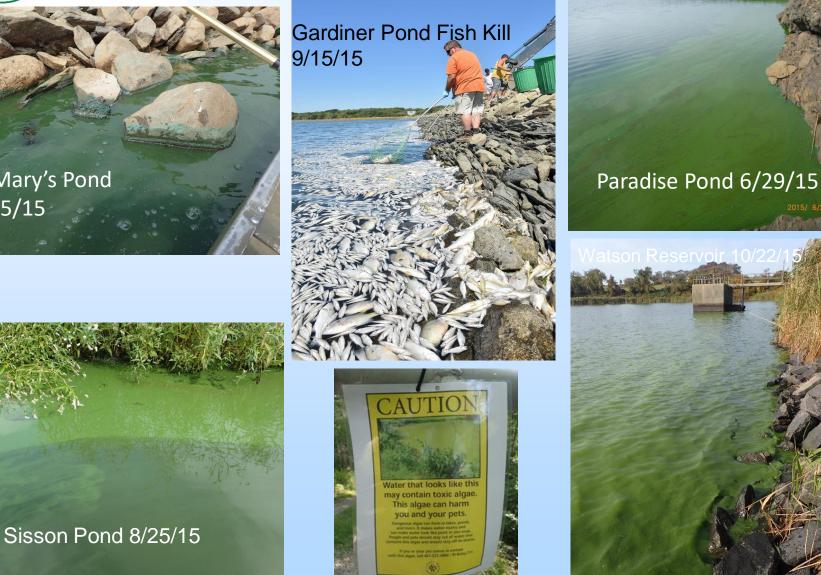

Accounts for uncertainty

Examples Agricultural runoff OWTS failures Natural Background (Forest, atm) Non-point sources contributing to water quality violations Channel erosion

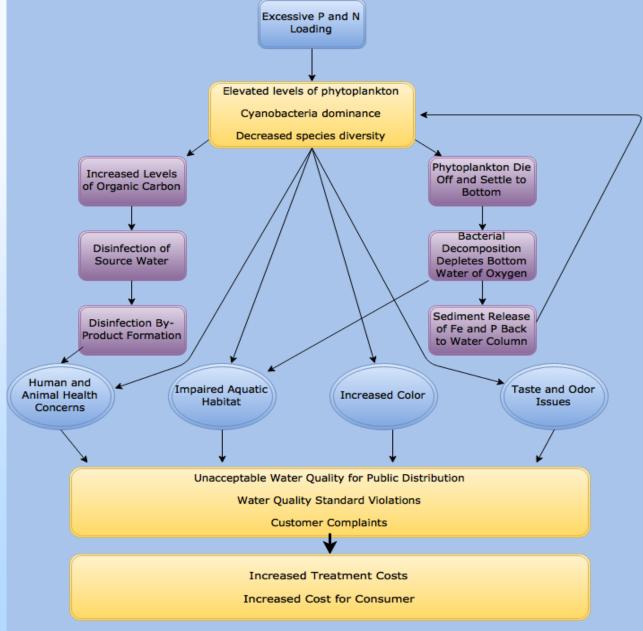


TMDL Study Area

Reservoir	Source of Inflow	Outflow Transfer Method	Destination of Outflow
Nonquit Pond	Watershed Drainage Quaker Brook Borden Brook Unnamed tributaries	Sakonnet Pumping Station and Pipeline	St. Marys Pond Lawton Valley WTP North Easton Pond via Bailey Brook
Watson Reservoir	Watershed Drainage Unnamed tributaries	Sakonnet Pumping Station and Pipeline	St. Marys Pond Lawton Valley WTP North Easton Pond via Bailey Brook
Lawton Valley Reservoir	Watershed Drainage Sisson Pond via Lawton Valley Brook Watson Reservoir	Pumping Station and Pipeline	Lawton Valley WTP
Sisson Pond	Watershed Drainage St. Marys Pond	Sisson Pond Stream Unnamed stream to	Lawton Valley Reservoir Bailey Brook
St. Marys Pond	Watershed Drainage Watson Reservoir Nonquit Pond	St. Marys Pumping Station and Pipelines Reservoir spillage to Sisson Pond	Lawton Valley WTP North Easton Pond via Bailey Brook
North Easton Pond	Watershed Drainage Bailey Brook St. Marys Pond Paradise Pond Gardiner Pond Sisson Pond	Pumping Station and Pipeline South Easton Pond	Station 1 WTP (at North Easton Pond
South Easton Pond	Watershed Drainage North Easton Pond Paradise Pond Gardiner Pond	Pumping Station and Pipeline	Station 1 WTP (at North Easton Pond)
Paradise Pond	Watershed Drainage Paradise Brook Maidford River Gardiner Pond	Paradise Pump Station and Pipeline	Station 1 WTP Gardiner Pond North Easton Pond
Gardiner Pond	Watershed Drainage Maidford River Paradise Pond	Paradise Pump Station and Pipeline	Station 1 WTP Paradise Pond North Easton Pond



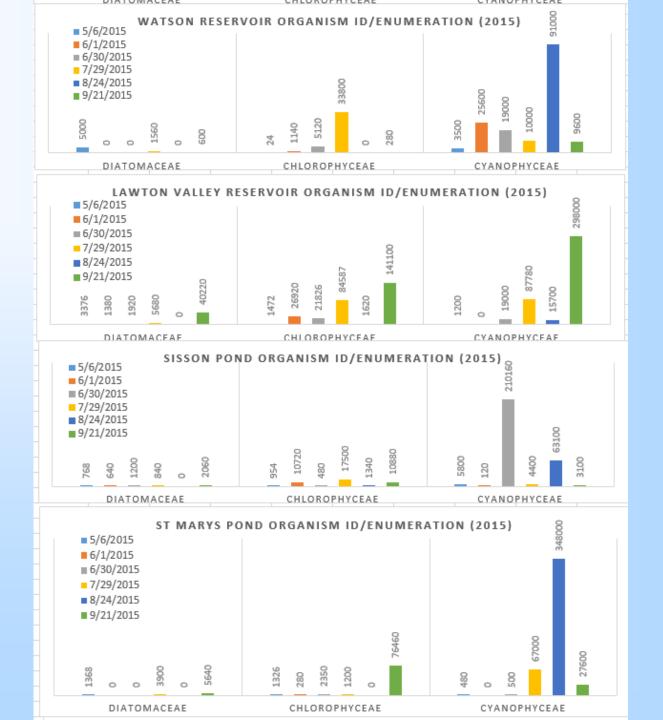
St Mary's Pond


8/25/15

Water Quality Condition of Newport's **Water Supply Reservoirs**

Nutrient Enrichment in Drinking Water Supplies

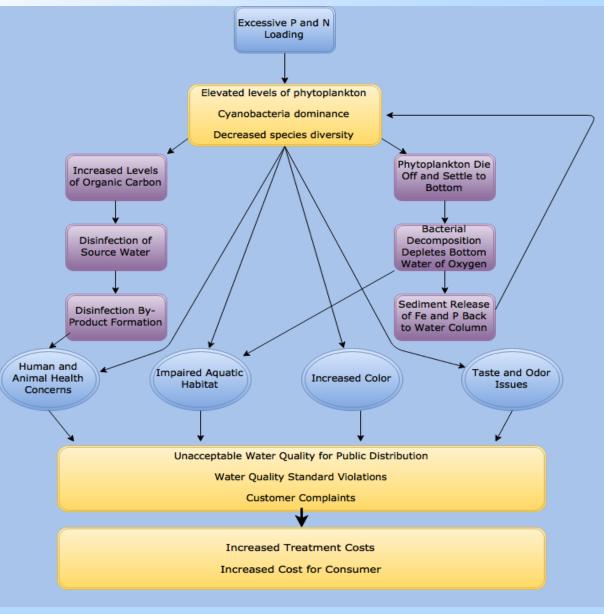
Reservoir


Total Phosphorus and Chlorophyll-a levels in the Water Supply Reservoirs

2015 Newport Resevoirs Seasonal Mean Epilimnetic TP (ug/l) Paradise Gardiner South North St. Marys Sisson Lawton Valley Watson Nonquit 30.0 0.0 10.0 20.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 Seasonal Mean Eplilimnetic P (ppb)

Reservoir	Growing Season Mean (ug/l)	Growing Season Maximum (ug/l)
Nonquit	16	64
Watson	14	33
Lawton Valley	35	80
Sisson	56	132
St. Marys	38	139
North Easton	45	70
South Easton	31	53
Gardiner	37	107
Paradise	37	69

Newport Reservoir Phytoplankton Summaries 2015



Newport Reservoir Phytoplankton Summaries 2015

Objective of the TMDL

- While Newport Water is responsible for providing safe drinking water (and does) it has little to no control over activities that may pollute the reservoirs.
 - They have taken steps to secure and protect land in the watershed
- The reservoirs are all located in developed watersheds- with roadways, commercial, industrial, residential, and agricultural land uses- all of which generate pollutants which may find their way into the reservoirs.
- As of 2014 significant improvements to the treatment facilities have been made (~\$85 million)
- Quality of finished water has significantly improved. An essential investment to ensure safe drinking water for Aquidneck Island.

The quality of the raw source water varies throughout the year due to several factors creating challenges for drinking water treatment and leading to frequent shifting of sourcing and algaecide treatment

TMDL Development Summary

- 1) Establishing total phosphorus and chlorophyll-a targets.
- 2) Determining existing phosphorus loads and load capacities.
- 3) Allocating the TMDLs between point and non-point sources.
- 4) Identifying/Evaluating sources/source categories of phosphorus.
- 5) Identifying/describing actions to reduce phosphorus loads.

- USEPA initiated a National Nutrient Strategy in 1998 that called on states to establish numeric nutrient criteria (NNC) in an effort to address the adverse effects nutrient enrichment has on <u>designated</u> <u>uses.</u>
- Rhode Island has numerical TP criteria (25 ug/l) designed to be protective of <u>aquatic life use</u>. Should that apply to DWS?
- Few states have identified <u>drinking water supplies</u> as specific targets for NNC (or developed NNC). Some that have include VT, CO, NY, VA, KS, OK, MO, TX, NYC DWS
- Reasonable/prudent to evaluate potential TP targets to address nutrient enrichment in drinking water supplies.
- Regulatory Authority

Final Report for the Disinfection By-Product / Algal Toxin Study

Prepared for United States Environmental Protection Agency - Region 2

Note: This is the first in a series of two related reports. This report is intended to address the issue of nutrient criteria for potable *ponded water* (lakes and reservoirs). A second companion report entitled River Distingtection By-Product / Algal Toxin Study addresses the equivalent issue for flowing waters (rivers and streams).

Author: Clifford W. Callinan, P.E.

Date: September 2009

Basis for Interim Value to Protect Direct Use Water Supplies

WQCD PREHEARING STATEMENT - EXHIBIT 10

12/9/2011

Replicate NYSDEC study

Research Objectives

 Investigate relationships between: TP, algal abundance, DOC, and TTHM

Monitoring Specifics

- Bi-weekly sampling of 9 reservoirs during May-Oct 2015
- Single location, multiple water column samples based on stratification (epilimnion, thermocline, hypolimnion)
- Nutrients (P and N), DOC, Chl-a, algal/cyano ID-enumeration, toxin analysis, DBP formation, temperature & oxygen profiles, clarity (secchi depth)

Review

• EPA Approved QAPP, Data QA-QC, Data Report, Study Report, Technical Review (Edits), NYSDEC review

http://www.dem.ri.gov/programs/water/quality/restoration-studies/reports.php

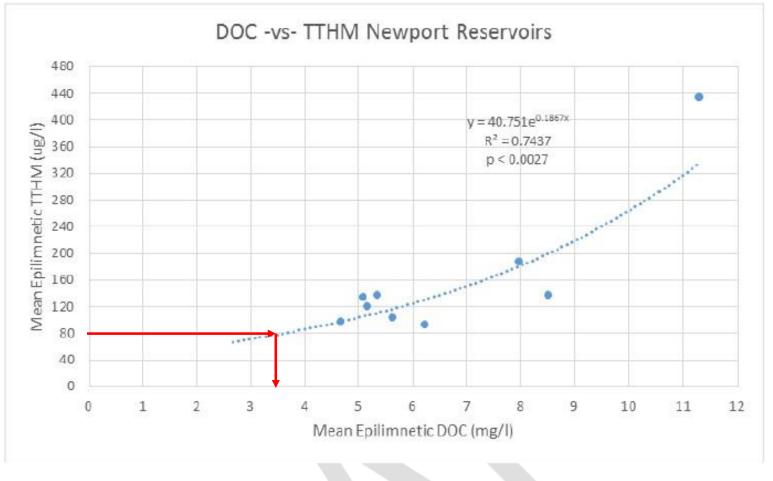
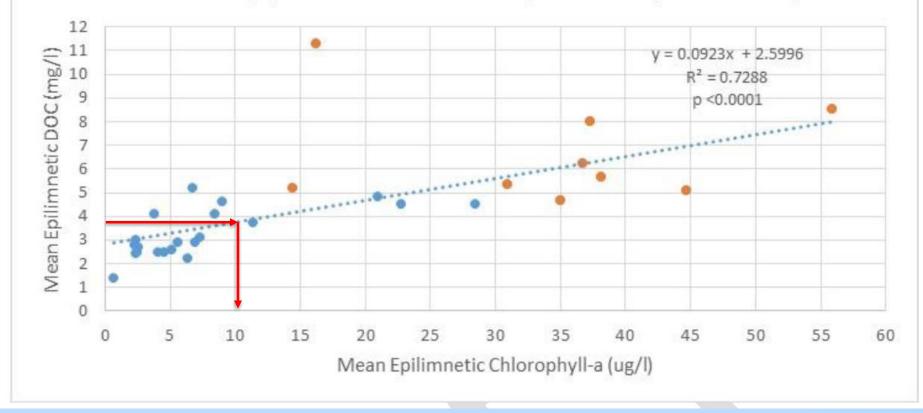
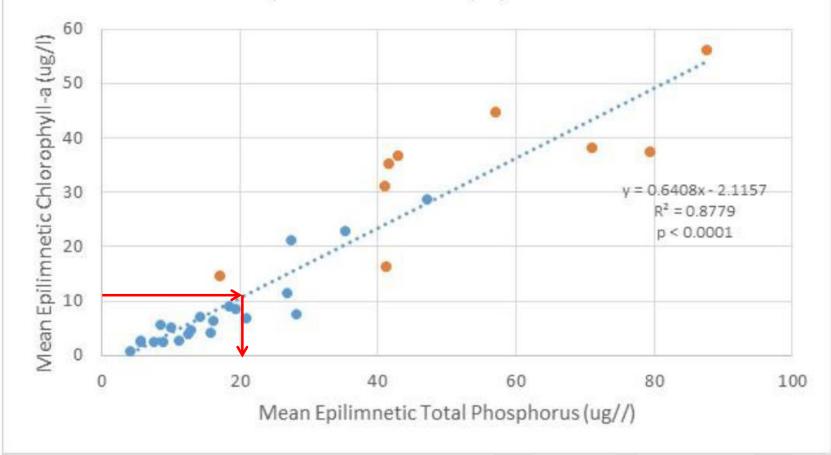



Figure 3. Mean epilimnetic DOC versus TTHM- Newport Reservoirs 2015.



Mean Chlorophyll-a -vs- Mean Dissolved Organic Carbon (RI-NY Datasets)

Mean Total Phosphorus -vs- Chlorophyll-a in RI-NY Ddatasets

2. Determining Existing Phosphorus Loads and Load Capacities

- Application of empirical lake loading-response models to each reservoir
- Dillon and Rigler (1974) and Canfield and Bachmann (1981)
 - Reservoir Total Phosphorus Concentration
 - Reservoir Surface Area
 - Reservoir Mean Depth
 - Annual Flushing Rate/Residence Time
 - P retention coefficient

2. Determining Existing Phosphorus Loads and Load Capacities

Reservoir	Existing TP Load (Ibs/yr)*	Loading Capacity TMDL (lbs/yr)
Nonquit Pond	1537	616
Watson Reservoir	196	154
Lawton Valley Reservoir	401	148
Sisson Pond	190	30
St. Marys Pond	470	66
North Easton Pond	347	94
South Easton Pond	218	87
Gardiner Pond	168	61
Paradise Pond	209	39

Determining Existing Total Phosphorus Loads

Watershed Treatment Model

Watershed Treatment Model (WTM) 2013 User's Guide

Funding Provided By: US EPA Office of Wetlands Oceans and Watersheds Altria Foundation Cooperative Institute for Coastal and Estuarine Environmental Technology

> June, 2013 Deb Caraco, P.E. Center for Watershed Protection, Inc.

- 1. Spreadsheet-based model
- 2. Predicts annual rates of TN, TP, TSS, FC, and runoff volume
- 3. Sources:
 - 1. Primary Sources
 - 1. Determined entirely from land use/cover
 - 1. Residential
 - 2. Commercial
 - 3. Industrial
 - 4. Forest
 - 5. Rural (Agriculture)
 - 2. Secondary Sources
 - 1. CSOs, SSOs
 - 2. Septic Systems
 - 3. Channel Erosion
 - 4. Livestock

Watershed Treatment Model

Watershed Treatment Model (WTM) 2013 User's Guide

Funding Provided By: US EPA Office of Wetlands Oceans and Watersheds Altria Foundation Cooperative Institute for Coastal and Estuarine Environmental Technology

> June, 2013 Deb Caraco, P.E. Center for Watershed Protection, Inc.

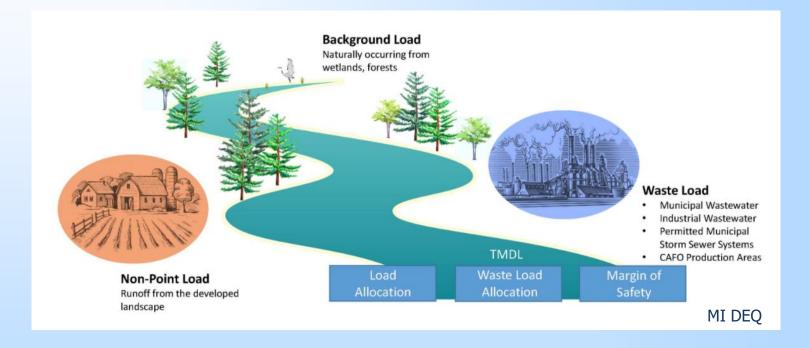
1. Evaluate sources/source categories of phosphorus generated from various land uses within each watershed and acquire information as to the relative importance (i.e. magnitude) of each source.

Help apportion the allowable annual total phosphorus load to various source categories (i.e. urban, agricultural, forest/wetland.) within each reservoir's catchment.

V

Was previously applied to Watson Reservoir, St. Marys Pond, Maidford River and Paradise Brook watersheds (City of Newport and Town of Middletown)

	Table 5.8. Compartmentalized land use categories	s in the Newport reservoir watersheds.
1	Urban Land Use	
1	Low Density Residential	
	Medium Density Residential	
GIS/Field	High Density Residential	(Point Source)
work	Transportation (all roadways)	Wasteload Allocation (WLA)
	Commercial	
	Industrial	
	Institutional	
	Tiverton Landfill	
	Onsite Wastewater Treatment Systems (OWTS)	Load Allocation (LA) (Non-Point Source)
2	Agricultural Land Use	
	Livestock	
	Hay/Brushland	
	Meadow	
	Nursery	
	Orchard	(Non-Point Source)
	Vineyard	Load Allocation (LA)
	Tree Farm	
	Pasture	
	Quarry	
	Row Crop	
	Managed Grass	
	Transitional	
3		LA (Natural Background)
•	Natural Background	(subtracted from existing P and N loads to each
	Forestland	reservoir) Not expected to change. N-controls for
	Wetland	atmospheric are beyond scope of TMDL and expected
	Atmospheric Deposition	to remain static



WTM Land Use Modeling Results

Waterbody	% TP Load from Urban Land Uses	% TP Load from Agricultural Land Uses	% TP Load from OWTS failure to surface water	% TP Load from Forest and Atmospheric (Natural Background)
Nonquit Pond	41%	27%	2%	30%
Watson Reservoir	52%	29%	1%	18%
Lawton Valley Reservoir	70%	22%	3%	5%
Sisson Pond	34%	61%	0%	5%
St. Marys Pond	57%	32%	5%	6%
North and South Easton Ponds	88%	10%	1%	2%
Gardiner Pond	24%	10%	0%	67%
Paradise Pond	33%	55%	3%	9%
Maidford River	67%	32%	0%	1%

TMDL(each reservoir) = ΣWLA + ΣLA + MOS

Sample of How TP Loads were estimated

SISSON POND

Table 5.16. WTM results and adjusted empirical model estimated TP loads to Sisson Pond.

Sisson Pond				
Source Category	WTM Predicted Annual P load (<u>lbs/yr</u>)	% of Total P Load	Empirical Model Predicted TP load (<u>lbs/yr</u>)	Adjusted Total P Load (<u>lbs/yr</u>)
Urban	99	34		65
Agriculture	176	61		115
OWTS failure to surface water	1	0.3	190	-
Natural Background	14	5		9

Example Allocation of TMDL

SISSON POND

Table 5.17. Existing and Allocated Annual Total Phosphorus Loads- Sisson Pond.

Existing total phosphorus load t		190 lbs						
Natural Background (Forest + A	9 lbs							
Anthropogenic phosphorus load	d (Existing Load - Natura	I Background)- (190 lbs -	- 9 lbs lbs)	181 lbs				
Allowable Total Phosphorus Loa	ad			30 lbs				
Allowable Total Phosphorus Loa	ad – Natural Background	l Load- (30 lbs – 9 lbs)		21 lbs				
Required Reduction from Anthr	opogenic Sources- (181	lbs – 21 lbs)		160 lbs				
Expressed as a Percent				88 %				
An 88 % reduction is required b	oetween all anthropoge	nic source categories						
Land Use Category	Existing Annual TP Load (Ibs)	Allowable Annual TP Load (Ibs)	WLA	LA				
Urban	65	8	100%					
Agriculture 115 13								
Forest/Wetland/Atmospheric	9	9		Natural Background				

Allocation of Phosphorus Loads Summary

Reservoir	Existing P Load (lbs/yr)	TMAL Load (lbs/yr)	Reduction TP Load Reduction (%)	WLA	LA	Natural Background Load	MOS
				(lbs P/yr)	(lbs P/yr)	(lbs P/yr)	
Nonquit Pond	1537	616	85	98	65	453	10% explicit
Watson Reservoir	196	154	25	76	43	35	10% explicit
Lawton Valley Reservoir	401	148	65	98	30	21	10% explicit
Sisson Pond	190	30	88	8	13	9	10% explicit
St. Marys Pond	470	66	91	25	14	27	10% explicit
North Easton Pond	347	94	74	79	9	5	10% explicit
South Easton Pond	218	87	61	75	9	3	10% explicit
Gardiner Pond	168	61	65	35	21	4	10% explicit
Paradise Pond	209	39	84	21	12	5	10% explicit

Table 4.14. Summary of Phosphorus Sources to the Newport Reservoir Watersheds.

Sources of Phosphorus to the Newport Reservoirs	Method(s) of Identification	Section
Urban and Residential Runoff	WTM results, Field Observations, Outfall Information	4.2
Agricultural Runoff and other agricultural- related activities	WTM results, Field Observations, NWQI investigations	4.3
Loss or Riparian Buffer Streambank/Streambed Erosion.	Field Observations, Previous Investigations, NWQI investigations	4.4
Excessive populations of resident geese utilizing reservoir shorelines	Field Observations	4.5
Onsite Wastewater Treatment System (OWTS) Contributions	WTM results	4.6
Internal Cycling of Nutrients from Reservoir Sediments	Sediment sampling, Water column sampling, Oxygen-Temperature Profiles	4.7
Natural Background Sources	Literature Review, WTM Results	4.8
Tiverton Landfill*	RIDEM staff observations, NWQI Investigations	4.9

*The Tiverton Landfill drains to Quaker Creek, which flows into Nonquit Pond.

Agricultural-Related Sources/ Stream Erosion/Lack of Riparian Buffers

PHOSPHORUS SOURCE IDENTIFICATION

- National Water Quality Initiative Studies
 - Established in 2012 as a joint initiative with RIDEM, NRCS and EPA to address agricultural sources of water pollution, including nutrients, sediment, pesticides, and pathogens related to agricultural production in priority watersheds.
 - Selection of Priority Watersheds
 - Nonquit Pond tributaries
 - Maidford River
 - Paradise Brook

Follow up work included extensive Ag-investigations outside of scope of

NWQI work (RIDEM and ERICD)

NONQUIT POND TRIBUTARIES WATER QUALITY STUDY AND POLLUTANT SOURCE IDENTIFICATION NATIONAL WATER QUALITY INITIATIVE

Prepared By: Office of Water Resources Rhode Island Department of Environmental Management 235 Promenade St. Providence, RI 02908 June 2018 Maidford River and Paradise Brook Water Quality Study and Pollutant Source Identification National Water Quality Initiative

Prepared By: Office of Water Resources Rhode Island Department of Environmental Management 235 Promenade St. Providence, RI 02908 February 2017

• National Water Quality Initiative studies

Figure 1. Nonquit Pond Tributary Sampling Station Locations.

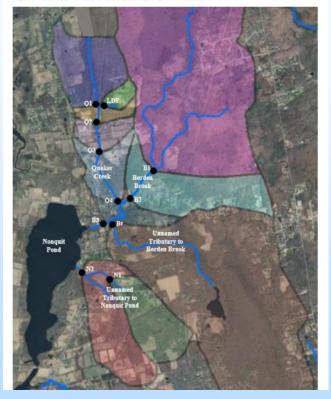


Figure 1. Maidford River Sampling Locations.

Figure 2. Paradise Brook Proposed Sampling Locations.

http://www.dem.ri.gov/programs/water/quality/restoration-studies/reports.php

- Lack of Riparian Buffers
- Flooded paddocks
- Erosion/Runoff from Agricultural/Urban Areas
- Exposed silage piles

Figure 4.4. Schematic of municipal and RIDOT outfalls in Newport Reservoir Watersheds-Aquidneck Island.

Urban Runoff

i.e. Stormwater

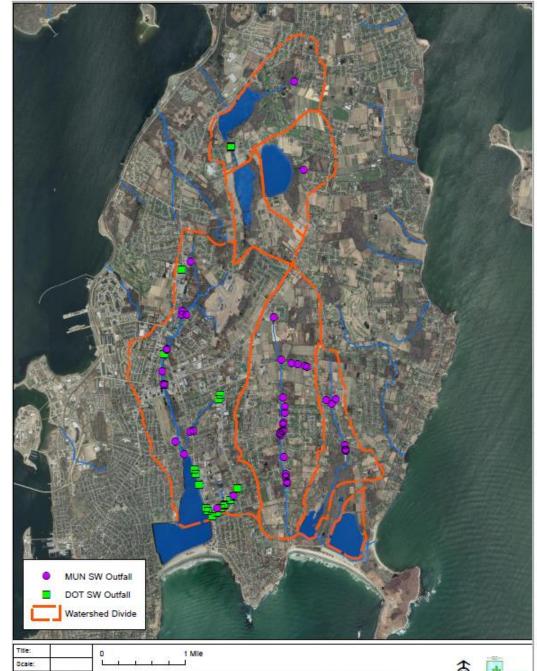
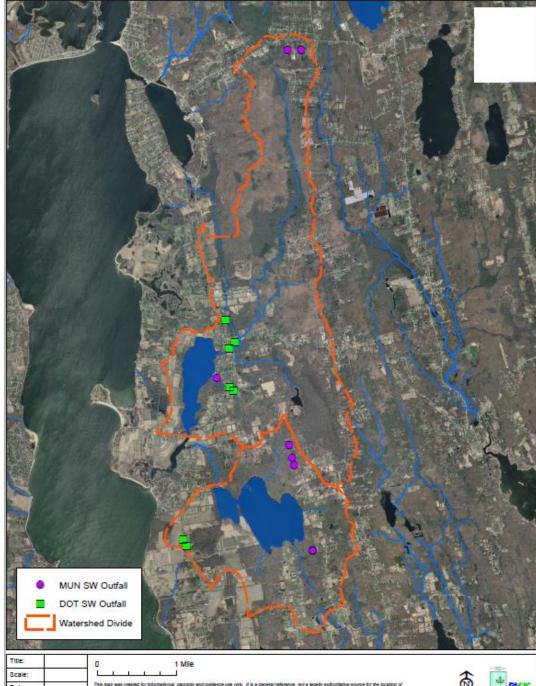



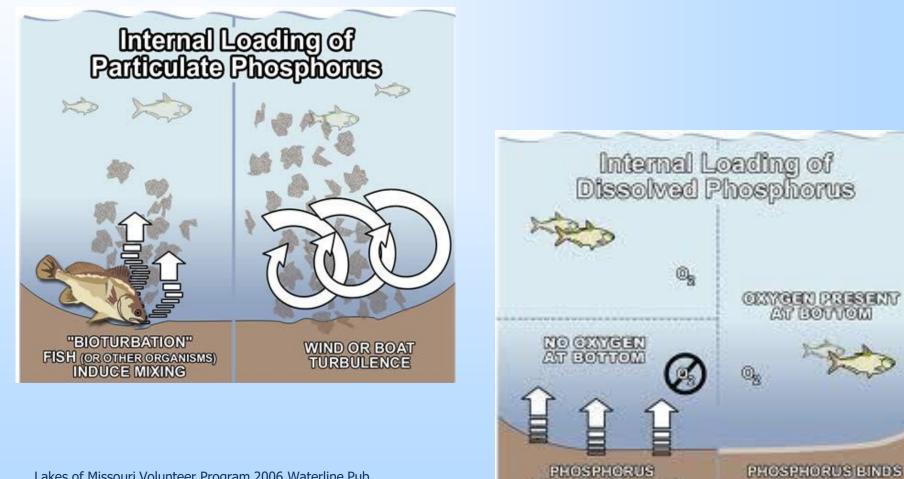
Figure 4.5. Schematic of municipal and RIDOT outfalls in Newport Reservoir Watersheds-Tiverton and Little Compton.

Urban Runoff

i.e. Stormwater

NONQUIT POND-Tiverton Landfill

Goose Waste/Erosion/Lack of Buffers



Internal Cycling of Phosphorus from Sediments

BECOMES SOLUBLE

IN SEDIMENTS

Lakes of Missouri Volunteer Program 2006 Waterline Pub.

TMDL Implementation Basics

- 1. **Point Sources**-CWA requires that permits be consistent with relevant TMDL Provisions
 - 1. Use RIPDES permit tools to implement
 - 1. MS4 Permit issued in 2003 established requirements for MS4s to provide plans describing how they intend to implement TMDL Provisions.
 - 2. Town of Tiverton application for RIPDES permit (i.e. Tiverton Landfill)
- 2. Non-Point Sources- BMP Recommendations and possible enforcement actions
 - 1. Use grants and public education to promote voluntary actions
 - 2. Where documented WQ violations, use existing enforcement tools (i.e. water quality regulations).

TMDL Implementation Section (Section 6.0)

The Implementation Section of this TMDL describes water quality improvement activities in the Newport reservoir watersheds that have been or are being implemented by various agencies/entities. <u>This section also outlines additional required and recommended best</u> <u>management practices (BMP's) that will need to be implemented to meet the water quality targets established in this TMDL.</u>

Non-TMDL related water quality improvement activities

- Source Water Phosphorus Reduction Feasibility Plan- City of Newport
- Maidford River Watershed Assessment and BMP Design- Town of Middletown
- Aquidneck Island Water Quality Initiative- Multiple partners
- Maidford River and Paradise Brook Watershed Conservation Plan- Aquidneck Land Trust
- North Easton Pond Stormwater Attenuation and Source Reduction Strategy
- Hoogendorn Nursery BMP Implementation- NRCS and RIDEM

Overview of Pollution Reduction Measures Point Sources

Urban Stormwater- Towns of Middletown, Portsmouth, Tiverton, and Little Compton, and RIDOT

- Continue ongoing efforts to manage stormwater to prevent discharge of phosphorus through pollution prevention and non-structural measures.
 - Construction and Post Construction Controls
 - Storm drain cleaning and street sweeping
 - Public education
- Implement structural retrofits to drainage systems to reduce phosphorus and stormwater runoff volumes.
- Consistent with EPA and DEM consent decrees, stormwater from RIDOT outfalls must be managed such that impervious cover is eliminated or treated to act as if it were eliminated to reach a target impervious cover of 10% (include TMDL requirements)

Overview of Pollution Reduction Measures Point Sources

Tiverton Landfill

Landfill Closure Plan approved by RIDEM in 2020

- Accept final wasteload on or before Nov 2022
- 4 Phase Closure
 - Landfill Capping (installation of stormwater detention basins) in 4 phases covering different areas of landfill
- Phase 4 capping 2023

Tiverton Application for RIPDES Permit (2021)

- Effluent limitations and monitoring requirements for seven (7) outfalls on the landfill site that discharge to Quaker Creek and/or wetlands connected to Quaker Creek and Borden Brook.
- Effluent limitations for outfalls will be based on the 18 ug/l total phosphorus targets established in this TMDL.
- Anticipated that the town of Tiverton will have to comply with a Stormwater Management Plan (SWMP). This Plan includes, but is not limited to, a description of the sedimentation and erosion controls as well as maintenance activities necessary to properly control storm water runoff.

Overview of Pollution Reduction Measures Non-Point Sources

Where documented WQ violations, use existing enforcement tools.

- Section 6.1 Overview of existing water quality improvement activities/plans
- Section 6.2.2 Agricultural best management strategies
- Section 6.2.3 Recommended additional goose abatement strategies
- Section 6.2.4 Protection and re-introduction/expansion of riparian buffers
- Section 6.2.7 Control of internal loading of phosphorus from reservoir sediments

DEM ACCEPTING Comments on Draft TMDL

The draft TMDL is available on the RIDEM website at:

www.dem.ri.gov/tmdl-newport

Comments accepted through 4pm August 6th 2021

Written Comments on the draft TMDL may be submitted to:

Brian Zalewsky DEM/Office of Water Resources 235 Promenade Street, Providence, RI 02908 <u>brian.zalewsky@dem.ri.gov</u>

2. Determining Existing and Allowable Phosphorus Loads

Dillon and Rigler empirical equation (as written by Maine DEP 2000):

- L = P (A · z · p) / (1-R)
- Where:
- L = external total phosphorus load (kg/yr)
- **P** = spring overturn total phosphorus concentration (ppb)
- **A** = lake basin surface area (km²)
- **z** = mean depth of lake basin (m)
- **p** = annual flushing rate (flushes/yr)
- **R** = phosphorus retention coefficient, where:
- R = 1/(1+ SQRT(p)) (Larsen and Mercier 1976)

2. Determining Existing and Allowable Phosphorus Loads

Canfield and Bachmann (1981) empirical equation:

- TP= (L/1000) / 0.305 X Z (0.114 (L/Z)^{0.589} +1/T
- Where:
- TP = mean total phosphorus concentration for each reservoir in mg/l
- L = loading rate in mg/m²
- **Z** = mean depth of reservoir in feet
- **T** = residence time of water in years

2. Determining Existing and Allowable Phosphorus Loads

p (reservoir flushing rate): Flushing rate is calculated as the inverse of detention time (DT). Except for Nonquit Pond, the detention time for each reservoir was calculated using the following formula:

2015 Mean reservoir volume (MG) / Total loss (outflow) recorded in 2015 (MG) = detention time (DT) (yrs)

P (total phosphorus concentration): Bi-weekly samples were collected in each reservoir by RIDEM at 2-3 discrete depths during the 2015 sampling season (n=12). Additional total phosphorus data were collected in St. Marys Pond and Watson Reservoir in 2015 as part of a study contracted by the Newport Water Department .

z (mean depth): Mean reservoir depth was calculated by dividing the reservoir volume at full capacity by the reservoir surface area (at full capacity).

A (surface area): the surface area used was calculated as surface area at full capacity.

R (phosphorus retention coefficient) is the fraction of inflowing phosphorus that is retained in the sediments.

R = 1/(1+ SQRT(p)) (Larsen and Mercier 1976)

NWQI/RIDEM and RIDEM-ERICD Summaries

- NWQI investigations in 2015 and 2018 resulted in the Office of Water Resources (OWR) requesting the Office of Compliance and Inspection (OCI) to initiate formal enforcement action for violations of specific WQ regulations.
- 2. Led to issuance of RIPDES permit for Tiverton Landfill and additional stormwater abatement control requirements as part of closure plan.
- 3. Additional site investigations of numerous agricultural land use related parcels of land.
 - 1. Visits by RIDEM Division of Agriculture and Eastern RI Conservation District Staff.
 - 2. Engagement with land owners regarding various changes to land use to mitigate Nonpoint sources of nutrients to waterways.
 - a. Removing livestock/equine access to waterways and wetlands.
 - b. Removal of silage pile from wetland/waterway
 - c. Erosion/sediment control plans