

PHASE II LIMITED SUBSURFACE INVESTIGATION

ROBIN RUG MANUFACTURING FACILITY BRISTOL, RHODE ISLAND

TAX MAP 10, LOTS 42 and 60 (Main Mill Parcels)
125 Thames Street

TAX MAP 10, LOTS 32, 41, 43, 44, 61, 62, 68, 73, 74, 76 (Parking Lot Parcels)
125 Thames Street

TAX MAP 10, LOTS 49 and 50 60 and 70 Thames Street

FOR

BRADY-SULLIVAN PROPERTIES 670 North Commercial Street Manchester, NH 03101

BY NOBIS GROUP®

(800)-394-4182

Nobis Project No. 095560.260

August 13, 2021

www.nobis-group.com

TABLE OF CONTENTS LIMITED PHASE II SUBSURFACE INVESTIGATION ROBIN RUG MANUFACTURING FACILITY 125 THAMES STREET, BRISTOL, RHODE ISLAND

<u>SECTION</u>		<u>PAGE</u>
EXECUTIVE S	SUMMARY	1
1.0 - INTROD	DUCTION	1
1.1	Purpose	
1.2	Site Description	
1.3	Site History	
1.4	Previous Investigations	2
	1.4.1 Phase I and II ESA, GZA 2005	2
	1.4.2 UST Removal, RIDEM 2005	3
	1.4.3 Phase I ESA, Nobis 2021	4
2.0 - PHASE	II FIELD ACTIVITIES	7
2.1	Geophysical Survey and Results	7
2.2	Soil Boring Advancement and Sampling	8
2.3	Groundwater Monitoring Well Installation and Development	11
2.4	Soil Vapor Probe Installation and Sampling	11
2.5	Test Pitting and Soil Sampling	
2.6	Groundwater Sampling and Well Survey	13
2.7	PCB Wipe Sampling	14
3.0 - PHASE	II FINDINGS	15
3.1	Soil Observations and Field Screening Results	15
3.2	Groundwater Elevations and Flow Directions	16
3.3	Laboratory Analytical Results	16
	3.3.1 Soil	16
	3.3.2 Groundwater	18
	3.3.3 Soil Vapor	18
	3.3.4 PCB Wipes	18
4.0 - DISCUS	SSION OF RESULTS	20
4.1	Comparison to State Soil Standards	20
4.2	Comparison to State Groundwater Standards	21
4.3	Comparison to Soil Vapor Standards	21
4.4	Notification to RIDEM	22
5.0 - SUMMA	ARY, CONCLUSIONS AND RECOMMENDATIONS	24
60-REFER	FNCES	27

TABLE OF CONTENTS (CONT.) PHASE II SUBSURFACE INVESTIGATION ROBIN RUG MANUFACTURING FACILITY 125 THAMES STREET, BRISTOL, RHODE ISLAND

TABLES

1	Soil PID Readings
2	Groundwater Elevation Data
3	Soil Analytical Results – Soil Borings
4	Soil Analytical Results - Test Pits
5	Groundwater Sampling Results
6	Subslab Soil Vapor Sampling Results
7	PCB Wipe Sampling Results
8	Summary of Soil DEC Exceedances

FIGURES

- Site Locus
 Site Plan
- 3 Groundwater Potentiometric Map

APPENDICES

- A Limitations
- B Geophysical Survey Report
- C Site Photographs
- D Soil Boring/Well Logs
- E Test Pit Logs
- F Laboratory Data Reports

EXECUTIVE SUMMARY

Nobis Engineering, Inc., dba Nobis Group® (Nobis) conducted a limited Phase II Limited Subsurface Investigation (Phase II) at the Robin Rug Manufacturing facility property (the subject property) located at 125 Thames Street in Bristol, Rhode Island. The subject property consists of fourteen (14) parcels of land totaling approximately 3.47± acres of developed commercial/industrial land located on the east and west sides of Thames Street between Church Street and Constitution Street. The subject property is located along the Bristol Harbor waterfront in a mixed-use area abutted by Maritime Welcome Center and Marina entrance, the Bristol Elks Club, a park, parking lots and several single-family and two-family residential properties.

The two main Mill parcels (Lots 10-42 and 10-60) were originally developed as a textile mill producing cottons and yarns, including operation of a dye house, in the late 1800s though the mid-1900s. In circa 1975, Robin Rug purchased the property who operated the mill to produce braided rugs. Residential properties at 60 and 70 Thames Street were historically residential and used as single or double-family homes. Prior to the 1960s, green houses were reportedly present on Lots 10-43 and 10-76. The Mill paved and gravel parking lots have historically been undeveloped, while the Church and Thames Parking Lot (lot 10-32) appears to have previously been developed as a residence, store, and boarding house.

The Phase II was conducted to assess the Recognized Environmental Conditions (RECs) which were identified in the ASTM Phase I ESA completed in April 2021 by Nobis (see Section 1.4.2). The Phase II was conducted to provide Brady Sullivan Properties with information on subsurface condition at the subject property in support of further due diligence and prior to potential acquisition and redevelopment of the Robin Rug facility into residential condominiums/apartments.

The Phase II field activities were performed between May 27 and June 30, 2021. The Phase II consisted of a limited subsurface investigation that included: development of existing groundwater monitoring wells, a geophysical survey, drilling of eleven (11) soil borings including installation of two (2) groundwater monitoring wells, excavation of sixteen (16) test pits, installation of four (4) soil vapor points in the basement of the mill building and sampling and analysis of various environmental media (soil, groundwater, soil vapor and wipe samples) and a well elevation survey. Samples were analyzed for a combination of analytes (i.e., VOCs, SVOCs, PAHs, RCRA eight metals, hexavalent chromium, pesticides, PCBs, and cyanide).

Based upon the findings of the limited Phase II, Nobis concludes the following:

- Subsurface soil consists of fill overlying native marine deposits consisting of alternating layers of sand, silt, and clay. Fill consists of fine to coarse sand with debris consisting of crushed stone/rock, concrete, brick, ash, slag, glass, plastic, and wire fragments. Fill is present in several area of the site, including west of the main mill, the central northern interior (SB-6/SB-7 area) and in the parking lots parcels east of Thames Street. Fill ranged in thickness from approximately 3 to 8 feet. The thickest amount of fill (≈8 feet) las encountered in TP-6 on Lot 10-43.
- Except for one reading (65 ppmV in TP-6), PID readings of TVOCs in soil were generally less than 1 ppmv in most locations. Petroleum odors were encountered at the groundwater table at 8 feet below grade (fbg) in TP-6 only. No dark brown or black-stained soils were encountered in the subsurface. No sheen or free product was encountered in groundwater monitoring locations.
- A UST, which was suspected to exist based upon GPR results, was not encountered during test pit explorations at TP-7 on Lot 10-76. The past and/or current use of the two unknown metal pipes in this location remains unclear. Lead was detected at 4,600 mg/kg at TP-7 in soil at a depth of 0 to 3.5 feet and is suspected to be related to the presence of ash.
- In soil, contaminants detected included primarily PAHs, TPH and metals (primarily arsenic and lead). The contaminants may be related to the presence of anthropogenic fill (placed by man) or pyrogenic fill (burn residue or produced by fire) and/or possibly by undocumented releases from historic mill activities and operations. Other contaminants such as VOCs, pesticides, PCBs, cyanide, and hexavalent chromium were reported at relatively low concentrations and/or not detected. Several constituents detected in soil exceed the Rhode Island Residential DEC and/or the Industrial/Commercial DEC. Exceedance of the DECs indicates that a potential increased risk to human health exists via the direct contact pathway.
- In groundwater, VOCs and TPH were not detected in groundwater samples from monitoring wells located on the Main Mill Building parcels (Lots 10-42 and 10-60) and or in NB-3 installed on parking lot parcel Lot 10-43. PAHs were detected at low concentrations in GZA-3 primarily located on the downgradient site of the subject property. Based upon the groundwater sampling data, groundwater quality does not appear to be significantly impacted and is consistent with groundwater quality in GB areas.

- In subslab soil vapor, VOCs are present at varying concentrations. VOCs reported include various types of gasoline related compounds and several CVOCs. Total VOC vapor concentrations (772.05 ug/m3) in SG-4 located beneath Mill Bldg#7 was much higher than in other locations. Most of the total VOC concentration in SG-4 soil vapor consisted of trichlorofluoromethane (Freon 11) and PCE. The State of Rhode Island does not have a stand-alone guidance dedicated to vapor intrusion and/or standards (like CTDEEP) or vapor screening values (like MassDEP). For comparison only, the PCE concentration of 260 ug/m3 in SG-4 exceeds the MassDEP Subslab Soil Gas Screening Value for Residential Use. Per MassDEP guidance, this exceedance indicates that the vapor intrusion pathway may be of concern under future residential use conditions. However, the PCE soil vapor detection was in only 1 of 4 sample locations and was in portion of the main mill building proposed as open-air garage space (below first residential living floor). Additionally, PCE was not detected in either soil or groundwater and thus the presence of PCE in soil vapor may be indicative of background conditions and from an unknown off-site source. Thus, this single PCE soil vapor detection beneath the subslab is not considered to have an impact on proposed future use.
- In wipe samples, low to trace levels of PCBs are present. Wipe samples indicated that low level PCBs are associated with some elevator oils and in some stained concrete surfaces (from past spills) in the basement. Total PCB wipe concentrations were less than 1 ug/100 cm2 which is below the reporting notification threshold per State of Rhode Island and federal (TSCA) requirement of 10 ug/100 cm2. However, wipe sampling is "qualitative" and only indicates that PCBs are present or absent on the surface and does not provide a "quantitative" measure or concentration of PCBs on the wiped surface. Additionally, as noted in the lab report, the PCB wipe analytical results were biased low.

Nobis provides the following recommendations:

- 1. Management of fill material is advised during future redevelopment of the property. Soils should be characterized in accordance with a soil management plan and in coordination with a qualified environmental professional.
- 2. Soil concentrations exceeding the RDEC and/or the I/C DEC (coupled with notification exemption criteria not met) constitutes a "release" in accordance with RIDEM Remediation Regulations (250-RICR-140-30-1). The release is required to be reported by a Responsible Party, which per the regulations is defined as the Property Owner. A summary of the results of soil exceedance to be reported to RIDEM are summarized in Table 8. Brady Sullivan should notify Mr. Russel Kairan, the property owner, of his

obligation to notify the RIDEM. Upon Brady Sullivan's notification to the Property Owner of this information (which triggers the Responsible Party's "discovery"), RIDEM should be made in writing (both hard copy and electronic via email) within 15 days.

1.0 - INTRODUCTION

1.1 Purpose

Nobis Engineering, Inc., dba Nobis Group® (Nobis) conducted a limited Phase II Limited Subsurface Investigation (Phase II) at the Robin Rug Manufacturing facility property (the subject property) located at 125 Thames Street in Bristol, Rhode Island. The Phase II was conducted to further assess the Recognized Environmental Conditions (RECs) which were identified in the ASTM Phase I ESA completed in April 2021 by Nobis (see Section 1.4.2). The Phase II was conducted to provide Brady Sullivan Property (the User as defined ASTM) information on subsurface condition at the subject property in support of further due diligence and prior to potential acquisition and redevelopment of the property. The Phase II is subject to the limitations described in Appendix A.

1.2 Site Description

The target property is comprised of 14 parcels (collectively referred to as the "target property") totaling approximately 3.47± acres of land and includes industrial, commercial, residential, parking lot and undeveloped land use. The location of the subject property is shown on Figure 1 - Locus Map. Pertinent site features are shown on Figure 2 - Site Plan.

The target property includes the Main Mill Building property (5 parcels) and 8 parcels located on adjacent Thames Street. These parcels are identified on the Town of Bristol Tax Map 10 as follows:

- Robin Rug Mill Building Property includes parcels 10-42, 10-60, 10-61, 10-62, and 10-73. Robin Rug is a braided rug manufacturing facility. The building is made up of several interconnected buildings with industrial and commercial use.
- *Mill Parking Lots* located on Thames Street east of the Mill Building and includes parcels 10-41, 10-44 and 10-68. These parcels are used as a parking lot for the mill.
- Lot 10-32 located at the corner of Church and Thames Street is a seasonal parking lot rented from the property owner by the Town of Bristol.
- Lots 10-76, 10-43, and 10-74 located between Hope Street and Thames Street and consists of a gravel parking lot.
- Lot 10-49 located at 60 Thames Street. This property is a single-family residence.
- Lot 10-50 located at 70 Thames Street. This property is a two-family residence.

The target property is located along the waterfront of Bristol Harbor within the Town's Waterfront Planned Unit Development zone. The target property is abutted by mostly residential properties (some commercial properties) to the north and east, by the Bristol Elks lodge to the southwest, and by the Maritime Welcome Center (former armory and community center) to the northwest. The parcels located east of Thames Street are in the Downtown and Residential R-6 zones.

1.3 Site History

The Mill building was originally developed as a textile mill producing cottons and yarns in the late 1800s though the mid-1900s. Circa 1975, Robin Rug purchased the property and operated the mill to produce braided rugs. Residential properties at 60 and 70 Thames Street were historically residential and used as single or double-family homes. Prior to the 1960s, green houses were reportedly present on Lot 10-76. The Mill paved and gravel parking lots have historically been undeveloped, while the Church and Thames Parking Lot (lot 10-32) appears to have previously been developed as a residence, a store and boarding house.

1.4 Previous Investigations

Two previous environmental assessment have been conducted at the subject property. The findings of these previous investigations in 1995 (by GZA GeoEnvironmental) and in 2021 (by Nobis) are summarized below.

1.4.1 Phase I and II ESA, GZA 2005

In 2005, GZA conducted a Phase I and II ESA at the subject property.¹ The GZA Phase I ESA identified historic uses of the mill buildings at 125 Thames Street as potential environmental concerns. The presence of floor staining, containers of hydraulic, lubricating and waste oil, and evidence of dye-stained areas were also noted as concerns. Two 20,000-gallon underground storage tanks (USTs) containing No. 6 heating oil were observed on the Site and were considered a REC in GZA's report. Closure of the two 20,000-gallon USTs was recommended.

The GZA report also noted 2,830 lbs. of oil-contaminated soil was removed from the boiler room (in Mill 5) in 1987. The soil was removed from a secondary container, along with the concrete cinder block berm, during the replacement of the 5,000-gallon No. 6 oil Above-Ground Storage Tank (AST). In 2021, Nobis clarified with the property owner clarified that the "2,830 lbs. of oil-contaminated soil" was in fact not soil but rather oil-contaminated sand from inside a concrete

¹ GZA GeoEnvironmental, Inc, 2005, Phase I and II Environmental Site Assessment, Robin Rug, Bristol, RI.

berm constructed around the then heating oil AST. The sand-filled berm was used as a form of secondary containment likely for overfills (Nobis, 2021, Phase I ESA).

GZA's Phase II included advancement of three (3) soil borings completed as groundwater monitoring wells (GZA-1, GZA-2 and GZA-3) to depths of approximately 15 feet below grade. The GZA borings/wells were advanced on the west side of the mill building in the locations shown on Figure 2. GZA also field screened soils and submitted soil and groundwater samples for lab analysis for VOCs and TPH. GZA described soils as consisting of fine sand, gravel, and some evidence of fill. GZA reported no visual or olfactory evidence of soil staining or gross petroleum contamination in GZA-1, GZA-2, or GZA-3. VOC field readings were below 5 ppmv and detected in only 3 of the 18 samples screened.

Groundwater sampling indicated water at 5 to 7 feet below grade and no presence of a sheen or free phase product. In groundwater, two compounds, methyl-tert butyl ether (MTBE) and naphthalene, were detected at low concentrations in two of the three wells. Total petroleum hydrocarbons (TPH) were detected between 470 and 850 microgram per liter (ug/L) below the Rhode Island Upper Concentration Limit for Category GB groundwater. There are no Method 1 GB Objectives for TPH. GZA also collected a water sample from inside the cistern located west of Building 2A (concrete holding tank) for VOC analysis. No VOCs were detected in the water from inside the cistern.

GZA's Phase I and II ESA included a preliminary survey for hazardous materials (asbestos and lead) which identified the probability of lead-based paint (LBP) within the manufacturing buildings and potential asbestos in pipe insulation and tiles within the offices.

1.4.2 UST Removal, RIDEM 2005

As part of the Phase I ESA, Nobis obtained copies of state file documents which confirmed permanent closure of the two 20,000-gallon No. 6 heating oil USTs. These USTs were in the northwest corner of Lot 10-41 adjacent to Thames Street. According to RIDEM records, the two USTs were removed from the ground in September 2005 and were transported to and disposed of at a scrap metal/recycling facility. Four (4) composite soil samples collected from the tank grave were analyzed for TPH by EPA method 8100. TPH in soil was not detected and below acceptable state limits. The tank graves were backfilled with soil provided by the property owner.

1.4.3 Phase I ESA, Nobis 2021

In April 2021, Nobis conducted an ASTM Phase I ESA of the subject property for Brady Sullivan Properties in support of initial due diligence efforts prior to potential acquisition of the subject property. The 2021 Nobis Phase I identified nine (9) RECs, which included:

REC-1 - Historical Use as Textile Mill/Rug Manufacturing

The main mill complex has a long history of storage, usage of petroleum (mostly oils) and hazardous substances (chemicals including solvents and dyes containing metals) and residual wastes associated with textile manufacturing (cotton and wool) and later braided rug manufacturing. The property contains several pieces of original mill equipment (i.e., transformers) and other subsurface structures including a large cistern/water holding tank and trenches/floor drains associated with the dyeing areas. Petroleum and/or hazardous substances were stored and/or used in the transformer area, the electrical repair shop, machine shop, machine oil shop, boiler room and dye room.

REC-2 - Historical Gasoline USTs

A 1920 Sanborn Map shows a 1,200-gallon buried gasoline tank associated with a former structure that is now in the present-day location of Building 7/7A. A 1911 Sanborn Map shows a 230-gallon UST at the southwest corner of Building 7A associated with a former auto station. GZA's 2005 report indicates this tank may have been removed during prior construction. However, no documentation on these suspect UST removals is known.

REC-3 - Hydraulic Lift

A hydraulic lift is located in the sidewalk on the east side of Building #1 (Adjacent to Thames Street). Nobis observed an oil reservoir in the basement of Building #1 and stained concrete floors in this area.

REC-4- Chemical/Waste Drums

Drums containing suspect oils and waste oils were observed in several locations within the mill building. Two drums (one of which was leaking) were observed in the basement of Building 3 adjacent to out-of-use piping. The piping led to two former 20,000-gallon No. 6 oil UST on Lot 10-41 located east of Thames Street that were removed in September 2005. Cracks were observed in the concrete floor in this area and oil was observed on standing water located adjacent to the drums. Drums with a frozen water/No. 6 oil mixture were observed in the boiler room in Building 6. Several drums and 5-gallon buckets containing used lubricating oil were observed in good condition along the west side of Building 6. The concrete floor appeared to be in good condition

and had no overt evidence of cracking. Drums suspected to contain lubricant oil were observed in the basement of Building 7.

REC-5 - Floor Staining in Mill Basement

Considerable dark black-brown staining was observed over a large area on the concrete floor in the basement of Mill Building 7 & 7A. Concrete staining is indicative of past machinery or equipment oil releases.

REC-6 - Historical Oil Leaks from Cable Weighted Elevators in Mill Buildings

The mechanical workings of one of the five cable weighted elevators were observed; The mechanical area was in a room on the roof of Building 4. Reportedly 2 to 3 gallons of gear oil is contained in a gear box inside the room. It appeared that there was oil leaking when the elevators were in use. The mechanical workings in the room were observed to be stained with oil and a pan, presumably to catch drips, was filled with oil and observed beneath the gear box. The elevator shaft bottoms could not be observed for oil leakage and was considered a significant data gap.

REC-7 - Suspect PCB-Containing Transformers/Historical Transformer Room

Three (3) transformers were observed to be stored on the east side of the basement in Mill Building 1. Labels indicated they were made by General Electric and are dated from the early 1900s. Labels did not identify whether they contained PCB containing oil, but based on their age, they are suspected to contain PCB oil.

REC-8 -Former Continuous Dye Process Area

Two floor drains/trenches were observed in the continuous dyeing process room in Building 6 and in the New Dye House Building. After yarn was dyed it would go through dryer machines. Trenches would catch dye that dripped from yarn during drying. Effluent from the trenches reportedly went to the sanitary sewer for treatment by the wastewater treatment plant (WWTP). VOCs were reported in effluent wastewater collected at the site from 1990 through 2016 at the Bristol WWTP. The known conveyance of waste liquids associated with the continuous dyeing process area and containing VOCs through the series of concrete drainage trenches to the sanitary sewer constitutes a REC.

REC-9 - Older Stock Kettle Dye Room with Trenches/Floor Drains

One floor drain/trench associated with the old dye kettle room was observed in Building 5. The trench reportedly drained to a UST before being discharged to the sanitary sewer. The owner stated the trench would drain very slowly when connected directly to the sanitary sewer, so a UST was installed as a holding tank for the effluent from the dye kettle. Afterwards, water would flow from the trench into the UST and then discharge to the sanitary sewer. This revised setup allowed

the water in the trench area to drain more quickly and not slow down the dye process. The UST (holding tank) is reportedly located on the northwest exterior of Building 5. All effluent reportedly went to sanitary sewer and WWTP. VOCs were reported in effluent wastewater lab results from 1990 through 2016 observed at Bristol WWTP. The known conveyance of waste liquids containing VOCs through the series of concrete drainage trenches associated with the old kettle dye room constitutes a REC.

HREC-1 - Former No. 6 Oil USTs

Nobis also identified a Historical REC (HREC) associated with the target property which included: two (2) former 20,000-gallon No. 6 oil USTs on Lot 10-41 (HREC-1). These USTs were removed from the ground in 2012. Some stained soil was observed but soil sampling of the tank grave reported total petroleum hydrocarbons (TPH) was not detected (<20 mg/kg). No groundwater analysis was conducted. The USTS were not reported to be leaking USTs (LUSTs) and closure documents were submitted to the Rhode Island Department of Environmental Management (RIDEM). The property owner indicated to Nobis that the UST system pipe chases ran under Thames Street to the Mill Building were removed. Nobis identified that the subsurface beneath the pipes or coming into the building were not assessed. Nobis identified an oil leak in the basement of the Mill where the former UST piping entered the building (see REC-4)

Adjacent Off-Site HRECs

Nobis also identified two (2) off-site HRECs on adjacent properties known to have had petroleum releases. In 2010/2011, a petroleum release from a 2,275-gallon #2 heating oil LUST occurred at the Maritime Welcome Center (adjacent to Mill Lot 10-42). In 1985, a release from a 1,000-gallon gasoline LUST occurred at 315 Hope Street (adjacent to Lot 10-43). These off-site releases involved soil removal and were closed out with no further action by RIDEM. However, available sources did not indicate whether shallow groundwater was impacted.

Business Environmental Risks

Nobis also identified several business environmental risks (BERs) associated with: hazardous building materials, including but not limited to suspect asbestos and lead-based paint (BER-1), an old subsurface cistern (BER-2), flood zone designation (BER-3), unknown metal pipes and suspect UST on Lot 10-76 (BER-4), presence of fill located primarily on the west side of the mill (BER-5), former heating oil AST in Mill 6 (BER-6), and boiler room trenches in the former machine shop (BER-7).

2.0 - PHASE II FIELD ACTIVITIES

The Phase II limited site investigation was performed in accordance with Nobis's proposal dated March 29, 2021. The subsurface field investigation was conducted to assess for possible contamination in various Areas of Concern (AOCs) identified by the RECs. The subsurface investigation included: a geophysical survey, drilling of shallow borings and installation of groundwater monitoring wells, test pit exactions, groundwater elevation survey and chemical testing of soil, soil vapor and groundwater and wipe sampling for polychlorinated biphenyls (PCBs). Field activities were conducted under a Nobis Health and Safety Plan (HASP). Drilling activities were DigSafed as required by state law. Select drilling locations in adjacent streets were conducted in accordance with a street opening permit obtained from the City of Bristol. A description of the Phase II subsurface investigation, which were performed between May 27 and June 30, 2021, is summarized in this section.

2.1 Geophysical Survey and Results

On May 27, 2021, Nobis oversaw a geophysical survey using ground penetrating radar (GPR) equipment of select locations performed by Geophysical Applications of Holliston, MA. Surveyed locations (total of 4) were selected based on proposed subsurface investigation locations related to areas of concern and potential historical utilities and/or USTs as identified in the Phase I ESA (Nobis, 2021). The four GPR survey areas are shown on Figure 2 and were as follows:

GPR Area 1 -the courtyard area within the Mill complex between Building #4, Building #6, and the new dye house, GPR Area 1 was surveyed to clear the area of underground utilities or other structures to assess subsurface conditions adjacent to the floor drain trenches located within the Mill (REC-8).

GPR Area 2 - the exterior corridor between Building #3 and Building #5. GPR Area 2 was surveyed to determine if historical utilities were present, based on the location of hydrants and manhole covers in the vicinity of soil borings proposed in the area to assess subsurface conditions related to the stock kettle dye room and associated UST (REC-9).

GPR Area 3 - the area around the unknown pipe stickups on Lot 10-76. GPR Area 3 was surveyed around the unknown pipe stickups to assess whether a potential buried UST was present.

GPR Area 4 - the concrete pad and roadway in the vicinity of proposed SB-1/NB-1 at the southwest corner of the Main Mill Building. Attempts were made to survey the interior of the Building #7A but reinforced rebar in the floor prevented GPR equipment from getting accurate readings. GPR Area 4

was surveyed to determine if subsurface utilities were present prior to installation of SB-1/NB-1 which was proposed to assess potential impacts relating to historical gasoline USTs (REC-2).

A copy of Geophysical Application's GPR survey report is provided in Appendix B. The results of Geophysical Applications GPR survey was used to better select drilling locations (to avoid subsurface utilities) and to further explore certain areas for presence of subsurface structures. The GPR survey findings were as follows:

- In GPR Area 1, two locations for location of SB-4 were cleared for drilling. Drilling was able to proceed in this location without additional equipment.
- In GPR Area 2, the GPR survey identified the building's fire suppression system which contained many subsurface linear objects present in the vicinity of SB-6 and SB-7. The use of air vacuum excavation to the top 5 feet was recommended if access allowed. However, due to the presence of numerous utilities and limited rig access, Nobis opted to complete SB-6 and SB-7 manually by removing a small section of the concrete with a jackhammer and digging with a shovel and hand auger. Soil samples were then collected manually from a depth of 2 feet below grade (fbg).
- In GPR Area 3, the GPR survey identified the presence of a possible UST near the two unknown metal pipes on Lot 10-76 near proposed test pit TP-7. Thus, TP-7 was moved closer to the line of hedges and where the subsurface anomaly was identified to better assess if a UST was present. As discussed in Section 3.0, a UST was not found to be present in this location.
- In GPR Area 4, the GPR survey identified a linear object (possible pipe) in the sidewalk in close proximity to proposed boring SB-1/NB-1. A gas line was observed and marked in adjacent Constitution Street. SB-1/NB-1 was moved in a slight eastern direction and was drilled to refusal at 4 fbg. Refusal was suspected to be a large boulder.

2.2 Soil Boring Advancement and Sampling

On June 8, 2021, prior to the start of drilling, GeoSearch Inc., of Sterling, MA, conducted a field cleared soil boring advancement/well installation and test pitting locations. GeoSearch used a pipe utility locator and GPR survey equipment to clear and/or relocate locations of soil borings and test pits in the field only (no report was prepared). GeoSearch's survey was limited to the exterior of the site at proposed locations of soil borings and test pits. The additional pre-clear was conducted in locations within the property boundaries not covered by routine DIGSAFE procedures.

On June 8, 9, and 10, 2021, a Nobis field geologist oversaw the advancement of eleven (11) soil borings (SB-1 through SB-11), including the installations of two (2) groundwater monitoring wells at SB-5 and SB-8 which were designated NB-2 and NB-3, respectively. Soil boring/groundwater well locations are shown on Figure 2. Drilling was conducted using a direct-push (hydraulic) drilling method with a low-profile track-mounted Geoprobe®. Based upon GPR survey findings and presence of potential utilities, air vacuum extraction was used in the top 5 feet in soil borings SB-1, SB-2, and SB-3.

Soil borings were advanced around the exterior of the Mill and on the paved and unpaved parking lots associated with the property to assess subsurface conditions in the identified REC locations per the Phase I and various AOCs as follows:

- *SB-1/NB-1* was advanced at the southern end of the Mill Building along Constitution Street in an area of known former gasoline USTs identified on historical Sanborn maps (REC-2). This boring was terminated at a shallow depth of 4 feet due to refusal on a suspect boulder or building footing. Consequently, groundwater monitoring well NB-1 was not able to be installed.
- *SB-2* was advanced in the sidewalk along Thames Street to assess subsurface conditions adjacent to the suspect leaking hydraulic lift (REC-3).
- *SB-3* was advanced in the sidewalk along Thames Street to assess subsurface conditions where the pipes for the former No. 6 heating oil USTs (REC-4).
- *SB-4* was advanced at the north entrance to the Mill (from Church Street extension) to assess subsurface conditions related to a former transformer area (REC-7).
- *SB-5/NB-2* was advanced between Building #4 and the new dye house to assess subsurface conditions related to floor drain trenches and the new dye house aera (REC-8) and was completed as groundwater monitoring well NB-2.
- SB-6 and SB-7- Drilling using the GeoProbe® was not possible in these locations due to access and presence of numerous subsurface utilities (water, gas, sewer). Instead, a small 2 ft by 2 ft section of pavement was removed and the soil beneath the pavement was manually accessed using a hand shovel and hand auger to a depth of 2 fbg.
- *SB-8 /NB-3* was advanced in the unpaved parking lot on Lot 10-76 and was completed as a groundwater monitoring well NB-3. The purpose of this boring/well was to assess

subsurface conditions related to a historical off-site gasoline release on Hope Street (Additional HREC).

- *SB-9* was advanced in the paved parking lot on Lot 10-44 at the request of Brady Sullivan to assess general subsurface conditions (and to check for the presence of fill) in an area proposed for a new parking lot.
- *SB-10* was advanced on Lot 10-32 within the unpaved parking lot in a location considered upgradient of the Mill.
- *SB-11* was advanced in the paved parking lot on Lot 10-68 at the request of Brady Sullivan to assess general subsurface conditions (and to check for the presence of fill) in an area proposed for a new parking lot.

The borings/monitoring well installations were performed to assess subsurface soil and groundwater quality in these areas. Except at SB-1 (refusal at 4 fbg), soil borings were advanced to depths ranging from 12 feet to 15 feet below ground surface (fbg). As noted above, drilling was limited at SB-6 and SB-7 and subsurface soils were thus obtained manually using a hand shovel and hand auger. Soil samples were collected continuously to the bottom of the boring and were field screened for total VOCs using a hand-held photoionization detector (PID) equipped with a 10.6 eV lamp. Photos of subsurface soil conditions are shown on the Photolog in Appendix C. Soil observations and PID readings are summarized on the soil boring logs included in Appendix D.

Select soil samples based on location, PID readings and field observations were submitted to a State-certified laboratory for analysis. Soil Sampling results are discussed in Section 3.4.1. Eight (8) soil samples collected from varying depths were submitted for laboratory analysis to Eastern Analytical of Concord, New Hampshire. Soil boring samples were analyzed for volatile organic compounds (VOCs) by Method 8260, semi-volatile organic compounds (SVOCs) by Method 8270, total petroleum hydrocarbons (TPH) by Method 8100, pesticides via Method 8081, polychlorinated biphenyls (PCBs) via Method 8082, total cyanide, and RCRA 8 Metals. Additionally, three (3) select soil samples from borings advanced within the Mill Building area at locations SB-4, SB-6 and SB-7 near the former dye house area were also analyzed for Hexavalent Chromium (Cr+6). Additionally, two (2) soil samples collected from SB-6 and SB-7 from 2 fbg which contained lead greater 100 mg/kg (TCLP 20x Rule) were also analyzed for TCLP lead.

2.3 Groundwater Monitoring Well Installation and Development

As described in Section 2.2, monitoring wells NB-2 (installed in SB-5) and NB-3 (installed in SB-8) were completed as 2-inch diameter polyvinyl chloride (PVC) wells. NB-2 and NB-3 were set at depths of 13 fbg and 15 fbg, respectively and screened across the groundwater table. The annular space around the screen was completed using #00 filter screen followed by a minimum 2-foot bentonite chip seal and native soil to ground surface. Each well was completed with protective road boxes flush mounted with the ground surface. Because NB-2 is located closer to Bristol Harbor, groundwater is tidally influenced and thus the screened interval was set slightly shallower than at NB-3 located further inland. Note: Originally, three monitoring wells were proposed for the Phase II exploration. Monitoring well NB-1 (at SB-1) located near the southwest corner of building #7A could not be installed due to an obstruction at 4 fbg and other limitations (property lines and presence of subsurface utilities) for re-drilling in the same location. SB-1 was back-filled with soil cuttings and the surface was concreted.

Following installation, the groundwater monitoring wells were developed by purging a minimum of five well volumes utilizing a surge block and inertial pump. Existing GZA wells were previously developed using the same methods in preparation for sampling, in concurrence with GPR Survey and Digsafe pre mark field activities on May 27, 2021. No investigation derived waste (either soil or groundwater) was generated during the Phase II subsurface drilling and well installation activities.

2.4 Soil Vapor Probe Installation and Sampling

On July 9 and 10, 2021, vapor probes were installed by GeoSearch under the oversight of Nobis within the basements of Mill Buildings #1, #3, #7, and #7A. Soil vapor sampling points were installed to obtain information on potential vapor intrusion issues, if any. The soil vapor probes (designated SG-1, SG-2, SG-4, and SG-5) locations are shown on Figure 2.

Soil vapor locations were chosen based on evidence of potential contamination such as staining on the floor, historical information from Sanborn Maps and locations proposed for future residential use. SG-1 was installed in Mill building #3 near the leaking oil drums and former UST piping into the building associated with REC-4. SG-2 was installed in Mill building #1. SG-4 was installed in building #7 in the vicinity of the paint shop noted on the 1896 Sanborn Map and staining on the floor. SG-5 was installed in building #7A near floor staining. Note: SG-3 was not installed. The drilling subcontractor, GeoSearch cored through approximately eight (8) inches of concrete. When the core was removed, empty space was observed below, with a concrete wall on one side and wood below it, and a wooden beam and visible water several feet below in the open space. It appears part of

Building #7 was built on piers before the area was filled in. A photo of the SG-3 location is included in the photolog in Appendix C.

Soil vapor pins were installed to depths of approximately 3 feet below the concrete slab in various locations in the Main Mill Building basement. The soil vapor pins were constructed of approximately 6-inch stainless steel ports with screens and 0.25-inch LDPE tubing. The sampling points were closed with a valve and finished as 4-inch flush mounted road boxes. Prior to sample collection, a tightness test was conducted by purging 2L of vapor at a rate of 0.2 L/minute to simulate the flow rate under vacuum conditions from the SUMMA cannisters. Vapor was purged into Tedlar bags and screened using a PID and 4-gas meter to assess conditions compared to ambient air readings. Higher levels of CO₂ and/or total VOCs and/or lower levels of O₂ indicated the soil vapor pins were pulling sub slab soil vapor as opposed to ambient air.

On June 30, 201, Nobis collected four (4) soil vapor samples from SG-1, SG-2, SG-4 and SG-5. Samples were collected a 30-minute air sample using a 6-liter Summa Cannister at a flow rate of 0.2 L/min. Samples were submitted to Con-Test, a Pace Analytical Laboratory for analysis for VOCs via Method TO-15.

2.5 Test Pitting and Soil Sampling

On June 10 and 11, 2021, GeoSearch excavated fifteen (15) test pits (TP-1 through TP-14 and TP-17) under the oversight of a Nobis field geologist. Test pits were excavated by using a John Deere Model 60G compact excavator to depths ranging from approximately 5 to 10 fbg. Excavated soil and debris material were temporarily stockpiled and were backfilled into the test pit after completion.

Test pits were excavated in primarily two general areas - west side of the Mill Building and in the parking lots on Thames Street. Test Pit locations are shown on Figure 2. Test Pits TP-15 and TP-16 were not completed. TP-15 could not be completed due to access and safety issues associated with the presence of numerous subsurface utilities. Similarly, TP-16 (former water tower location) could not be completed due to excessive overgrown vegetation and safety issues associated with the presence of an active underground water line.

Test pit soil samples were field screened for total VOCs using a hand-held photoionization detector (PID) equipped with a 10.6 eV lamp. Photos of subsurface soil conditions in test pit locations are shown on the photolog in Appendix C. Soil observations and PID readings are summarized on the test pit logs included in Appendix E.

Select soil samples based on location, PID readings and field observations were submitted to a State-certified laboratory for analysis. Eight (8) soil samples collected from varying depths were submitted for laboratory analysis to Eastern Analytical of Concord, New Hampshire. Test pit samples were analyzed for a combination of the following analytes: volatile organic compounds (VOCs) by Method 8260, PAHs only by Method 8270, TPH by Method 8100, pesticides, and PCBs via Method 8081/8082 and RCRA 8 Metals. Additionally, three (3) soil test pit samples collected from TP-2, TP-7 and TP-14 which contained lead greater 100 mg/kg (TCLP 20x Rule) were also analyzed for TCLP lead. Soil test pit sampling results are discussed in Section 3.4.2. The laboratory report is provided in Appendix F.

2.6 Groundwater Sampling and Well Survey

On July 29, 2021. Nobis samples groundwater samples from the three existing GZA wells (GZA-1, GZA-2, and GZA-3) and the two newly installed wells NB-2 and NB-3. Groundwater monitoring sampling locations are shown on Figure 2.

Prior to sample collection, groundwater levels were measured in each groundwater monitoring well using a Solinst electronic water level indicator. Water quality meters with flow-through cells, bladder pumps, and appropriate tubing were used to purge the wells, collect aquifer stabilization data, and collect samples in general accordance with EPA Region 1 Low-Stress/Low-Flow sampling techniques. Prior to use, the instruments were calibrated in accordance with the manufacturer's instructions. The groundwater samples were collected into appropriate prepreserved sample containers supplied by the laboratory and placed in an ice-filled cooler for delivery to the laboratory under chain-of-custody control.

Groundwater samples were analyzed for VOCs by Method 8260, SVOCs by Method 8270, and TPH by Method 8100. Based upon the soil analytical results for pesticides, PCBs, RCRA 8 metals, cyanide and hexavalent chromium, analysis of these parameters in groundwater was not warranted due to either non- or low detectable levels. Groundwater samples were submitted to and analyzed by Eastern Analytical of Concord, New Hampshire. A copy of the groundwater laboratory analytical report is provided in Appendix F.

On July 30, 2021, Nobis conducted a well elevation survey of the five (5) monitoring wells. The temporary benchmark (Elevation = 100 feet) was identified as the southeast corner of a concrete pad located on Church Street. Monitoring well elevations were measured to the top of the PVC casing. The elevation survey information is used to determine groundwater depth and general direction of flow (See Figure 3).

2.7 PCB Wipe Sampling

On June 28, 2021, Nobis collected a total of thirteen (13) wipe samples from various locations within the main mill building. Wipe sample locations are shown on Figure 2.

Four (4) wipe samples (designated WS-series) were collected from the gear oil from each of the four cable-weighted elevators. WS-series wipe samples were collected from an oil reservoir in contact with the cables located on the roof or penthouse above each elevator. Nine (9) wipe samples (designated CW-Series) were located on a concrete floor. For the CW-series, samples were collected by 1) first blotting a 10cm square area horizontally with one side of the wipe and then vertically with the other side of the wipe, and then 2) blotting uniformly at least five times in each direction, and then 3) the wipe was carefully rolled into a lab container with the wet exposed to the inside. Wipe samples were preserved with hexane. Samples were submitted to Con-test, a Pace Analytical Lab and were analyzed for PCBs via EPA Method 8082 using Soxhlet extraction.

3.0 - PHASE II FINDINGS

3.1 Soil Observations and Field Screening Results

Soils consisted of primarily sandy fill overlying native soil consisting of alternating layers of hardpacked marine deposits of sand, silt, clay. Crushed seashells were observed in the native soils at shallow depths in explorations advanced west of the Main Mill Building (TP-1 through TP-3 and TP-17) and in SB-9 on parking Lot 10-44.

Secondary debris observed in the fill layer included: crushed rock/stone, crushed brick and concrete pieces, glass fragments, asphalt shingles, ash and pieces of slag and pieces of steel rebar. Slag was particularly abundant at TP-3 and TP-17 (west of Mill Bldg#6A) and was the majority component of the soil excavated. Fill thickness ranged from approximately 4 to 8.5 feet in thickness. Fill was observed in several soil borings and most test pits as follows: SB-1 (4 ft), SB-4 (4.5 ft), SB-8, (0.5 ft), SB-9 (1 ft), SB-10 (4.5 ft), TP-1, TP-2, TP-3 (3.5 ft), TP-4 (2.5 ft), TP-6 (8.5 ft), TP-7 (3 ft), TP-8 (3 ft), TP-9 (3 ft), TP-10 (2 ft), TP-11 (2 ft), TP-12 (2.5 ft), TP-13 (2 ft), TP-14 (4 ft), TP-17 (7 ft). The greatest thickness of fill was observed in TP-6 excavated in the parking area on Lot 10-43. The fill in TP-6 extended to 8.5 feet and was underlain by a brown-grey layer of moist to wet fine to medium sand. A petroleum odor was encountered at the groundwater table at approximately 9.5 fbg.

West of the Main Mill Building, moderate to difficult excavation conditions were encountered at test pit locations TP-1 and TP-2. Excavation at TP-3 and TP-17 was easy to moderate as extensive fill was encountered to depths of approximately 7 to 7.5 fbg. The 2015 GZA Phase I report noted that soils in GZA-1 through GZA-3 (in the same area) consisted of a mixture of fill and quarry gravel. The source of the fill was unspecified and contains very dense materials with a high frequency of large cobbles and small boulders. The latter prevented installation of a well at SB-1/NB-1.

Soil PID readings of total VOCs (TVOCs) were detected (>1 ppmv) in several soil borings but in only one test pit location. PID readings are summarized by depth in Table 1. PID readings measured above 1 ppmV were as follows:

- *Main Mill Parcel* PID readings were detected in SB-2, SB-3, SB-4, SB-5, SB-7, SB-8, SB-10. PID readings were obtained from various depths from 0 to depths up to 15 fbg. The highest PID reading (26 ppmv) was measured in SB-10 (Lot 10-32 parking lot) at 5 to 7 fbg.
- Parking Lot Parcels (East of Thames Street) A PID reading of 65 ppmv was detected in TP-6 at depth of 9 to 10 at the groundwater table. PID readings in all other test pits were less than 1 ppmv.

No staining or dark colored (black or brown, black) soils was observed in the subsurface. Petroleum odors were noted at TP-6 at 9 to 10 fbg at the groundwater table. No sheen or free product was observed on groundwater during drilling or excavation activities.

3.2 Groundwater Elevations and Flow Directions

The well elevations and groundwater gauging data as measured on June 30, 2021, are summarized in Table 1. Depth to groundwater measured from 5.40 feet (in NB-2) to 7.71 feet (in GZA-1). Corresponding groundwater elevations ranged from 89.22 feet 9in GZA-1) to 103.34 feet (in NB-3). Groundwater elevations measured on June 30, 2021, were used to prepare the potentiometric map as shown on **Figure 3**. Based upon the groundwater contour, groundwater is inferred to flow to the southwest towards Bristol Harbor. This direction of flow is consistent with local topography and location of area surface water.

3.3 Laboratory Analytical Results

3.3.1 Soil

Soil analytical results from soil borings and test pits are shown in Tables 3 and 4, respectively.

VOCs

VOCs were detected in SB-6, SB-7, SB-5 (northern mill area) and in TP-3 (downgradient of northern mill area). Tetrachloroethene (PCE) was detected at 0.40 mg/kg in the 2 fbg soil sample from SB-7. Naphthalene was detected at 0.10 mg/kg in the 2 fbg soil sample from SB-6. Both SB-6 and SB-7 are in the northern mill building area adjacent to the old dye house. Styrene was detected at 5.1 mg/kg in a 2-to-3-foot sample at TP-3 (west of Main Mill Building).

SVOCs

SVOCs consisted of primarily PAHs (16 compounds) and were detected in: SB-6, SB-7 and SB-5 (northern main parcel), test pits TP-1, TP-2, TP-3 (west of main mill building) and in test pits TP-6 and TP-8 in the parking lots parcels east of Thames Street. The highest total PAH compound concentrations were detected in SB-6/2 ft (265.3 mg/kg) and SB-7 (46.67 mg/kg) on the northern mill parcel. Total PAHs were lower in TP-1 (7.42 mg/kg) and TP-2 (14.17 mg/kg), TP-3 (6.30 mg/kg) on the main mill parcel west of the building. Total PAHs were also low in TP-7 (3.47 mg/kg) and in TP-14 (4.01 mg/kg) on the parking lot parcels.

Metals and TCLP Lead

Seven of the eight RCRA 8 metals were detected in one or more of the 16 soil samples analyzed. The highest metals concentrations were as follows:

Summary Metals in Soil (All Locations) - mg/kg

	Frequency				
Metal	Detection	Min	Max	Location Max	Soil Depth
Arsenic	16/16 = 100%	1.5	8.5	SB-8	7 – 9 ft
Barium	16/16 = 100%	2.3	1,500	TP-7	0 - 3.5 ft
Cadmium	2/16 = 13%	0.59	1.2	TP-3	2 - 3 ft
Chromium, Total	16/16 = 100%	7.1	25	TP-2	3 – 4 ft
Lead	16/16 = 100%	5.7	4,600	TP-7	0 - 3.5 ft
Mercury	6/16 = 38%	0.13	0.60	SB-6	2 ft
Selenium	7/16 = 44%	0.52	2.4	TP-3	2-3 ft

Note: Based upon 8 soil boring samples and 8 test pit soil samples (n=16 samples). Detected concentrations shown.

Silver and hexavalent chromium were not detected above laboratory detection limits in the four (4) soil boring samples. Total lead was greater than the RCRA 20x Rule (20 x 5 mg/L =100 mg/k) in four soil samples: SB-6/0-2 ft (310 mg/kg), SB-7/0-2 ft (260 mg/kg), TP-2/3-4 ft (130 mg/kg) and TP-7/0-3.5 ft (4,600 mg/kg). These samples were further analyzed by the toxicity characteristic leaching procedure (TCLP) for lead. TCLP Lead was detected in only one of the four samples analyzed – TP-7 TCLP lead at 1.4 mg/L, which is below the maximum concentration for the lead toxicity characteristic of 5 mg/L and thus is not considered hazardous.

<u>Petroleum</u>

Petroleum (as TPH) was detected above laboratory analytical results in three test pit samples (SB-5/NB-1, SB-6 and SB-7) and six test pit samples (TP-1, TP-2, TP-3, TP-6, TP-7, and TP-14. TPH was highest at SB-6 (800 mg/kg) in the north mill area, TP-3 (230 mg/kg) west of the main mill and in TP-6 (580 mg/kg) in the parking lot east of Thames Street. TPH in other locations was less than 100 mg/kg or not detected.

Pesticides and PCBs

Pesticides were detected test pit samples TP-7 and TP-14. Analytes detected in one or more samples were 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD. Pesticides were not detected in any soil boring samples, or the three other test pit samples analyzed for pesticides. One PCB analyte, PCB-1260, was detected in the sample from TP-1. PCBs were not detected above laboratory detection limits in any other sample.

Cyanide

Total cyanide was detected at 0.54 mg/kg in the 2-foot soil sampling from soil boring SB-6. Cyanide was not detected in other locations sampled.

3.3.2 Groundwater

Groundwater analytical results are summarized in Table 5.

Groundwater pH ranged between approximately 6.6 and 7.6, which is within the range of natural waters. Groundwater temperature ranged between 18 and 23 degrees Celsius (64- and 73-degrees Fahrenheit) and was consistent with seasonal summer temperature. Specific conductivity values ranged from 245.43 microsiemens per centimeter (uS/cm) in NB-3 to 42,867 μ S/cm in GZA-3. High specific conductivity (<20,000 μ S/cm) was observed at NB-2, GZA-1, GZA-2, and GZA-3 and is inferred to be due to the proximity to the harbor and influence from brackish water.

No VOCs or petroleum were detected in the five groundwater monitoring wells. PAHs were detected primarily in monitoring well GZA-1 (7 compounds) and to a lesser extent in GZA-3 (1 compound). PAHs detected included: phenanthrene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene.

3.3.3 Soil Vapor

Soil vapor analytical results are summarized in Table 6.

Fourteen (14) VOCs were detected in soil vapor sampling locations. Analytes present above laboratory detection limits included petroleum compounds such as benzene, toluene, ethylbenzene, xylenes (BTEX) and 1,2,4-trimethylbenzene (1,2,4-TMB) and several chlorinated VOCs (CVOCs) detected included: chloroform, 1,4-dichlorobenzene, 1,1,1, -trichloroethane (1,1,1, -TCA), trichlorethylene (TCE) and tetrachloroethylene (PCE).

3.3.4 PCB Wipes

PCB wipe analytical results are summarized in Table 7.

PCBs were detected in standard wipe samples collected from six of the thirteen locations sampled. PCBs included Aroclor 1254 and Aroclor 1260. Total PCBs were detected at concentrations ranging from 0.25 ug/100 cm2 to 0.75 ug/100 cm2. The PCB wipe concentrations are below the RIDEM Notification Limit of 10 ug/m3 and does not constitute "release" as defined under the RIDEM Remediation Rules, which is consistent with the definition under Toxic Substances

² USEPA, June 23, 1987, Revised/Clarified April 18, 1991, Wipe Sampling and Double Wash/Rinse Cleanup as recommended by the EPA PCB Spill Cleanup Policy. See Tables 1 – Low Concentration Spills (<270 gallons of Untreated Mineral Oi with <500 ppm PCBs) and Table 2 - High Concentrations Spills (>270 gallons of Untreated Mineral Oil with <500 ppm PCBs).

4.0 - DISCUSSION OF RESULTS

4.1 Comparison to State Soil Standards

Currently, the subject property consists of parcels which are used for both residential (Lots 49 and 50 at 60 and 70 Thames Street) and industrial/commercial purposes (Main Mill parcel and parking lot parcels). In the future, the Main Mill parcel may be used for residential purposes (condominiums) upon development by Brady Sullivan.

Based upon the identified existing and potential uses, the soil analytical results were compared to the Method 1 Soil Objectives codified in the Rhode Island Department of Management (RIDEM) Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (250-RICR-140-30-1) in Table 1 - Residential Direct Exposure Criteria (RDEC), and Industrial/Commercial Exposure Criteria (I/C-DEC) and Table 2 - Leachability Criteria for GB Groundwater. The RDEC standards are more stringent than the I/C DEC standards. Note: There are no reportable concentrations for TPH. However, RIDEM Remediation Rules do have Method 1 Cleanup Objectives for TPH in soil which are as follows: Residential DEC of 500 ppm, Industrial/Commercial DEC of 2,500 ppm and GB TPH Leachability criterion of 2,500 ppm (Source: RIDEM 250-RICR-140-30-1 Subsection 1.9.2 Soil Objectives).

As shown in Tables 3 and 4, one or more exceedances of the RDEC and/or of the I/C DEC were observed in samples collected from three general locations:

- Main Mill Parcels (West of Building) TP-1, TP-2, and TP-3 (Lots 10-42 and 10-60)
- Main Mill Parcels (Central Mill Exterior) SB-6 and SB-7 (Lot 10-42)
- Parking Lot Parcels (Thames Street) SB-8 and TP-6 (Lot 10-43) and TP-7 (Lot 10-76)

PAHs, arsenic, and lead in shallow soils (0 to 4 fbg) at TP-1, TP-2, and TP-3 exceeded the RDEC and/or I/C DEC. These constituents maybe related to the presence of historical fill which is comingled with quarry fill and is known to have been placed in the land area between the Main Mill and Bristol Harbor to expand the developable land area.

Several PAHs, TPH and lead in soils at SB-6 and SB-7 (at 2 fbg) exceeds the RDEC and/or IDEC within the central exterior Mill Parcel area. These constituents may be related in part to fill but may be related to releases from historical mill operations, which in this location included a boiler house, a mechanical room and dye house. SB-6 and SB-7 are in the vicinity of the floor drains and former stock dye kettle associated with REC-9, which were identified in the Phase I (Nobis, 2021).

The geophysical survey also identified many subsurface utilities (water, sewer, drains) in the vicinity of SB-5, SB-6, and SB-7.

Arsenic in soils at 7 to fbg in SB-8 (on Lot 10-43) exceeds the RDCE and IDEC of 7.0 mg/kg. Lot -10-42 does contain a structure that is used for residential purposes. The arsenic may be related to presence of fill. Also on Lot 10-43, TPH in soil at TP-6 (9 – 10 fbg) contained TPH above the RDEC of 500 mg/kg. The TPH concentration at depth is likely related to an old off-site gasoline UST release at 318 Hope Steet. Nobis also observed petroleum odors at the groundwater table in TP-6.

Lead in soil was detected at 4,600 mg/kg in a 0 to 3.5 fbg sample at TP-7 on Lot 10-76 above the RDEC of 150 mg/kg and the I/CDEC of 500 mg/kg. Nobis has conducted a geophysical survey around the two unknown metal pipes which identified a potential UST to be present. However, test pits excavated around TP-7 did not find a UST to be present. Nobis believe the source of the high lead in shallow soil may be related to the presence of fill (black/grey ash like material) which was reported at depth in this sample as PID readings were asl less than 1 ppmv to a depth of 8 fbg.

4.2 Comparison to State Groundwater Standards

Groundwater beneath the subject property is classified by RIDEM as a GB designation. Groundwater category GB applies to areas where pollution has degraded the underlying aquifer, and the aquifer is not a current or potential drinking water source. In Rhode Island, the GB groundwater designation is typical for urban locations. The subject property is also serviced be a municipal water supply system. The nearest GA (drinking water) groundwater area is located approximately ¼ mile (1,320 feet) to the north of the subject property.

The groundwater analytical results were compared to the Method 1 Groundwater Objectives codified in the Rhode Island Department of Management (RIDEM) Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (250-RICR-140-30-1) in Table 4 -GB Groundwater Objectives.

As shown in Table 5, concentrations of VOCs, PAHs and TPH were below the applicable RIDEM Method 1 GB Groundwater Objectives.

4.3 Comparison to Soil Vapor Standards

Soil vapor pins were installed, and vapor samples were collected to assess the subject property for the potential for vapor intrusion of volatiles into the building. The State of Rhode Island does not have a stand-alone guidance dedicated to vapor intrusion; however, the vapor intrusion and inhalation pathway is addressed in remediation regulations prepared by the Office of Waste Management of the Rhode Island Department of Environmental Management (DEM), entitled "Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases," last amended in November 2011. In addition, the Office of Waste Management has published a guidance document entitled "School Siting Guidance for the Evaluation of Vapor Intrusion Potential in Proposed Rhode Island School Sites," dated September 19, 2012. The latter guidance is not applicable to the current use of the subject property.

Thus, for reference purposes only, the soil vapor data was compared to soil vapor criteria values published by the Connecticut Department of Energy and Environmental Protection (CTDEEP) and subslab soil gas screening values published by the Massachusetts Department of Environmental Protection (MassDEP). The CTDEEP Volatilization Criteria are regulated and enforceable values in the State of Connecticut whereas the MassDEP has screening values only. Both states have values for residential and industrial/commercial scenarios. These criteria/values can be used to screen VOC air concentrations from soil vapor (gas) to assess the potential for vapor intrusion into indoor air.

As shown in Table 6, fourteen (14) VOCs were detected in soil vapor beneath the basement slab. VOCs detected included both gasoline compounds (i.e., benzene, ethylbenzene, toluene, xylenes or BTEX and 1,2,4-trimethybenzene) and several chlorinated VOCs or CVOCs. The CVOCs detected in subslab soil vapor included: 1,4-dichlrobenzene, tetrachloroethylene [PCE], 1,1,1-trichloroethane [1,1,1-TCA] and trichloroethylene [TCE]. Total VOCs ranged from 45.64 microgram per cubic meter (ug/m3) in SG-5 (Mill Bldg#7A) to 772.05 ug/m3 (Mill Bldg#7). In SG-4, most of the total VOCs (772.05 ug/m3) in soil vapor consisted of trichlorofluoromethane (Freon 11) and PCE.

There are no screening values for Freon 11. In SG-4 (Mill Bldg#7), the PCE concentration of 260 ug/m3 exceeded the MassDEP Residential Subslab Soil Gas Screening Value of 98 ug/m3. This concentration did not exceed (but was just below) the MassDEP Industrial/Commercial Subslab Soil Gas Screening Value of 290 ug/m3. PCE, is a solvent used in the dry-cleaning process and was also a compound detected in the waste stream generated by the Robin Rug and discharged to the City of Bristol sewer via a permit.

4.4 Notification to RIDEM

In accordance with RIDEM Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (250-RICR-140-30-1) Subsection 1.6.1 – Notification of a Release, a Responsible Party shall notify the RIDEM, in writing in both hard copy and electronic format (as

specified by the Department), of the discovery of any Release in accordance with the Remediation Rules within 15 days after discovery of the Release. Releases related to underground injection control (UIC), or underground storage tanks (USTs) are exempt from reporting under the Remediation Regulations.

Under the RIDEM Remediation Regulations, notification is required if: 1) concentrations of hazardous substances in soil which exceed the soil objectives in Tables 1 and 2, Subsection 1.9.2 (C) (2) or (3) of the RIDEM Remediation Regulations are considered to present a "significant potential to cause an acute or chronic adverse effect on human health or the environment", and 2) because the following conditions are not met:

RIDEM 250-RICR-140-30-1	
Subsection 1.6.1 (C) – Condition	Reason for Notification
2.(a). The release has impacted an area currently	Arsenic in SB-8 and TPH in TP-6 > RDEC and/or
limited to Industrial or Commercial Activity	I/C DEC (for arsenic) on Lot 10-76 which is a
	residential property.
	Lead in TP-7 > RDEC and I/CDEC on Lot 10-76
	which is a residential property.
2.(b). The reasonably foreseeable future use of	Lots 10-42 and 10-60 (the Main Mill parcels) are
the property impacted by the Release is limited to	proposed for redevelopment as residential
Industrial/Commercial Activity	condominium apartments. Parcels east of
	Thames Street are proposed for use as a paved
	parking lot.
2.(e). The Hazardous Substances of concern are	PAHs, arsenic, and lead exceed the I/C DEC on
listed in Table 1 and 1, Subsection 1.9.2(C)(2) and	the Lot 10-42 and Lot 10-60 (the Main Mill
(3) of this Part, and are at concentrations which	parcels).
are below the industrial or commercial DEC, and	TPH, arsenic and lead on the parking lot parcels
below the GB leachability criteria as listed in	Lot 10-43 and 10-76 exceed the RDEC and/or
those tables, respectively	I/CDEC.
2.(g). The abutting properties are used for	
Industrial/Commercial Activity	(east and south) and a park (north side).
	D :
2. (h). There is no physical boundary of any	Bristol Harbor abuts Lots 10-42 and 10-60 (the
wetland or surface water within 500 feet of the	Mina Mill parcels) to the west. Most of the subject
Release	property is located within 500 feet of surface water.

The summary of exceedances in Soil Requiring Notification to RIDEM are summarized in Table 8.

5.0 - SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Based upon the findings of the limited Phase II, Nobis concludes the following:

- Subsurface soil consists of fill overlying native marine deposits consisting of alternating layers of sand, silt, and clay. Fill consists of fine to coarse sand with debris consisting of crushed stone/rock, concrete, brick, ash, slag, glass, plastic, and wire fragments. Fill is present in several area of the site, including west of the main mill, the central northern interior (SB-6/SB-7 area) and in the parking lots parcels east of Thames Street. Fill ranged in thickness from approximately 3 to 8 feet. The greatest amount of fill (≈8 feet) was encountered in TP-6 on Lot 10-43.
- Except for one reading (65 ppmv in TP-6), PID readings of TVOCs in soil were generally low less than 1 ppmv in most locations. Petroleum odors were encountered at the groundwater table at 8 fbg in TP-6 only. No dark brown or black-stained soils were encountered in the subsurface. No sheen or free product was encountered in groundwater monitoring locations.
- A UST, which was suspected to exist based upon GPR, was not encountered during test pit explorations at TP-7 on Lot 10-76. The past and/or current use of the two unknown metal pipes in this location remains unclear. Lead was detected at 4,600 mg/kg in TP-7 at depth of 0 to 3.5 feet and is suspected to be related to the presence of ash.
- In soil, contaminants detected included primarily PAHs, TPH and metals (primarily arsenic and lead). The contaminants may be related to the presence of anthropogenic fill (placed by man) or pyrogenic fill (burn residue or produced by fire) and/or possibly by undocumented releases from historic mill activities and operations. Other contaminants such as VOCs, pesticides, PCBs, cyanide, and hexavalent chromium were low and/or not detected. Several constituents detected in soil exceed the Rhode Island Residential DEC and/or the Industrial/Commercial DEC. Exceedance of the DECs indicates that a potential increased risk to human health exists via the direct contact pathway.
- In groundwater, VOCs and TPH were not detected in groundwater monitoring wells located on the Main Mill Building parcels (Lots 10-42 and 10-60) and or in NB-3 installed on parking lot parcel Lot 10-43. PAHs were detected at low concentrations in GZA-3 primarily located on the downgradient site of the subject property. Based upon the groundwater sampling data, groundwater quality does not appear significantly negatively impacted and is consistent with groundwater quality in GB areas.

- In subslab soil vapor, VOCs are present at varying concentrations. VOCs reported include various types of gasoline related compounds and several CVOCs. Total VOC vapor concentrations (772.05 ug/m3) in SG-4 located beneath Mill Bldg#7 was much higher than in other locations. Most of the total VOC concentration in SG-4 soil vapor consisted of trichlorofluoromethane (Freon 11) and PCE. The State of Rhode Island does not have a stand-alone guidance dedicated to vapor intrusion and/or standards (like CTDEEP) or vapor screening values (like MassDEP). For comparison only, the PCE concentration of 260 ug/m3 in SG-4 exceeds the MassDEP Subslab Soil Gas Screening Value for Residential Use. Per MassDEP guidance, this exceedance indicates that the vapor intrusion pathway may be of concern under future residential use conditions. However, the PCE soil vapor detection was in only 1 of 4 sample locations and was in portion of the main mill building proposed as open-air garage space (below first residential living floor). Additionally, PCE was not detected in either soil or groundwater and thus the presence of PCE in soil vapor may be indicative of background conditions and from an unknown off-site source. Thus, this single PCE soil vapor detection beneath the subslab is not considered to have an impact on proposed future use.
- In wipe samples, low to trace levels of PCBs are present. Wipe samples indicated that low level PCBs are associated with some elevator oils and in some stained concrete surfaces (from past spills) in the basement. Total PCB wipe concentrations were less than 1 ug/100 cm2 which is below the reporting notification threshold per State of Rhode Island and federal (TSCA) requirement of 10 ug/100 cm2. However, wipe sampling is "qualitative" and only indicates that PCBs are present or absent on the surface and does not provide a "quantitative" measure or concentration of PCBs on the wiped surface. Additionally, as noted in the lab report, the PCB wipe analytical results were biased low.

Nobis provides the following recommendations:

- Management of fill material is advised during future redevelopment of the property. Soils should be characterized in accordance with a written soil management plan and in coordination with a qualified environmental professional.
- Soil concentrations exceeding the RDEC and/or the I/C DEC (coupled with exemption criteria not met) constitute a "release" in accordance with RIDEM Remediation Regulations (250-RICR-140-30-1). The release is required to be reported by a Responsible Party, which per the regulations is defined as the Property Owner. A summary of the results of soil exceedance to be reported to RIDEM are summarized in Table 8. Upon

Brady Sullivan's notification to the Property Owner of this information (which triggers the Responsible Party's "discovery"), RIDEM should be made in writing (both hard copy and electronic via email) within 15 days.

6.0 - REFERENCES

- CTDEEP, 2021, Remediation Standards Regulations (RSRs) 22a-133k-3. Appendix F Volatilization Criteria for Soil Vapor.
- GZA GeoEnvironmental, Inc., 2005, *Phase I and Phase II Environmental Site Assessment Report*, Robin Rug Facility, 125 Thames Street, Bristol, Rhode Island.
- MassDEP, December 20, 2011, Revised February 22, 2013, and March 7, 2013, *Interim Final Vapor Intrusion Guidance*, WSC# 11-435, Table II.1 -Residential Sub-Slab Soil Gas Screening Values and Table II.2 Commercial/Industrial Sub-Slab Soil Gas Screening Values.
- Nobis Group, June 2021, *Phase I Environmental Site Assessment Report*, Robin Rug, 125 Thames Street, Bristol, Rhode Island.
- Rhode Island Department of Environmental Management (RIDEM) Title 250, Chapter 140 Waste and Materials Management, Subchapter 30 Site Remediation, Part 1 Rules and Regulations for the Investigation and Remediation of Hazardous Materials Releases (250-RICR-140-30-1) effective April 22, 2020.
- USEPA, June 23, 1987, Revised and Clarified 18, 1991, Wipe Sampling and Double Wash/Rinse Cleanup as Recommended by The Environmental Protection Agency PCB Spill Cleanup Policy.
- USEPA, November 2005, Polychlorinated Biphenyls (PCBs) Site Revitalization Guidance Under the Toxic Substances Control Act (TSCA.

Table 1 Soil PID Readings

Robin Rug 125 Thames Street Bristol, Rhode Island

Bristol, Rhode Island						
Location	Sample Number	Sample Depth (ft)	PID Reading (ppmV)			
SB-1	-	0 to 4	No readings collected			
SB-2	S-1	5 to 7	1.7			
SB-2	S-1	7 to 10	3.7			
SB-2	S-2	10 to 11	3.8			
SB-2	S-2	12 to 13	1.2			
SB-2	S-2	15	<1			
SB-3	S-1	5 to 7	3.0			
sB-3	S-1	7 to 10	4.5			
SB-3	S-2	10 to 12	1.0			
SB-3	S-2	12 to 15	2.4			
SB-4	S-1	0 to 4	3.0			
SB-4	S-1	4 to 5	7.3			
SB-4	S-2	5 to 9	<1			
SB-4	S-2	9 to 10	<1			
SB-4	S-3	10 to 13	<1			
SB-4	S-3	13 to 15	<1			
SB-5	S-1	0 to 3	8.9			
SB-5	S-1	3 to 5	<1			
SB-5	S-2	5 to 7	7.6			
SB-5	S-2	7 to 9	1.6			
SB-5	S-2	9 to 10	14.5			
SB-5	S-3	10 to 15	<1			
SB-6		0 to 1	<1			
SB-6		1 to 2	<1			
SB-7		0 to 2.5	2.3			
SB-8	S-1	0 to 4	8.0			
SB-8	S-1	4 to 5	<1			
SB-8	S-2	5 to 8	<1			
SB-8	S-2	8 to 10	<1			
SB-8	S-3	10 to 12	3.7			
SB-8	S-3	12 to 15	<1			
SB-9	S-1	0 to 3	<1			
SB-9	S-1	3 to 5	<1			
SB-9	S-2	5 to 7	<1			
SB-9	S-2	7 to 9	<1			
SB-9	S-2	9 to 10	<1			
SB-9	S-3	10 to 13	<1			
SB-9	S-3	13 to 15	<1			

Table 1 Soil PID Readings

Robin Rug 125 Thames Street Bristol, Rhode Island

Location	Sample Number	Sample Depth (ft)	PID Reading (ppmV)
SB-10	S-1	0 to 5	4.3
SB-10	S-2	5 to 7	26
SB-10	S-2	7 to 9	1.1
SB-10	S-2	9 to 10	16.4
SB-10	S-3	10 to 13	3.8
SB-10	S-3	13 to 15	14.5
SB-11	S-1	0 to 3	<1
SB-11	S-1	3 to 5	<1
SB-11	S-2	5 to 7	<1
SB-11	S-2	7 to 10	<1
SB-11	S-3	10 to 11	<1
SB-11	S-3	11 to 15	<1
TP-1		0 to 1	<1
TP-1		1 to 2	<1
TP-1		2 to 3	<1
TP-1		3 to 4	<1
TP-1		4 to 5	<1
		4 10 3	\1
TP-2		0 to 1	<1
TP-2		1 to 2	<1
TP-2		2 to 3	<1
TP-2		3 to 4	1.1
TP-2		4 to 5	<1
TP-2		5 to 6	<1
TP-2		6 to 7	<1
TP-3		0 to 1	<1
TP-3		1 to 2	<1
TP-3		2 to 3	<1
TP-3		3 to 4	<1
TP-3		4 to 5	<1
TP-3		5 to 6	<1
TP-3		6 to 7	<1
TP-4		0 to 2	<1
TP-4		2 to 4	<1
TP-4		4 to 6	<1
TP-4		6 to 8	<1
TP-4		8 to 9	<1
TP-4		9 to 10	<1
		3 13 10	
TP-5		0 to 2	<1
TP-5		2 to 4	<1
TP-5		4 to 6.5	<1

Table 1 Soil PID Readings

Robin Rug 125 Thames Street Bristol, Rhode Island

Location	Sample Number	Sample Depth (ft)	PID Reading (ppmV)
TP-6		0 to 3	<1
TP-6		3 to 6	<1
TP-6		6 to 8	<1
TP-6		8 to 10	65.6
		0 10 10	05.0
TP-7 (1)		0 to 3	<1
TP-7 (1)		3 to 5	<1
TP-7 (1)		5 to 7	<1
TP-7 (2)		0 to 2	<1
TP-7 (2)		2 to 4	<1
TP-7 (2)		4 to 6	<1
TP-7 (2)		6 to 7	<1
TP-7 (2)		7 to 8	<1
TP-8		0 to 2	<1
TP-8		2 to 4	<1
TP-8		4 to 6	<1
TP-9		0 to 2	<1
TP-9		2 to 4	<1
TP-9		4 to 6	<1
TP-10		0 to 1	<1
TP-10		1 to 2	<1
TP-10		2 to 4	<1
TP-10		4 to 5	<1
TP-10		5 to 7	<1
TP-10		7 to 8	<1
TP-10		8 to 9	<1
TP-10		9 to 10	<1
TP-11		0 to 3	<1
TP-11		3 to 5	<1
TP-11		5 to 7	<1
TP-12		0 to 2	<1
TP-12		2 to 4	<1
TP-12		4 to 6	<1
TP-12		6 to 7	<1
TP-13		0 to 2	<1
TP-13		2 to 4	<1
TP-13		4 to 5	<1
TP-13		5 to 6.5	<1
			-
i	1		

Table 1 Soil PID Readings

Robin Rug 125 Thames Street Bristol, Rhode Island

Location	Sample Number	Sample Depth (ft)	PID Reading (ppmV)
TP-14		0 to 1	<1
TP-14		1 to 2	<1
TP-14		2 to 3	<1
TP-14		3 to 4	<1
TP-14		4 to 5	<1
TP-14		5 to 6	<1
TP-14		6 to 7	<1
TP-14		7 to 8	<1
TP-14		8 to 9	<1
TP-19		0 to 1	<1
TP-19		1 to 2	<1
TP-19		2 to 3	<1
TP-19		3 to 4	<1
TP-19		4 to 5	<1
TP-19		5 to 6	<1
TP-19		6 to 7.5	<1

Notes:

- 1. Soil boring PID headspace readings were recorded during drilling operations on June 8, 9 and 10, 2021.
- $2. \ Soil\ test\ pit\ PID\ head space\ readings\ were\ recorded\ during\ excavation\ on\ June\ 10\ and\ 11,\ 2021.$
- ${\it 3. PIDs were calibrated and used in accordance with Nobis SOP FS-007 Vapor and Air Screening with PID and FID.}\\$

Table 2 Groundwater Elevation Data

Robin Rug 125 Thames Street Bristol, Rhode Island

Well No.	Date	Reference Elevation (ft.)	Depth to Groundwater (ft.)	Groundwater Elevation (ft.)
NB-2	6/30/2021	98.90	5.40	93.50
NB-3	6/30/2021	109.78	6.44	103.34
GZA-1	6/30/2021	96.93	7.71	89.22
GZA-2	6/30/2021	96.35	7.09	89.26
GZA-3	6/30/2021	96.14	6.57	89.57

Notes:

^{1.} Well elevations were surveyed on June 30, 2021. The reference elevation is based on a temporary benchmark located at the southeast corner of a conrete pad on Church Street Extension, with a given elevation of 100 ft.

^{2.} Groundwater level measurements were obtained by Nobis Group on the dates indicated, using an electronic water level indicator.

Table 3 Soil Analytical Results - Soil Borings

Robin Rug 125 Thames Street Bristol, Rhode Island

						Soil Boring/S	ample Depth					RIDEM Soil Stan	dards ⁽¹⁾⁽²⁾
			SB-3	SB-2	SB-4	SB-5/NB-1	SB-6	SB-7	SB-8/NB-2	SB-11			
Parameter		Units	7-9 ft	12-14 ft	7-9 ft	10-12 ft	2 ft	2 ft	7-9 ft	8-10 ft	RDEC	I/C DEC	Leachability Criteria (GB)
VOCS (EPA 8260C):													
Tetrachloroethene		mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	0.40	<0.5	<0.5	12	110	4.2
Naphthalene		mg/kg	<0.1	<0.1	<0.1	<0.1	0.10	<0.1	< 0.1	<0.1	NS	NS	NS
.,		u 0											
SVOCs (8270D):													
Carbazole		mg/kg	< 0.08	< 0.08	< 0.08	<0.08	3.10	0.57	< 0.07	< 0.08	NS	NS	NS
Dibenzofuran		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	2.20	0.31	< 0.07	< 0.08	NS	NS	NS
Naphthalene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	2.60	0.35	< 0.07	< 0.08	54	10,000	NS
2-Methylnaphthalene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	0.73	0.12	< 0.07	< 0.08	123	10,000	NS
1-Methylnaphthalene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	0.55	0.13	< 0.07	< 0.08	NS	NS	NS
Acenaphthylene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	2.8	0.57	< 0.07	< 0.08	23	10,000	NS
Acenaphthene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	2.4	0.41	< 0.07	< 0.08	43	10,000	NS
Fluorene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	2.6	0.40	< 0.07	< 0.08	28	10,000	NS
Phenanthrene		mg/kg	< 0.08	< 0.08	< 0.08	0.11	30	4.90	< 0.07	< 0.08	40	10,000	NS
Anthracene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	8.1	1.40	< 0.07	< 0.08	35	10,000	NS
Fluoranthene		mg/kg	< 0.08	< 0.08	< 0.08	0.14	57	7.20	< 0.07	< 0.08	28	10,000	NS
Pyrene		mg/kg	< 0.08	< 0.08	< 0.08	0.12	37	6.80	< 0.07	< 0.08	13	10,000	NS
Benzo[a]anthracene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	25	4.60	< 0.07	< 0.08	0.9	7.8	NS
Chrysene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	22	4.20	< 0.07	< 0.08	0.4	780	NS
Benzo[b]fluoranthene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	27	6.10	< 0.07	< 0.08	0.9	7.8	NS
Benzo[k]fluoranthene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	7.8	2.30	< 0.07	< 0.08	0.9	78	NS
Benzo[a]pyrene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	22	4.60	< 0.07	< 0.08	0.4	0.8	NS
Indeno[1,2,3-cd]pyrene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	9.2	1.30	< 0.07	< 0.08	0.9	7.8	NS
Dibenz[a,h]anthracene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	2.2	0.31	< 0.07	< 0.08	0.4	0.8	NS
Benzo[g,h,i]perylene		mg/kg	< 0.08	< 0.08	< 0.08	< 0.08	6.3	0.98	< 0.07	< 0.08	0.8	10,000	NS
benzo[g,n,n]peryiene	Total SVOCs	mg/kg	<0.08	<0.08	<0.08	0.37	270.58	47.55	<0.07	<0.08	n/a	n/a	n/a
	Total PAHs	mg/kg	<0.08	<0.08	<0.08	0.37	265.28	46.67	<0.07	<0.08	n/a	n/a	n/a
	TOTAL I ALIS	1116/116	40.00	٧٥.٥٥	VO.00	0.37	203.20	40.07	10.07	40.00	11/4	11/4	11/4
TPH (8100 Modified):													
C9 - C40 Hydrocarbons		mg/kg	<30	<30	<30	90	800	190	<30	<30	500	2,500	2,500
C5 C40 Hydrocarbons		1116/116	130	130	130	50	500	150	130	130	300	2,300	2,300
Pesticides (EPA 8081B):		mg/kg	<0.005 to <0.05	NS	NS	NS							
PCBs (8082A):		mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	10	10	10.0
Metals:													
Arsenic		mg/kg	4.1	4.0	1.5	4.2	6.1	4.7	8.50	4.5	7.00	7.00	NS
Barium		mg/kg	19	11	2.3	8.5	92	62	16	18	5500	10000	NS
Cadmium		mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	39	1000	NS
Chromium, Total		mg/kg	14	7.7	6.1	24	25	17	12	12	1790	20000	NS
Chromium, Hexavalent		mg/kg	NA	NA	<0.43	<0.41	<0.44	<0.44	NA	NA	390	10000	NS
Lead		mg/kg	6.7	5.7	2.3	19	310	260	6.60	7.7	150	500	NS
Mercury		mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	0.60	0.16	<0.1	< 0.1	23	610	NS
Selenium		mg/kg	< 0.5	< 0.5	< 0.5	0.52	< 0.5	< 0.5	0.57	< 0.5	390	10000	NS
Silver		mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	200	10000	NS
TCLP, Lead:		mg/L	NA	NA	NA	NA	<0.5	<0.5	NA	NA	n/a	n/a	NS
Cyanide, Total:		mg/kg	<0.5	<0.5	<0.5	<0.5	0.54	<0.5	<0.5	<0.5	200	10,000	NS

Notes:

Samples were collected on June 8, 9 and 10, 2021.

Samples were analyzed by Eastern Analytical, Inc. of Concord, NH.

Samples were analyzed for Volatile Organic Compounds (VOCs) by EPA Method 8260C. Only analaytes detected at least once shown above.

Samples were analyzed for Semi-Volatile Organic Compounds (SVOCs) by EPA Method 8270D. Only analytes detected at least once shown above.

NA = Not analyzed for parameter shown.

<0.5 Concentration is less than laboratory detection limit. Analyte not detected.</p>
57 Concentration in BOLD/Yellow exceeds Residential Direct Exposure Criteria (RDEC)

9,2 Concentration in BOLD/Blue exceeds both Residential Direct Exposure Criteria (RDEC) and Industrial/Commercial DEC (IC/DEC)

(1) Source: Rhode Island Department of Environmental Management (RIDEM) - Site Remediation Rules and Regulations for the Investigation and Remediation of Hazardous Materials Releases, effective April 22, 2020. Subchapter 30, Section 1.9.2 - Soil Objectives Table 2: Direct Exposure Criteria for Residential (REDEC) and Industrial/Commercial (I/CDEC) and Table 2 - Leachability Criteria for GA Groundwater and GB Groundwater.

(2) Source RIDEM Site Remediation Rules and Regulations for the Investigation and Remediation of Hazardous Materials Releases, effective April 22, 2020. Subchapter 30, Section 1.92 Soil Objectives, Subsection B.4. (a) Soil Objectives for Total Petroleum Hydrocarbons (TPH).

NS = indicates no standard is established for parameter group and/or analyte.

Table 4 Soil Analytical Results - Test Pits

Robin Rug 125 Thames Street Bristol, Rhode Island

1					Test Pit No./	Sample Depth					RIDEM Standa	rds ^{(1) (2)}
,		TP-1	TP-2	TP-3	TP-4	TP-5	TP-6	TP-7	TP-14			
Parameter	Units	0-2 ft	3-4 ft	2-3 ft	9 ft	6 ft	9-10 ft	0-3.5 ft	1-2 ft	RDEC	I/C DEC	Leachability Criteria (GB)
VOCS (EPA 8260C):												
Styrene	mg/kg	<0.5		5.1		<0.5	<0.5	<0.8	<0.5	13	190	64
SVOCS/PAHs (EPA 8270D):												
Naphthalene	mg/kg	< 0.07	0.086	< 0.09	< 0.08	< 0.07	< 0.08	< 0.09	< 0.08	54.00	10000	NS
Acenaphthylene	mg/kg	0.10	0.19	< 0.09	< 0.08	< 0.07	< 0.08	< 0.09	< 0.08	23.00	10000	NS
Acenaphthene	mg/kg	< 0.07	0.13	< 0.09	< 0.08	< 0.07	< 0.08	< 0.09	< 0.08	43.00	10000	NS
Fluorene	mg/kg	0.07	0.19	< 0.09	< 0.08	< 0.07	< 0.08	< 0.09	< 0.08	28.00	10000	NS
Phenanthrene	mg/kg	0.75	1.50	0.57	< 0.08	< 0.07	< 0.08	0.17	0.38	40.00	10000	NS
Anthracene	mg/kg	0.22	0.46	0.12	< 0.08	< 0.07	< 0.08	< 0.09	0.12	35.00	10000	NS
Fluoranthene	mg/kg	1.30	2.40	0.95	< 0.08	< 0.07	< 0.08	0.53	0.71	28.00	10000	NS
Pyrene	mg/kg	1.10	2.10	0.79	< 0.08	< 0.07	< 0.08	0.61	0.59	13.00	10000	NS
Benzo[a]anthracene	mg/kg	0.71	1.30	0.79	< 0.08	< 0.07	< 0.08	0.44	0.37	0.90	7.80	NS NS
											7.80	NS NS
Chrysene	mg/kg	0.69	1.30	0.75	< 0.08	< 0.07	< 0.08	0.40	0.38	0.40		
Benzo[b]fluoranthene	mg/kg	0.83	1.60	0.93	< 0.08	< 0.07	< 0.08	0.40	0.47	0.90	7.80	NS
Benzo[k]fluoranthene	mg/kg	0.33	0.54	0.35	< 0.08	< 0.07	< 0.08	0.14	0.16	0.90	78.00	NS
Benzo[a]pyrene	mg/kg	0.68	1.30	0.65	< 0.08	< 0.07	< 0.08	0.35	0.36	0.40	0.80	NS
Indeno[1,2,3-cd]pyrene	mg/kg	0.32	0.58	0.28	< 0.08	< 0.07	< 0.08	0.21	0.26	0.90	7.80	NS
Dibenz[a,h]anthracene	mg/kg	0.08	0.15	< 0.09	< 0.08	< 0.07	< 0.08	< 0.09	< 0.08	0.40	0.80	NS
Benzo[g,h,i]perylene	mg/kg	0.24	0.43	0.21	< 0.08	< 0.07	< 0.08	0.22	0.22	0.80	10000	NS
<u>Total PAHs</u>	mg/kg	7.42	14.17	6.30	<0.08	<0.07	<0.08	3.47	4.02	n/a	n/a	n/a
TPH (8100 Modified):												
C9 - C40 Hydrocarbons	mg/kg	69	93	230	< 30	< 30	580	69	59	500	2500	2500
Pesticides (EPA 8081B):												
4,4'-DDT	mg/kg	< 0.005	NA	< 0.006	NA	NA	0.040	0.014	< 0.006	NS	NS	NS
4,4'-DDE	mg/kg	< 0.005	NA	< 0.006	NA	NA	< 0.006	0.012	< 0.006	NS	NS	NS
4,4'-DDD	mg/kg	< 0.005	NA	< 0.006	NA	NA	0.063	< 0.006	< 0.006	NS	NS	NS
PCBs (8082A):												
PCB-1260	mg/kg	0.040	NA	< 0.02	NA	NA	< 0.02	< 0.02	< 0.02	10	10	10.0
l												
Metals:	,									_	_	
Arsenic	mg/kg	8.4	6.9	18	4.9	2.9	2.3	6.6	4.2	7	7	NS
Barium	mg/kg	29	43	120	20	11	8.3	1,500	72	5500	10000	NS
Cadmium	mg/kg	< 0.5	0.59	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	39	1000	NS
Chromium, Total	mg/kg	14	25	15	13	8.4	7.1	13	15	1790	20000	NS
Chromium, Hexavalent	mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	390	10000	NS
Lead	mg/kg	55	130	63	7.7	6.0	8.4	4,600	99	150	500	NS
Mercury	mg/kg	< 0.1	0.28	0.13	< 0.1	< 0.1	< 0.1	0.28	0.22	23	610	NS
Selenium	mg/kg	0.65	0.66	2.4	< 0.5	< 0.5	0.82	1.3	0.54	390	10000	NS
Silver	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200	10000	NS
TCLP, Lead:	mg/L	NA	<0.5	NA	NA	NA	NA	1.4	<0.5	n/a	n/a	NS

Notes:

Samples were collected on June 10 and 11, 2021.

Samples were analyzed by Eastern Analytical, Inc. of Concord, NH.

Samples were analyzed for Volatile Organic Compounds (VOCs) by EPA Method 8260C. Only analytes detected at least once shown above

Samples were analyzed for Semi-Volatile Organic Compounds (SVOCs) by EPA Method 8270D analyzed for PAHs only. Only analytes detected at least once shown above

NA = Not analyzed for parameter shown.

Concentration is less than laboratory detection limit. Analyte not detected. < 0.5

Concentration in BOLD/Yellow exceeds Residential Direct Exposure Criteria (RDEC)

Concentration in BOLD/Blue exceeds both Residential Direct Exposure Criteria (RDEC) and Industrial/Commercial DEC (IC/DEC)

(1) Source: Rhode Island Department of Environmental Management (RIDEM) - Site Remediation Rules and Regulations for the Investigation and Remediation of Hazardous Materials Releases, effective April 22, 2020. Subchapter 30, Section 1.9.2 - Soil Objectives Table 2 : Direct Exposure Criteria for Residential (REDEC) and Industrial/Commercial (I/CDEC) and Table 2 - Leachability Criteria for GA Groundwater and GB Groundwater.

(2) Source RIDEM Site Remediation Rules and Regulations for the Investigation and Remediation of Hazardous Materials Releases, effective April 22, 2020. Subchapter 30, Section 1.92 Soil Objectives, Subsection B.4. (a) Soil Objectives for Total Petroleum Hydrocarbons (TPH).

NS = indicates no standard is established for parameter group and/or analyte.

Table 5 Groundwater Sampling Results

Robin Rug 125 Thames Street Bristol, Rhode Island

			Sample Locatio		RIDEM Site Remediation - Method 1 Groundwater Objective (1)	
ameter	Units NB-2	NB-2 NB-3	GZA-1	GZA-2	GZA-3	GB Category
Cs (EPA 8260):	mg/L <0.5 to	0.5 to <30 <0.5 to <30	<0.5 to <30	<0.5 to <30	<0.5 to <30	varies
Hs (EPA Method 8270):						
enanthrene	mg/L <0.1	<0.1 <0.1	<0.1	<0.1	0.13	NS
oranthene	mg/L <0.1	<0.1 <0.1	<0.1	<0.1	0.28	NS
ene	mg/L <0.1	<0.1 <0.1	0.14	<0.1	0.24	NS
nzo[a]anthracene	mg/L <0.1	<0.1 <0.1	<0.1	<0.1	0.18	NS
ysene	mg/L <0.1	<0.1 <0.1	<0.1	<0.1	0.12	NS
nzo[b]fluoranthene	mg/L <0.1	<0.1 <0.1	<0.1	<0.1	0.18	NS
nzo[a]pyrene	mg/L <0.1	<0.1	<0.1	<0.1	0.14	NS
H (EPA 8100 Modified): - C40 Hydrocarbons	mg/L <0.4	<0.4 <0.5	<0.5	<0.4	<0.4	NS
	mg/L <0.4	<0.4 <0.5	<0.5	<0.4	<0.4	NS

Notes:

Samples were collected on 6/29/21. NB-2 was sampled on 6/30/21.

Samples were analyzed by Eastern Analytical, Inc. of Concord, NH.

Samples were analyzed by EPA Method 8270 for PAHs only.

<0.5 Concentration is less than laboratory detection limit. Analyte not detected.

0.14 Concentrations in BOLD indicate analytes detected above laboratory detection limits.

(1) Source: Rhode Island Department of Environmental Management (RIDEM) - Site Remediation Rules and Regulations for the Investigation and Remediation of Hazardous Materials Releases, effective April 22, 2020. Subchapter 30, Section 1.9.3 - Groundwater Objectives Table 4: GB Groundwater Objectives.

NS = indicates no standard is established for parameter group and/or analyte.

Table 6 **Subslab Soil Vapor Sampling Results**

Robin Rug 125 Thames Street Bristol, Rhode Island

							Soil Vapor	Screening Values (1)		
			Sample	Location		CT DEEP	2021 ⁽²⁾	MassDEF	' - 2013 ⁽³⁾	
		SG-1	SG-2	SG-4	SG-5	Volatilization Criteria		Sub-Slab Soil Gas Screening Val		
Parameter	Units	Bldg #3	Bldg #1	Bldg#7	Bldg#7A	Residential	I/C	Residential	I/C	
VOCs (EPA Method TO-15):										
Acetone	ug/m³	12	12	13	28	140,000	690,000	6,400	50,000	
Benzene	ug/m³	0.95	<0.32	<0.32	0.61	2,500	4,600	160	770	
Chloroform	ug/m³	0.74	1.80	<0.49	0.81	380	690	130	210	
1,4-Dichlorobenzene	ug/m³	9.90	2.70	1.10	<0.60	18,000	33,000	35	120	
Ethanol	ug/m³	20	62	44	<7.5	-	-	-	-	
Ethylbenzene	ug/m³	0.89	0.59	<0.43	0.52	40,000	400,000	520	62,000	
Styrene	ug/m³	<0.43	0.43	<0.43	0.53	39,000	400,000	98	1,400	
Tetrachloroethylene (PCE)	ug/m³	9.60	18	260	11	3,800	6,900	98	290	
Toluene	ug/m³	4.80	1.60	0.93	2.30	160,000	690,000	3,800	310,000	
1,1,1-Trichloroethane (1,1,1-TCA)	ug/m³	<0.55	<0.55	2.30	<0.55	380,000	690,000	210	320,000	
Trichloroethylene (TCE)	ug/m³	<0.54	1.20	19	<0.54	760	1,400	28	130	
Trichlorofluoromethane (Freon 11)	ug/m³	13	<2.2	430	<2.2	-	-	-	-	
1,2,4-Trimethylbenzene	ug/m³	2.80	<0.49	<0.49	<0.49	-	-	-	-	
Xylenes, Total	ug/m³	2.38	1.56	1.72	1.87	170,000	690,000	1,400	6,200	
<u>Total VOCs</u>	ug/m3	77.06	101.88	772.05	45.64	-	-	-	-	

Notes:

Vapor (air) samples were collected on 6/30/21.

Samples were analyzed by Con-Test, a Pace Analytical Laboratory.

Samples were analyzed for Volatile Organic Compounds (VOCs) by EPA Method TO-15

< 0.5 Concentration is less than laboratory detection limit. Analyte not detected.

0.14 $Concentration\ in\ \textbf{BOLD}\ indicate\ analytes\ detected\ above\ laboratory\ detection\ limits.$

Concentration in BOLD/Yellow exceeds MassDEP Residenital Use Subslab Soil Gas Screening Value. 260

- (2) Source: State of Connecticut Regulations Volatilization Criteria for Soil Vapor, Appendix F to RSRs 22a-133k-3.
- (3) Source: Massachusetts Department of Environmental Protection (MassDEP) Interim Final Vapor Intrusion Guidance WSC#-11-435, Dec 2011, Revised February 22, 2013, Appendix II (Sub-Slab Soil Gas Screening Values)
 (-) = indicates no screening value or standard established for analyte.

⁽¹⁾ Source: Rhode Island Department of Environmental Management (RIDEM) has no screening values or standards for soil vapor. Screening values shown from CTDEEP and MassDEP are for reference

Table 7 PCB Wipe Sampling Results

Robin Rug 125 Thames Street Bristol, Rhode Island

			PCBs (ug/Wipe)	
Sample ID	Location	Aroclor-1254	Aroclor-1260	Total PCBs
WS-1	Elevator cables in Building #4 "Penthouse"	0.25	<0.20	0.25
WS-2	Elevator cables in Building #2 "Penthouse"	<0.20	<0.20	<0.20
WS-3	Elevator cables in Building #7 "Penthouse"	<0.20	<0.20	<0.20
WS-4	Elevator cables in Building #7A "Penthouse"	<0.20	0.20	0.20
CW-1	Concrete floor in NW corner of Building #4 basement	0.32	<0.20	0.32
CW-2	Concrete floor in Building #5 basement next to waste oil drum storage	<0.20	<0.20	<0.20
CW-3	Concrete floor in Building #3 basement next to leaking drum and former UST piping	<0.20	<0.20	<0.20
CW-4	Stained area on concrete floor in Building #2A	<0.20	<0.20	<0.20
CW-5	Concrete floor between base of back two transformers in basement of Building #1	<0.20	<0.20	<0.20
CW-6	Concrete slab in Building #6 near elevator	0.27	<0.20	0.27
CW-7	Concrete floor between base of first two transformers in basement of Building #1	0.47	<0.20	<0.20
CW-8	Metal floor in Building #7A in front of elevator doors	0.40	0.35	0.75
CW-9	Surface of transformer, near base, in basement of Building #1	<0.20	<0.20	<0.20
		RIDEM Rep	ortable Notification	10 ug/100 cm2

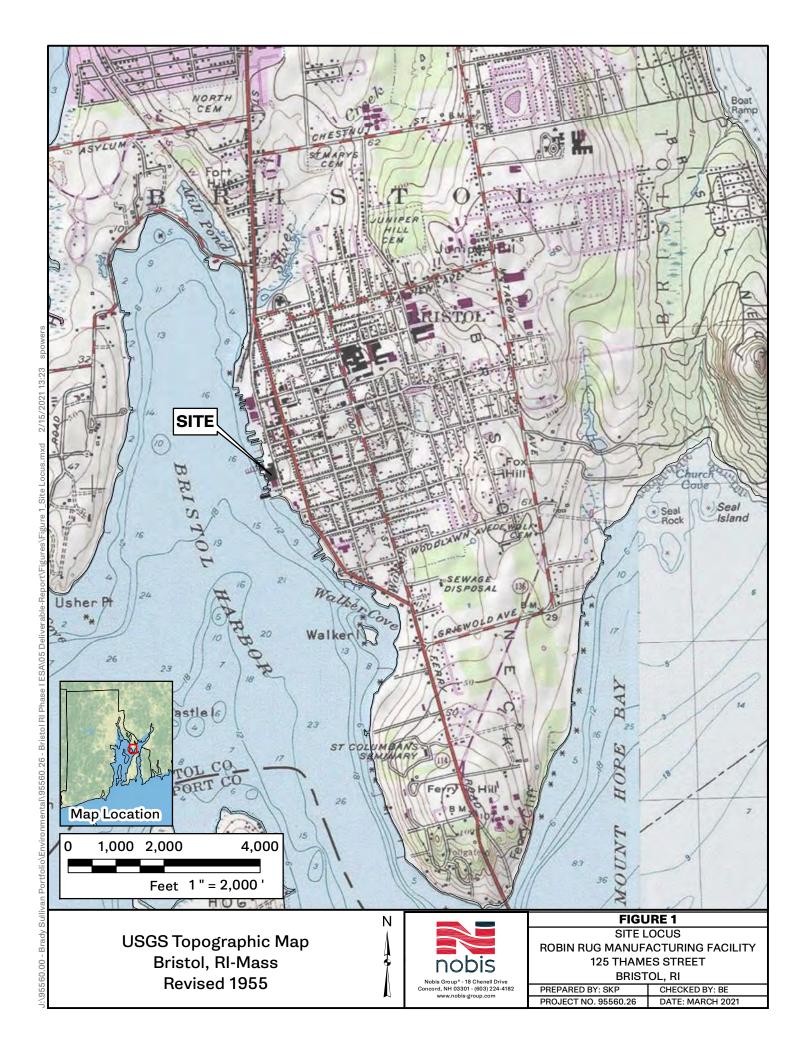
Notes:

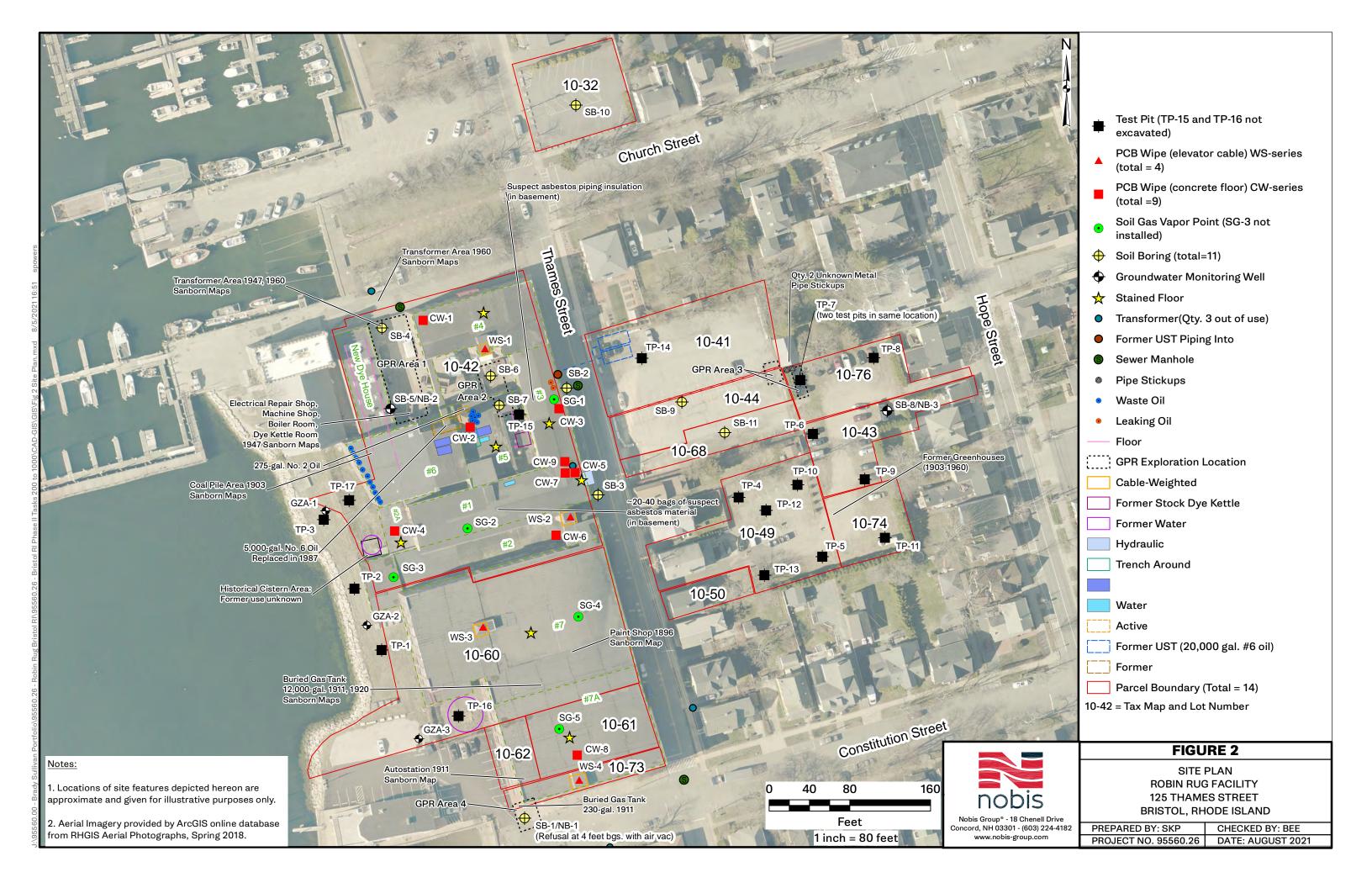
Samples collected on 6/30/2021.

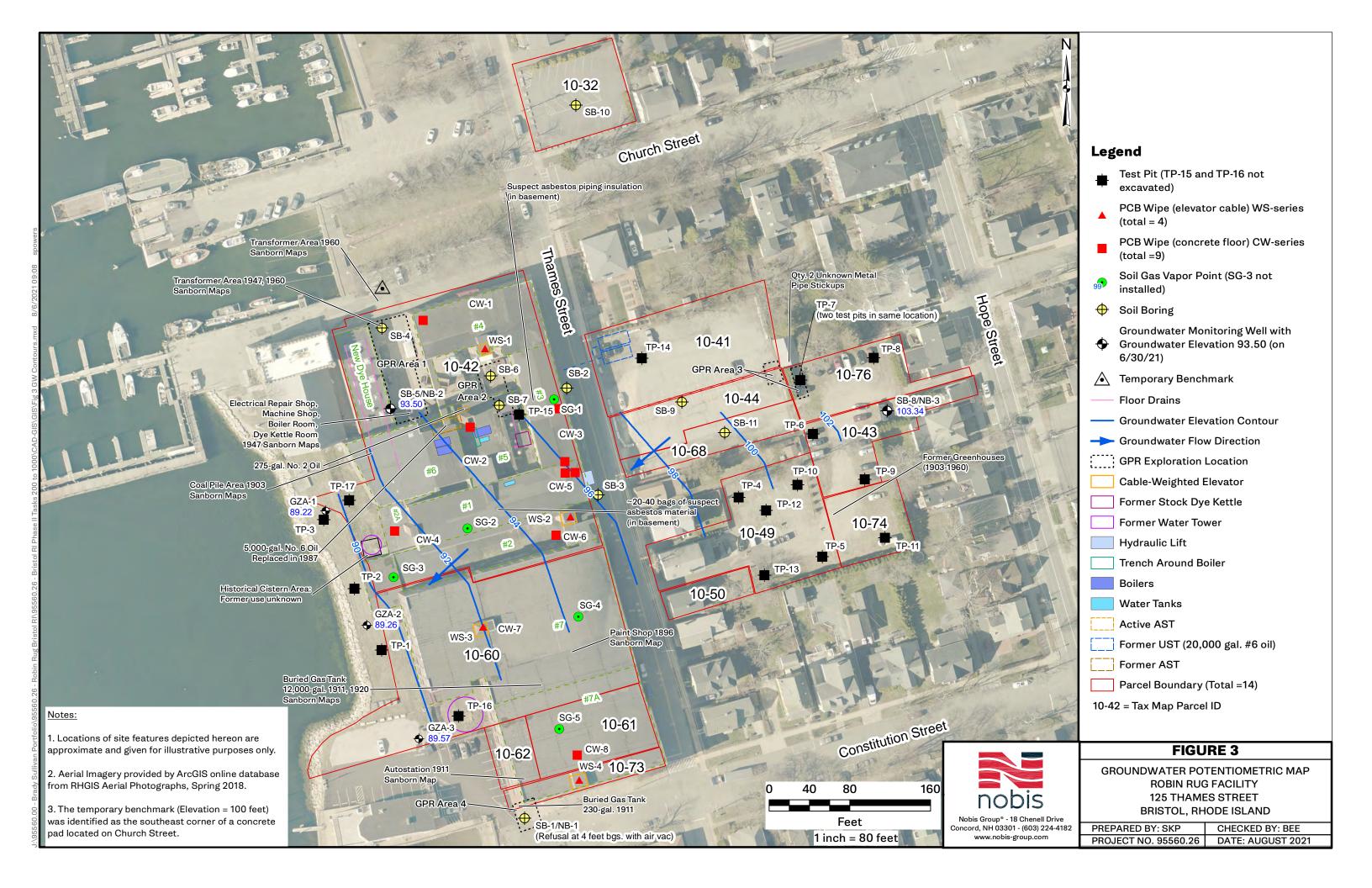
Samples were analyzed by Con-Test, a Pace Analytical Laboratory.

Polychlorinated Biphenyls (PCBs) SW-846 8082A

Wipe Area = 10 cm x 10 cm square = 100 cm2.


Table 8 Summary of Soil DEC Exceedances


Robin Rug 125 Thames Street Bristol, RI


					Soil Concentration	
Downel No.	Commont Has	Fusture Hee	Location /Douth	Constituent	(mg/kg) > RIDEM Standard	RIDEM Soil Standard (1)
Parcel No.	Current Use	Future Use	Location/Depth SB-6	Constituent Fluoranthene	57	RDEC = 28 mg/kg
			2 feet	Pyrene	37	RDEC = 28 mg/kg
			2 reet	· ·	25	<u> </u>
				Benzo(a)anthracene		RDEC = 0.9 mg/kg; I/C DEC = 7.8 mg/kg
				Chrysene	22.0	RDEC = 0.4 mg/kg
				Benzo(b)fluoranthene	27.0	RDEC = 0.9 mg/kg; I/C DEC = 7.8 mg/kg
				Benzo(k)fluoranthene	7.8	RDEC = 0.9 mg/kg; I/C DEC = 0.8 mg/kg
				Benzo(a)pyrene	22.0	RDEC = 0.4 mg/kg; I/C DEC = 0.8 mg/kg
				Indeno[1,2,3-cd]pyrene	9.2	RDEC = 0.9 mg/kg; I/C DEC =7.8 mg/kg
				Dibenzo[a,h]anthracene	2.2	RDEC = 0.4 mg/kg; I/C DEC = 0.8 mg/kg
				Benzo[g,h,i]perylene	6.3	RDEC = 0.8 mg/kg
				TPH	800	RDEC = 500 mg/kg
				Lead	310	RDEC = 150 mg/kg
			SB-7	Benzo(a)anthracene	4.6	RDEC = 28 mg/kg
10-42			2 feet		4.6	
Main Mill			2 reet	Chrysene	6.1	RDEC = 0.4 mg/kg RDEC = 0.9 mg/kg
	Industrial/	Residential		Benzo(b)fluoranthene		g. g
Parcel	Commercial	Residential		Benzo(k)fluoranthene	2.3	RDEC = 0.9 mg/kg
(Robin Rug)				Benzo(a)pyrene	4.6	RDEC = 0.4 mg/kg; I/C DEC = 0.8 mg/kg
				Indeno[1,2,3-cd]pyrene	1.3	RDEC = 0.9 mg/kg
				Benzo[g,h,i]perylene	0.98	RDEC = 0.8 mg/kg
				Lead	260	RDEC = 150 mg/kg
			TP-2	Benzo(a)anthracene	1.30	RDEC = 28 mg/kg
			3 - 4 feet	Chrysene	1.30	RDEC = 0.4 mg/kg
				Benzo(b)fluoranthene	1.60	RDEC = 0.9 mg/kg
				Benzo(a)pyrene	1.30	RDEC = 0.4 mg/kg; I/C DEC = 0.8 mg/kg
				Lead	130	RDEC = 150 mg/kg
				2000	155	132 130 11.9/19
			TP-3	Chrysene	0.75	RDEC = 0.4 mg/kg
			2 - 3 feet	Benzo(b)fluoranthene	0.93	RDEC = 0.9 mg/kg
				Benzo(a)pyrene	0.65	RDEC = 0.4 mg/kg
				Arsenic	18	RDEC = 7.0 mg/kg
10-60	Industrial/	Residential	TP-1	Chrysene	0.69	RDEC = 0.4 mg/kg
Main Mill	Commercial	Nesidellilai	0 - 2 feet	Benzo(a)pyrene	0.69	RDEC = 0.4 mg/kg $RDEC = 0.4 mg/kg$
Parcel	Commercial		0 - 2 1661	Arsenic	8.4	g. g
Parcei (Robin Rug)				Arsenic	0.4	RDEC = 7.0 mg/kg; I/C DEC = 7.0 mg/kg
(moonii mug)						
10-43	Residential	Industrial/	SB-8	Arsenic	8.5	RDEC = 7.0 mg/kg; I/C DEC = 7.0 mg/kg
Parking Lot		Commercial	7 - 9 feet			
Parcel		(Parking Lot for				
		Condos)	TP-6	TPH	580	RDEC = 500 mg/kg
			9 - 10 feet			
10-76	Residential	Industrial/	TP-7	Lead	4,600	RDEC = 150 mg/kg; I/C DEC = 500 mg/kg
Parking Lot	nesidefillal	Commercial	0 - 3.5 feet	LEdU	4,000	UPEC - TOO HIR/KB' I/C DEC = OOD HIR/KB
Parking Lot Parcel		(Parking Lot for	0 - 5.5 IEEL			
raitei		Condos)				
		Condos)				
Note:						

Note:

(1) Source: Rhode Island Department of Environmental Management (RIDEM) - Site Remediation Rules and Regulations for the Investigation and Remediation of Hazardous Materials Releases, effective April 22, 2020. Subchapter 30, Section 1.9.2 - Soil Objectives Table 1: Direct Exposure Criteria for Residential (REDEC) and Industrial/Commercial

A

APPENDIX A LIMITATIONS

- 1. These environmental services were performed in accordance with generally accepted practices of other consultants using the degree of skill and care exercised in undertaking similar services at the same time and in the same geographical area. The results of these services are based on our professional judgment and are not scientific certainties. Specifically, Nobis Engineering, Inc. d/b/a as Nobis Group® (Nobis) does not and cannot represent that the site contains no hazardous wastes, oil or other latent conditions beyond those observed during this assessment. No other warranty, express or implied, is made.
- 2. The observations and conclusions presented in this report were made solely on the basis of conditions described in the report and not on scientific tasks or procedures beyond the scope of described services or the budgetary and time constraints imposed by the client. Nobis shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time the investigation was performed. The work described in this report was performed in accordance with the terms and conditions of our contract. No other warranty, express or implied, is made.
- 3. Observations were made of the site as indicated in this report. Where access to portions of the site was unavailable or limited, Nobis renders no opinion as to the presence of hazardous wastes or the presence of indirect evidence of hazardous wastes in that portion of the site.
- 4. No property boundary, site feature or topographic surveys of the site were performed by Nobis unless specifically indicated in the text of the report.
- 5. No sampling or testing was performed for the presence of herbicides, radon, lead paint, ureaformaldehyde, or asbestos at the site.
- 6. The purpose of this investigation was to assess the physical characteristics of the subject site with respect to the presence of hazardous wastes in the environment within the context of Rhode Island Department of Environmental Management (RIDEM) per the Rules and Regulations for the Investigation and Remediation of Hazardous Materials Releases (250-RICR-140-30-1). No attempt was made to check the compliance of present or past owners of the site with federal, state or local laws.
- 7. The observations and conclusions contained in this report are based in part upon data obtained from widely spaced subsurface explorations. The nature and extent of variations

APPENDIX A LIMITATIONS

between these explorations may not become evident until further exploration is performed. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the conclusions and recommendations of this report.

- 8. Water level readings have been made in the monitoring wells at the times and under the conditions stated in this report. Fluctuations in groundwater levels will occur due to variations in rainfall, tide fluctuations and other factors different from those prevailing at the time measurements were made.
- 9. Except as noted within the text of the report, no quantitative laboratory testing was performed as part of this assessment. Where analyses have been conducted by an outside laboratory or engineering firm, Nobis has relied upon the data provided and has not conducted an independent evaluation of the reliability of these data.
- 10. Chemical analyses have been performed for specific parameters during these environmental services, as described in the text of the report. Additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the site.
- 11. These environmental services have been prepared for the exclusive use of Brady Sullivan solely for use in an environmental evaluation of the site. This report shall not, in whole or in part, be conveyed to any other party without prior written consent of Nobis. This report shall not be construed to create any warranty or representation that the real property on which the investigation was conducted is free of pollution or complies with any or all applicable regulatory or statutory requirements, or that the property is fit for any particular purpose. No third party is entitled to rely upon any information or opinions contained in the report.

Nobis Group®

August 2021

Geophysical Survey Report 125 Thames Street Bristol, Rhode Island prepared for NOBIS GROUP June 2021

June 4, 2021

Ms. Bettina Eames, P.G. NOBIS GROUP 18 Chenell Drive Concord, NH 03301

Office: 603-513-7328

e-mail: beames@nobis-group.com

Subject:

Geophysical Survey Report

125 Thames Street Bristol, Rhode Island

Dear Ms. Eames:

Geophysical Applications, Inc. recently completed geophysical surveys designed to locate buried utilities and other obstacles to drilling and test pits, and to locate a possible underground storage tank (UST) near two visible pipes.

We completed this survey using ground penetrating radar (GPR) profiling and a pipe locator as described below. The survey regions were designated by Nobis' onsite representative.

PROPOSED WORK SCOPE

Survey Grid

We established reference grids throughout each survey area prior to geophysical data acquisition. The grids were denoted at ten-foot intervals with chalk and pink spray paint marks, and were referenced by taped distance measurements to nearby fences, the building, and other semi-permanent features.

Geophysical Techniques

Ground Penetrating Radar Profiling

GPR data were obtained with a GSSI model SIR-4000 radar instrument coupled to a 400-megahertz antenna. Data was acquired at a slow walking pace while the operator dragged the antenna or pushed a survey cart along pre-marked traverses. GPR data was displayed on a color monitor to facilitate preliminary, on-site data interpretation. Digital GPR data was also downloaded to a computer and transferred to digital media for archival purposes.

GPR can typically identify pipes, USTs or other large objects, at depths up to 8 to 10 feet below ground surface in granular soils. In urban areas, GPR signal depth penetration may be reduced to 5 or 6 feet (or sometimes less). GPR signal-penetration depths may be further reduced by shallow or brackish groundwater, concrete pavement (especially if reinforced), or electrically conductive materials (especially clay or residual deicing salts). Note that GPR signals cannot penetrate standing water (i.e. puddles) or metal objects (manholes, hatches, etc.).

GPR profiles are typically acquired along perpendicular traverses located 2.5 or 5 feet apart to help characterize the approximate size and burial depth of observed reflections. Five-foot

traverse spacing is generally sufficient to detect laterally-extensive pipes and 1,000-gallon capacity (or larger) USTs. Smaller objects and USTs (down to approximately 200-gallons) generally require a traverse spacing of 2.5 feet. We used a 2.5-foot traverse spacing throughout the designated survey areas.

USTs, pipes, or other discrete objects typically produce inverted U-shaped GPR reflections. We interpreted buried objects' dimensions directly from GPR records. Inferred objects' burial depths were estimated using GPR signal velocities from similar sites.

Data interpretation was performed in our office following the survey's completion, using GSSI's RADAN for Windows software to enhance faint or small GPR reflections. GPR interpretations are shown on Figures 1 and 2.

Pipe Locator

The Radiodetection model RD7100 instrument, when used in the passive and radio modes, can detect cables carrying an active electric current under load or re-radiating ambient radio signals. We used this instrument in both modes throughout the survey areas. In some instances, this method can also detect water lines, steam lines or other metallic pipes in the presence of nearby buried electric lines under load.

This instrument has separate transmitting and receiving units that can trace weak electrical signals induced in electrically-continuous metallic pipes or cables. Current induction is achieved by connecting the transmitter to a visible portion of the desired pipe or cable (for example a vent pipe), or (in suitable conditions) placing the transmitter on the ground surface above the subject pipe or cable. The induced current is subsequently traced with a handheld receiver unit.

SURVEY LIMITATIONS

GPR antennas require a relatively smooth surface (e.g. mowed grass, flat dirt, asphalt, concrete, etc.) to differentiate reflections produced by buried objects from those caused by topographic variations. Areas with irregular ground surfaces (e.g. tall grass and plants, rough ground surface, etc.) may hinder or prevent GPR data acquisition. At this site the ground surface was relatively smooth.

GPR is most likely to detect concrete or metallic objects. Plastic or vitreous clay pipes, or fiberglass tanks, are less likely to be detected with GPR. GPR signal penetration is site specific, determined by dielectric properties of the materials through which GPR signals are propagating. Objects deeper than the GPR signal's maximum penetration depth remain undetected.

GPR interpretations are based on identifying reflection patterns that may not uniquely represent a subsurface object. Recording data along perpendicular traverses helps to determine the size and shape of subsurface objects. GPR data interpretation is more subjective than most geophysical survey methods, and careful confirmation of interpreted GPR results via cores or test pits is recommended.

Note that a pipe's diameter must generally increase approximately one inch for every foot below ground surface in order for the GPR technique to detect that pipe. For instance, a pipe buried 8 feet below ground surface must typically be at least 8 inches in diameter to produce a recognizable GPR reflection. Note that the shallowest buried object in any given location (i.e. closest to the ground surface) is most likely to be detected, and deeper objects directly below will be more difficult to detect. Therefore, if pipes are situated on top of one another, only the shallowest may be identified unless the deeper pipe is considerably wider.

Horizontal locations of interpreted objects are generally accurate to \pm 1 to 2 feet for the 400 MHz antenna. The vertical scale for GPR data is in units of time (nanoseconds). Interpreted object locations must be converted to depth using a conversion factor. Unless access to a buried pipe

(e.g. an open catch basin) exists in the survey area to calibrate the raw GPR data, depths must be calculated from a range of industry standards for the media type. Calculated depths may therefore be off, either shallower or deeper, by some small amount. Care should be taken when drilling or digging near interpreted objects until their actual depth is determined by physical methods or visible observation.

RESULTS

Figures 1 and 2 shows the GPR traverses, geophysical interpretations, and visible above-ground features.

Depths to inferred objects noted on Figures 1 and 2 are in units of feet below ground surface. GPR signal penetration varied depending the ground surface. Over grass, GPR signal penetration was approximately 6 to 7 feet. Over asphalt and concrete the GPR signal penetration was 1 to 3 feet, but sometimes reaching down to 7 feet. This variance in signal penetration over asphalt and concrete is probably due to years of applying de-icing salts. We suggest that Nobis consider using vacuum excavation to at least five feet deep in areas limited GPR signal penetration.

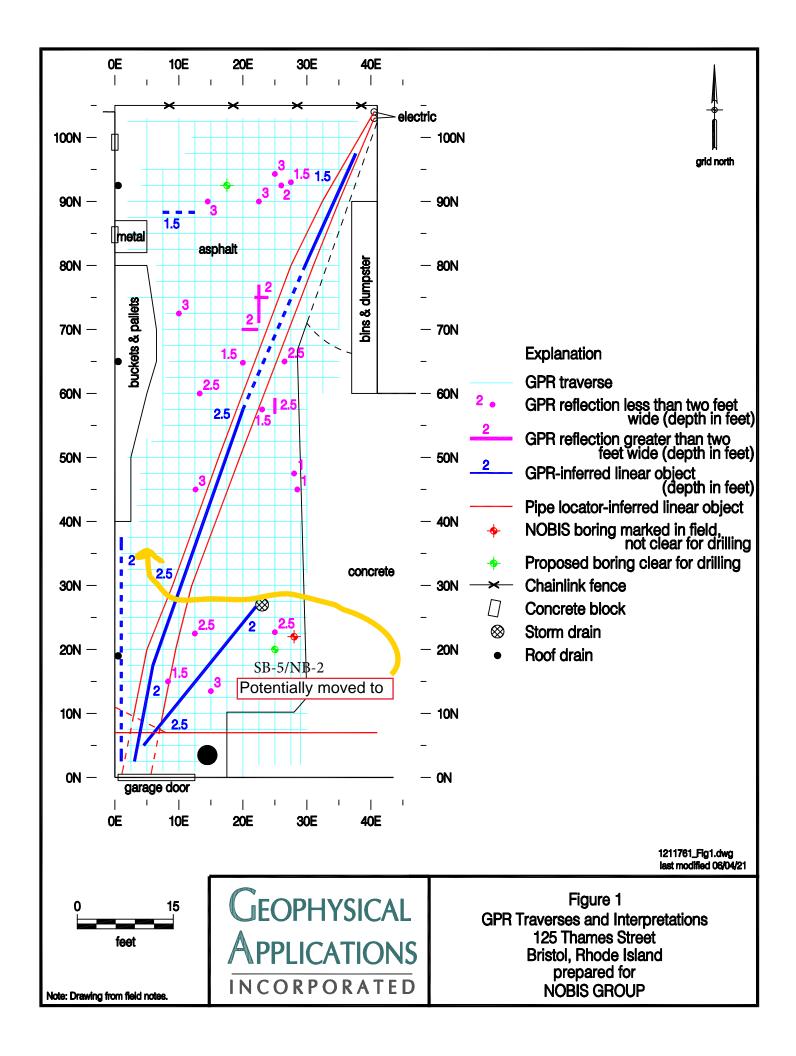
On Figure 1 two proposed borings cleared for drilling are shown as green borehole symbols. On Figure 2, the area with many PIVs has many subsurface linear objects. We could not give a recommended "clear" drilling location in that area. The test pit location near the GPR-inferred UST is clear to dig. SB-1 is not clear to drill, based on the possible pipe locator-inferred linear object. GPR could not see below the steel-reinforced concrete slab and did not detect the nearby gas line.

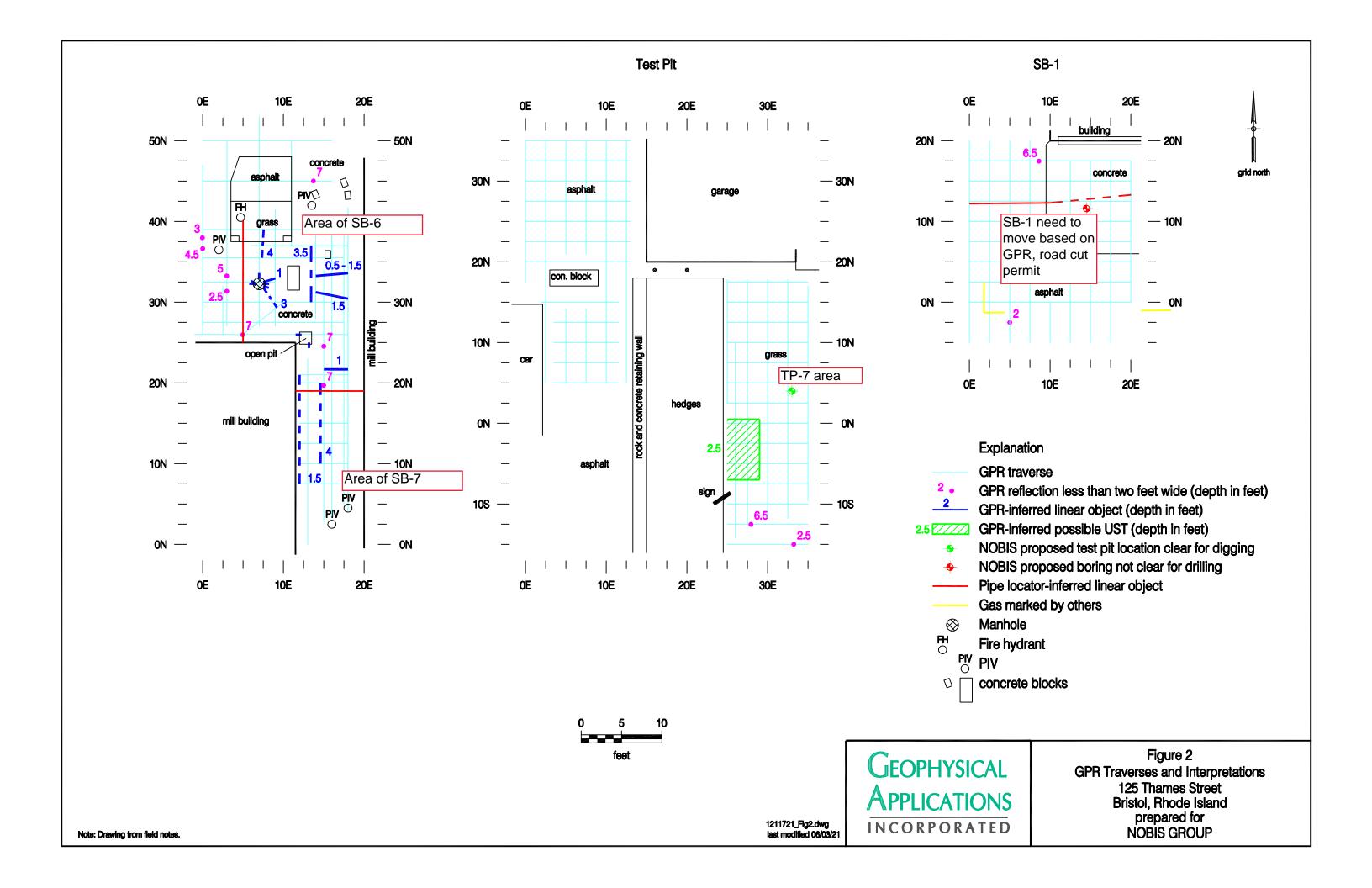
A GPR-inferred possible UST was detected near the proposed test pit.

Many GPR-inferred linear objects are shown as dark blue lines on Figures 1 and 2. Pipe locator-inferred linear objects are shown as thin red lines on Figures 1 and 2. The GPR and pipe locator-inferred linear objects are dashed where less certain.

Numerous GPR reflections were observed that could not be traced to adjacent traverses. These reflections are interpreted to represent discrete objects such as rocks, boulders, rubble, pipe segments, possibly drums, changes in subsurface layering, or other discrete buried objects. The largest of these reflections are identified on Figures 1 and 2 as magenta dots and lines.

* * * * *


Please call the undersigned at 508/429-2430 if you have questions regarding our report. We appreciate this opportunity to provide geophysical services to Nobis and we welcome inquiries regarding this project or future surveys.


Regards,

GEOPHYSICAL APPLICATIONS, INC.

Peter Giger Geophysicist Mark E. Blackey \ \ Principal and Geophysicist

1211761

Photo 1: SB-2 from 5'-10' bgs. Fine to coarse sand with trace silt.

Photo 2: SB-2 from 10'-15' bgs. Gray hardpacked sand and trace silt and clay.

Photo 3: SB-3 from 5'-10' bgs. Fine to coarse sand with trace silt and few brick fragments.

Photo 4: SB-3 from 10'-15' bgs. Gray fine to coarse sand and hardpacked silt at depth.

Photo 5: SB-4 from 0'-5' bgs. Fill with asphalt, fine to coarse sand and trace crushed stone.

Photo 6: SB-4 from 10'-15' bgs. Fine to coarse sand with gray silt and little sand at depth.

Photo 7: SB-5 from 0'-5' bgs. Fill with asphalt, fine to coarse sand and trace silt and ash.

Photo 8: SB-5 from 5'-10'. Fine to coarse sand and trace silt. Gravel at 5' depth.

Photo 9: SB-8 from 0-5' bgs. Fill with asphalt, sand, crushed stone and trace silt and gravel.

Photo 10: SB-8 from 10'-15' bgs. Fine to medium sand and silt with trace coarse sand.

Photo 11: SB-9 from 0'-5' bgs. Fill with asphalt, sand with little silt. Trace shells, ash, and glass.

Photo 12: SB-9 from 5-10' bgs. Fine to coarse sand and trace silt and clay.

Photo 13: SB-10 from 0'-5' bgs. Fill with crushed brick and stone, fine sand, and little silt.

Photo 14: SB-10 from 10'-15' bgs. Fine to coarse sand and gray clayey silt with trace gravel

Photo 15: SB-11 from 0'-5' bgs. Fill with asphalt, fine to coarse sand, trace silt and cobbles.

Photo 16: SB-11 from 10'-15' bgs. Alternating sand and clayey silt.

Photo 17: TP-1 Fill observed from 0' to 3' bgs.

Photo 18: TP-3 Fill observed from 0' to 7' bgs.

Photo 19: TP-6 Fill observed from 0' to 8.5' bgs.

Photo 21: SG-3 location looking into cored hole and open space beneath.

Photo 20: TP-8 Fill observed from 0' to 3' bgs.

D

1000\DATA\08- I				nob				Proje	BORING LOG Project: Robin Rug							SB-1/N		_
010														Chec	ked bv:	B. Ea	mes	
KS 20			r	oh	ic			Loca	tion: Bris	tol, RI				Date Start:June 10, 2021				
A P			ı	IOL	115			Nobi	s Project N	lo.: <u>9556</u>	60.26			Date Finish: June 10, 2021				
ASE H	Con	tractor:	G	eosearch	, Inc.			Rig 1	Type / Mod	el:	Geopr	obe 6610		Grour	nd Surface	e Elev.:		
5 7				. Belsky					mer Type:			/A						
2				. Powers														
				Drilling N	/lethod		Sar	npler										
20.70	Тур	е		Vacuu	med		Ν	I/A	Date 06/10/2	Time Depth Below Ground (ft.) Depth of Casing (ft.) Depth to Bottom of Hole (ft.)					Stabilization T while drilling			
1822	Size	ID (in.)					N	I/A	00/10/2	1 00.00	NOT LITE	Juntered					writte drillin	ng
	Adv	anceme	nt	Vacuui	med		N	I/A										
2				NFORMAT			11	THOLOGY	<u> </u>									Г
DIN NOG	Depth (ft.)	Type I	Rec (in.)	Depth (ft.)	Blows/ 6 in.	Ground Water	Graphic	Stratum Elev. / Dept (ft.)	h				ESCRIPTION on System: N					NOTES
	1 2 3 4					OTES		FILL			d at 4 feet.							
אבו ועבר בל	trace little som and	e 10 - e 20 - 35 -	- 35 - 50	very fe few sever numero	al ous	o aba	andon	the locati	on. No we	l was inst	alled, the ho	ole was fille	d ith the so	oil cuttin	ngs, and th	and time, B. Ea	ge No. 1 of	

~ -																									
Ž Ž										BOR	RING LOG		Borin	g No.:	SB-	2									
ΔĀ										50.			Borin	g Location: See Site	e Sket	ch									
200 TO 1000\DA1					-			Pro	ject: <u>Rob</u>	in Rug															
입													Chec	ked hv:	B Fai	mes									
3 200				1-				Loc	ation: Bris	stol, RI			Checked by: B. Eames Data Start: June 10, 2021												
ASK			r	nob	IS						60.26		Date Start: June 10, 2021												
<u>::L</u>				A 100				110		100000	50.20		Date Finish: June 10, 2021												
Ž c	ontr	actor	r:	Geosearch	, Inc.			_ Rig	Type / Mod	del:	Geoprobe 6610		Grour	nd Surface Elev.: _											
	riller	r:	E	E. Belsky				Hai	mmer Type		N/A														
_				S. Powers					mmer Hoist				- Datum:												
SKIS -						T	Samp		1			undwater C	Datum:												
- - - -				Drilling N			•		Date	Time	Depth Below Ground (ft.)				ole (ft)	Stabilization	Time								
290.	уре			Geopr	obe	Mad	cro-Cor	e Liners	iners						()	while drill									
§ S	ize I	ID (in	.)				2																		
	dvar	ncem	ent	Direct I	Push		Pus	h																	
<u> </u>	_						T us		101.001/								_								
RUG B	Deptin (it.)			INFORMAT		PID	Ground Water		HOLOGY Stratum		SAMPL	E DESCRIPT	ION AN	D REMARKS			NOTES								
Z 3		Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	(ppm)	Gro	Graphic	Elev. / Depth		(Classifi	cation System	: Modif	ied Burmister)			N								
ROBIN	+		. ,	1				O	(ft.)	No samn	le collected.						+								
	1				-		-			140 bamp	io concotod.														
	`						1																		
0/95560	2				1 1		1																		
ᅙ									IOT SAMPLED																
	3								IOT GAIVII EED																
A Z	L																								
SULLIVAN	4				-																				
	. ├				-																				
BRADY -	5	S-1	34	5-10				3.33		S-1A (5")	Brown, fine to coarse	SAND. little	e Silt. [Drv.			+								
. I	6 F	•		0.0	-		1			S-1B (15	"): Fine SAND & SILT,	trace Clay,	trace r	nédium to coarse S	and. [Ory.									
\circ					1	1.7																			
S/ACTIVE\95560.	7						Ţ			S-1C (14	"): Brown, fine to coars	e SAND, tra	ace Sil	t. Dry.											
Ĕ										,	,			•											
S/AC	8				-	0.7																			
	9				1	3.7																			
S/PRO	+				-				SAND																
\S \S 1	0																								
HA I	;	S-2	50	10-15		3.8				S-2A (20)	"): Gray, fine to coarse	SAND, trac	e Silt.	Dry.											
<u> </u>	1																								
Š																									
	2			-	4	1.2	-			S-2B (13	"): Gray, fine to mediur	n SAND, tra	ace Silt	, trace coarse Sand	l. Wet										
\$ - -	3				1	1.2	-																		
4.4 4.4					1		1		SILT		: Hard, gray, SILT, trac			and. Wet.			-								
1 4/21	4]				SAND	'S-2E (3")	: Gray, fine to coarse s : Gray, fine SAND, trac	ce Silt. Wet.				,	1								
- 8 - B					<u> </u>			MIN		1 S-2F73 ")	: Grav. Clavey SILT. W	7et. — — —				 	1								
<u>-</u>	5					<1_	-	Щ	SILT): Gray, SILT and coars	Se Saild. W	CI.				4								
2011	\downarrow									Boring te	rminated at 15 feet.														
	6			-	-		1																		
Ю Ш	₇				1																				
⋖⋿	+				1																				
TEMPI 1	8				1		1																		
< □	\top]]																		
	9				<u> </u>																				
G O																									
\circ	0	 -			<u> </u>																				
┆┣═			<u>centaç</u> 5 - 10	ge Non-So		OTES		اه داده	ed with Air	Vac No s	ample was collected ar	nd no water	was al	served in the hele	Goor	rohe used F	5.								
\sim	ace ttle	10	- 20	few	1	15 ft. b	gs. Lo	cated	near hydrau	ılic lift.	ampie was collected at	iu no watel	was U	ossi ved ili tile Hole.	Geob	เอมอ น่อยน วิ	, -								
∠ .	ome) - 35 5 - 50		al 2	2) Sam	of ex	ollected	l 12 - 14 ft. n at 15 ft bo	bgs.	isal encountered														
~⊢												s between stratum	s: transitio	ns may be gradual	and 35 - 50 numerous 3) End of exploration at 15 ft bgs. No refusal encountered. Soil descriptions, and lithology, are based on visual classifications and should be considered approximate. Stratification lines are approximate boundaries between stratums; transitions may be gradual. Page No. 1 of 1										

Sample Description AND REMARKS Classification System: Modified Burmister) Sample Collected Collec	ա.																				
Project Robin Rug Contractor: Geosearch, Inc. Contractor:	ATA/08											BOR	ING LOG	Boring No.: SB-3							
Date Start	DA.													Boring Location: See Site Sketch							
Date Start	1000								Pr	rojec	ct: Rob	in Rug									
Date Start	21 00													Checked by: B. Eames							
Contractor: Geocearch, Inc. Rig Type / Model: Geoprobe 6610 Ground Surface Elev: Note Rop: S. Powers Description Power Power	(S 20			-	noh	vic			Lo	ocati	on: Bris	tol, RI		1							
Contractor Geosearch, Inc. Rig Type / Model: Geoprobe 6610 Ground Surface Elev:	TASK				IOL	115															
Dollar E. Belsky	Щ														<u> </u>						
Notis Rep: S. Powers Drilling Method Sampler Groundwater Observations	HAS					, Inc.									Grour	nd Surface Elev.:					
Type	LRF	Drille	er:	E	. Belsky										_						
Type	STO	Nob	is Rep	o.:S	. Powers				_ Ha	ammer Hoist: N/A Datum:											
Size D (n.) 2	- BRI				Drilling N	/lethod		Samp	oler												
Size ID (in.) 2	0.26	Туре	е		Geopr	obe	Mad	cro-Cor	e Liner	rs ,			. ,	Depth of Ca	sing (ft.)	Depth to Bottom of Ho	ole (ft.)				
SAMPLE DESCRIPTION AND REMARKS Settlem SAMPLE DESCRIPTION AND REMARKS Settlem	19556	Size	· ID (in	.)				2		- 1	¥ 00/ 10/2	1 10.00	0					write artii	ing		
SAMPLE NFORMATION Disparation Sample Sam	J R		•							\dashv											
1	SIST(Pus													
1	IG BF	(J	SA	MPLE	INFORMAT	ION	PID	pu je		_			SAMPI	E DESCRIPT	ION ANI) REMARKS			ES		
1		Septh						Grou	raphi		v. / Depth								NOT		
1	ROBI			. /	` ′				Ö			No samul	e collected								
NOT SAMPLED	- 56 -	1				1		1				campi									
Not sample Not																					
Sand	60	2																			
Sand	TFO					-		-		NOT	SAMPLED										
Sand	POR	3				1															
Sand	VAN	4				1		1													
Sand	SULL																				
Sand		5							** ** **	<u> </u>									_		
SAND S-10 (3"): Hard, gray, SILT, trace fine to coarse Sand. Dry, S-10 (6"): Brown, fine to coarse SAND, trace SIIt. Wet. S-10 (6"): Brown, fine to coarse SAND, trace SIIt. Wet. S-10 (6"): Brown, fine to coarse SAND, trace SIIt. Wet. S-10 (6"): Brown, fine to coarse SAND, trace SIIt. Trace SiIt. Wet. S-20 (9"): Gray, fine to coarse SAND, trace SIIt, trace Clay. Wet. S-20 (9"): Gray, fine to coarse SAND, trace SIIt, trace Clay. Wet. S-20 (9"): Hard, gray, SILT, trace fine to coarse SAND, trace SIIt, trace Clay. Wet. S-28 (30"): Hard, gray, SILT, trace fine to coarse SAND, trace SIIt, trace Clay. Wet. S-28 (30"): Hard, gray, SILT, trace fine to coarse SAND, trace SIIt, trace Clay. Wet. S-28 (30"): Hard, gray, SILT, trace fine to coarse SAND, trace SIII, trace Clay. Wet. S-28 (30"): Hard, gray, SILT, trace fine to coarse SAND, trace SIII, trace Clay. Wet. S-28 (30"): Hard, gray, SILT, trace fine to coarse SAND, trace SIII, trace Clay. Wet. S-28 (30"): Hard, gray, SILT, trace fine to coarse SAND, trace SIII, trace Clay. Wet. S-28 (30"): Hard, gray, SILT, trace SIII, trace SIII, trace Clay. Wet. S-28 (30"): Hard, gray, SILT, trace SIII, trace SIII	- BR/		S-1	44	5-10	-		1				O 4D (OII)	D C .	CAND		•		, .	-		
S-IE (29): Hard, gray, SiLT, little fine to coarse Sand, few Brick fragments, few Cobbles, Wet. S-24 (9"): Gray, fine to coarse SAND, trace Silt, trace Clay. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, ittle fine to coarse Sand, few Brick fragments, few Cobbles, Wet. S-28 (30"): Hard, gray, SiLT, ittle fine to coarse Sand, few Brick fragments, few Cobbles, Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-28 (30"): Hard,	0.00	6				1	3.0	▼			SAND	S-1C (3")	Hard, gray, SILT, trac	ce fine to co	arse S	and. Dry.		. — — — —/ . — — — J	1		
SAND SAND SAND SAND SAND SAND S-2A (9"): Gray, fine to coarse SAND, trace Silt, trace Clay. Wet. S-2B (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-2B (30"): H	9556	7				1				L_	OILI	(U)	. Drown, fine to coarse	CAND, Ha	oc Ont.	VVCL.		رك			
SAND SAND SAND SAND SAND SAND S-2A (9"): Gray, fine to coarse SAND, trace Silt, trace Clay. Wet. S-2B (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-2B (30"): H	ΓΙΛΕ											Cobbles.): Hard, gray, SiLT, iiii Wet.	ie line to co	barse S	and, lew Brick Iragi	nenis,	iew /			
SAND SAND SAND SAND SAND SAND S-2A (9"): Gray, fine to coarse SAND, trace Silt, trace Clay. Wet. S-2B (30"): Hard, gray, SiLT, trace fine to coarse Sand. Wet. S-2B (30"): H	S/AC	8																			
SAND S-2 39 10-15 11 12 13 14 14 14 15 16 17 18 18 19 19 19 10 10 10 10 10 10 10	ECŢ	4.5																			
S-22 39 10-15 11	2ROJ	9				1				SAND											
S-2A (9"): Gray, fine to coarse SAND, trace Cilt, trace Clay. Wet. 10	RES/F	10				1		1													
Silt Silt Silt Silt Silt Silt Silt Silt	SHA		S-2	39	10-15							S-2A (9"):	Gray, fine to coarse S	SAND, trace	e Silt, tr	ace Clay. Wet.					
12	CAL	11				1	1.0	-			S-2B (30"): Hard, gray, SILT, trace fine to coarse Sand. Wet.										
13	IS.LO	12				1		1				~ `							1		
13	NOBI	12				1		1													
14	44 - \	13																			
Boring terminated at 15 feet. 16	1 14:					1	2.4				SILT										
Boring terminated at 15 feet.	8/4/2	14				-		1													
Boring terminated at 15 feet.	<u>-</u> ۲	15				-		-													
17	1. Q	13				-		1	Ш	<u> </u>		Boring ter	minated at 15 feet.						1		
17	7 20	16										-									
18	90																				
19	ATE.	17				-		-													
19	EMPL	40				-		-													
Soil Percentage Non-Soil trace 5 - 10 very few little 10 - 20 few some 20 - 35 several and 35 - 50 numerous NOTES: NOTES: 1) 0 - 6 ft. bgs cleared with Air Vac and no sample was collected. Geoprobe used 5 - 15 ft. bgs. 2) Sample collected 7 - 9 ft. bgs. 3) End of exploration at 15 ft bgs. No refusal encountered.	Υ	ıg				1		1													
Soil Percentage Non-Soil trace 5 - 10 very few little 10 - 20 few some 20 - 35 several and 35 - 50 numerous Nores I little 10 - 20 numerous Nores I little 10 - 20 few some 20 - 35 several and 35 - 50 numerous Nores I little 10 - 20 few some 20 - 35 several numerous Nores I littl	PA	19				1		1													
Soil Percentage Non-Soil NOTES: trace 5 - 10 very few little 10 - 20 few some 20 - 35 several and 35 - 50 numerous NOTES: 1) 0 - 6 ft. bgs cleared with Air Vac and no sample was collected. Geoprobe used 5 - 15 ft. bgs. 2) Sample collected 7 - 9 ft. bgs. 3) End of exploration at 15 ft bgs. No refusal encountered.	Z U																				
trace 5 - 10 very few little 10 - 20 few some 20 - 35 several and 35 - 50 numerous 1) 0 - 6 ft. bgs cleared with Air Vac and no sample was collected. Geoprobe used 5 - 15 ft. bgs. 2) Sample collected 7 - 9 ft. bgs. 3) End of exploration at 15 ft bgs. No refusal encountered.	OBIS		1-		 	<u> </u>													\perp		
little 10 - 20 few 2) Sample collected 7 - 9 ft. bgs. Some 20 - 35 several 3) End of exploration at 15 ft bgs. No refusal encountered. Some 20 - 35 numerous	ž								no ol	oro-l	with A:	loo ond :	o comple was sellecte	d Coor	0 1/05 -	E 15ft bac					
some 20 - 35 several 3) End of exploration at 15 ft bgs. No refusal encountered. and 35 - 50 numerous	Ď E		10	0 - 20			2) Sam	iple co	ollecte	ed 7	- 9 ft. bgs	S.	•	u. Geoprob	e used	อ - าอาเ. bgs.					
<u> </u>	HOL		e 20	0 - 35	1	al	3) End	of exp	olorati	ion a	at 15 ft bg	s. No refu	sal encountered.								
	30RE						classificat	tions and	should be	e consi	idered approxir	nate. Stratificati	on lines are approximate boundarie	s between stratun	ns; transitio	ns may be gradual.	Pag	e No. 1 o	f 1		

FA\08- F											BOF	RING LOG		Boring	g No.:	SB-	4	_		
000\DA1										rt Rob			Boring Location: See Site Sketch							
0 TO 1				- >	$\overline{}$			ľ	Project: Robin Rug						Checked by: B. Eames					
KS 20			r	nob	sic				Location: Bristol, RI						Date Start:June 9, 2021					
= TA8			- 1	100	113			N	lobis	Project N	No.: <u>955</u>	60.26	Date	Finish: June	9, 2021					
HASE	Driller: D. Freeman Han								Rig Ty	/pe / Mod	lel:	Geoprobe 6610		Grour	nd Surface Elev.:					
														<u> </u>						
RISTO	dob	is Rep	D.:		A = 4l= = al		C		lamm	ner Hoist:		N/A			m:			_		
- 1.26 - E	Γvpe	e		Drilling N Geopr		Mad	Sample Macro-Core I		ers	Date	Time	Groundwater Observations Time Depth Below Ground (ft.) Depth of Casing (ft.) Depth to Bottom of Hole (ft.)								
19556(Type Geoprobe Macro-Core Line Size ID (in.) 2						¥ 06/09/2	1 22:45	7					while dril	ling					
실 선 선		ancen		Direct F	Push		Pus	:h												
BRIS	_			INFORMAT	ION		σ.		ITHOI	LOGY								To		
IN RUG	Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	PID (ppm)	Ground	Graphic		Stratum v. / Depth (ft.)					D REMARKS ied Burmister)			NOTES		
- ROB		S-1	29	0-5				××	AS): Gray, Dry. (ASPHAL)						+		
560.26	1								×		S-1C (12): Gray, fine to coarse S 2"): Gray, fine to coarse				ne, trace	e brick			
LIO/95	2								X	FILL	fragment	ts. Dry.): Gray, Crushed/cored	etone Dry	,						
RTFO	3					3.0					S-1E (1"): Brown, fine to coarse): Brown, fine to coarse): Brown, fine to coarse	SAND, tra	ice Silt.		crushed	rock Dry			
AN PO									X		Iron stair					oraorioa	rook. Dry.			
	4									SAND	~ <u></u>	<u>,, </u>			. =			1		
MD√ S	5	S-2	28	5-10		7.3		. 🖵	co	OBBLES_	S-2A (3"): Gray, Crushed cobble						4		
90 - BF	6	02	20	0 10								b"): Tan, fine to coarse s		t. — — —						
95560.(7						Ţ													
TIVE						<1	*													
TS/AC	8				-															
ROJE(9									SAND										
RES/P	10]	<1			4											
L\SHA	11	S-3	46	10-15							S-3A (22	2"): Tan, medium to coa	rse SAND	, trace c	coarse Sand, trace	Silt. W	et.			
-IOCA	11																			
NOBIS	12					<1): Fine to medium SAN			and, trace Silt. We	t.				
*- K	13								-		S-3C (18	8"): Gray, SILT, little fine	Sand. W	et. — — — ·						
1/21 14	14				-		-			0=										
T - 8/2]	<1]			SILT										
911.GE	15				}		1	Ш	+-		Boring te	erminated at 15 feet.						+		
ST 7 Z	16						-													
ATE O	17				1															
EMPL,	18																			
ATAT	10						1													
	19						-													
OBIS	20	T_		1	<u> </u>															
Ž tı	Soil race		<u>centaç</u> 5 - 10	ge Non-So very fe	ew 1	OTES 1) Sam	iple co	ollect	ed at	t 7 - 9 ft. I	bgs.									
OLE LC	ittle ome	e 20	0 - 20 0 - 35	few sever	3	3) End	of ex	olorat	tion a	at 15 ft bg	js. No refi	usal encountered. g tide. Low tide occured	d at 0100.							
~ L	and Soil d		5 - 50 ns, and lith	numero nology, are base		classificat	tions and	should b	be consi	idered approxi	mate. Stratifica	ation lines are approximate boundarie	s between stratu	ms; transitio	ns may be gradual.	Pag	je No. 1 d	of 1		

A/08- F										BOE	RING LOG		Boring	g No.:	,	SB-5/N	IB-2				
1.TO 1000/DAT									aiaat. Dal			Boring Location: See Site Sketch									
								Pr	oject: <u>Ro</u>	oin Rug		Checked by: B. Eames									
nobis Not									cation: Bri	stol, RI				кеd by: Start:			mes				
									bis Project					Finish:							
									g Type / Mo	del:	Geoprobe 6610			nd Surface							
Contractor. Geosearch, Inc.									ammer Type						Elev.:0						
N	obis	Rep	: _S	. Powers				_ Ha	ammer Hois	t:	N/A		Datur	n:							
26 - BF				Drilling N			Samp		_ Date	Time	Gro Depth Below Ground (ft.)	Depth of Ca		1	Bottom of H	ole (ft)	Stabilization	Time			
95560.	/pe	D (!:-	,	Geopr	ope	Mad	cro-Cor	e Liner	06/09/2		Not Encountered		9 ()			while drilling					
		D (in	_			+	2														
BRIST	_	sa		Direct F			Pus	1.17	THOLOGY									<u> </u>			
BIN RUG B	T &	ype No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	PID (ppm)	Ground Water	Graphic	Stratum Elev. / Depth (ft.)		SAMPLE DESCRIPTIO (Classification System:				V	VELL D	ETAIL	NOTES			
.6 - RO		S-1	18	0-5					ASPHALT		: Dry. (ASPHALT). Cru			<u></u>			USH DUNT				
0/95560.26					- -	8.9				S-1C (2") S-1D (2")	: Brown, fine to coarse : Tan, fine to coarse S : Brown, fine to coarse	AND. Dry. SAND, litt	le Silt. I	Dry.	-	•]	OADBOX 'C RISER				
TFOLK										S-1E (3)	: Brown, fine to coarse	SAND, IT	ace asn	i. Dry.		⋖BE	NTONITE				
N POR									SAND												
4 A						<1															
% _5	_	S-2	18	5-10				00(GRAVEL	S-2A (5")	: GRAVEL. Dry.										
- 6 6		J-Z	10	3-10		7.6					: Brown, fine to coarse	SAND, tra	ce Silt.	Dry.							
62260. 7	. -									. '	: Gray, fine to coarse S : Gray, CLAY & SILT.	-		Ory.							
CTIVE						1.0			SAND	5 22 (.)	,,	y o	g.								
CTS\AC						1.6										TPV	REENED C - 2"				
)															∷ SA	TER ND -				
ARES/	-	2.0		10.15		14.5		NI NI	_CLAY	======	========= '): Gray, fine to coarse	====	_ = = :	====		SIZ	ZE 2				
AL/SH		S-3	22	10-15					CAND). Gray, line to coarse '): Hard, gray, SILT, tra										
OBIS:LO	2								SAND	0 00 (12	j. Hara, gray, OLLT, at		ina. Diy	•							
- - 1; 1;	3					<1															
14/21 14:	4								SILT												
8 1:	5																				
SOREHOLE LOG - NOBIS GINT DATA TEMPLATE OCT 7 2011.GDT - 8/4/21 14:44 - 'NNOBIS.LOCAL/SHARESIPROJ	6									Boring te	rminated at 15 feet.										
 	7				-																
TEMPLA]																
DATA 1					1																
S GIN																					
Sign 20			entag	je Non-S		OTES				<u> </u>					1						
S tra	tle	10	- 10 - 20	very fe	2	2) Voic	with o	gravel	falling into	open space	at 3'-7" bgs. e 5 ft. bgs.										
SO a	me nd	35	- 35 - 50	numero	ous 5	5) End	of exp	oloratio	d at 10 - 12 on at 15 ft b	gs. No refu	sal encountered.										
∑ so	oil desc	criptions	, and lith	ology, are base	d on visual	classificat	ily per	iong pe	considered appro	timate. Stratificat	ion lines are approximate boundarie	es between stratur	ms; transitio	ns may be grad	ual.	Pac	je No. 1 d	of 1			

1000\DATA\08- F								Pi	roject:	: Rob	BOR	ING LOG				g No.:g Location: <u>See Si</u>			
0 TO															Chec	ked by:	B. Ea	mes	
(S 20(-	nob	vic			Lo	ocatio	n: Bris	stol, RI					Start:June 1 ⁻			
TAS				IOL	115			N	obis P	Project N	No.: <u>9556</u>	0.26				Finish: June 1			
ASE II	Con	tractor	: G	eosearch	. Inc.			R	ia Tvp	e / Mod	del:	N/A				nd Surface Elev.:			
N PH		er:		. Freema							:								
TOL!				. Powers							:				Datur	n:			
BRIS				Drilling N	/lethod		Samp				<u> </u>		Grou	undwater 0					
30.26	Тур	е					N/A			Date	Time			Depth of Ca	sing (ft.)	Depth to Bottom of I	Hole (ft.)		
19556	Size	e ID (in	.)				2			06/11/2	1 10:30	Not Encountere	ea					while drilli	ng
일		ancem	-	Augei	red		N/A												
BRIST				NFORMAT					THOLO	OGY									Т
RUGI	Depth (ft.)	Туре	Rec	Depth	Blows/	PID (ppm)	Ground Water	Graphic	Stra	atum						D REMARKS ied Burmister)			NOTES
	Dec	& No.	(in.)	(ft.)	6 in.	(ррпі)	ტ ≶	Grap		/ Depth ft.)		ray, SILT, trace find		•		,			ž
BOREHOLE LOG - NOBIS GINT DATA TEMPLATE OCT 7 2011 GDT - 8/4/21 14:44 - \NOBIS.LOCAL\SHARESPROJECTS\ACTIVE\95560.00 - BRADY SULLIVAN PORTFOLIO\95560.26 - ROBIN RUG BRISTOL RI\95660.26 - BRISTOL RI\9	2					<1			SI	ILT	Boring tel	minated at 2 feet.							-
3 - NOBIS GINT DATA TEMPLATE OCT 7 2011.GDT - 8/4/21 14:44 - \\ \\ \\ \\ \)	3 4 5 Soi		centago			OTES				Off house									
SOREHOLE LO	little som and	e 10 e 20 l 35	5 - 10 0 - 20 0 - 35 5 - 50 s, and litho	very fe few sever numero	al :	2) End 3) San	of exp	lorat	ion at ed with	h hand	s. No refus auger met	al encountered. hod. on lines are approximate bou	ndaries	between stratun	ns; transitio	ns may be gradual.	Pac	ge No. 1 o	f 1

$S = \exists \alpha _{\alpha} \alpha _{\alpha$								Pi	roje	ect: Ro			ING LOG					SE on: See Site Ske		
0 TO 1				- 1	$\overline{}$				•			•				Chec	ked bv	B. E	ames	
4S 20			r	nob	ic			Lo	ocat	tion: Bri	istol,	, RI						June 11, 202		
ITAS			- 1	IOL	115			N	obis	s Project	No.:	: <u>9556</u>	0.26					June 11, 20		
A ASE	on	tractor	r: G	Seosearch	n, Inc.			Ri	ig T	ype / Mo	del:		N/A			Groui	nd Surfa	ce Elev.:		
	rille	er:	D). Freema	n			_ H	amı	mer Type	e:		N/A							
N	lobi	is Rep	o.: _S	. Powers				_ H	amı	mer Hois	t: _		N/A			Datur	n:			
8-8R				Drilling N	Method		Sam	pler				T:	D # D 1 0		oundwater (D. ") (01 1 iii ii	<u> </u>
Z 2	уре	9					N/A	4		Date 06/11/2		Time 11:30	Not Encount		Depth of Ca	ising (π.)	Depth to	Bottom of Hole (fi	while dril	
S S	ize	ID (in	.)				2													
A	dva	ancem	nent	Auge	red		N/A	4												
JG BR	(III)	SA	MPLE	INFORMAT	ΓΙΟΝ	PID	lnd ter		_	OLOGY Stratum				SAMPL	LE DESCRIP	TION AN	D REMAF	RKS		ES
SIN RU	Deptin (iit.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	(ppm)	Ground	Graphic		ev. / Depth (ft.)					ication Syster					NOTES
- ROE								9 4			Co	oncrete.								\top
90.26								A 4 4		ONCRETE										
10/956											Gr	ray, Cla	ey SILT, trace	fine to	coarse Sa	nd. We	t.			
(TFOL																				
POG																				
, LE	1						-													
NS YO																				
BRAC									CL	AYEY SILT										
0.00					+					7.1.2.1 0.2.1										
=\9556						2.3														
CTIVE	2																			
CTS/A	_				1															
ROJE																				
RES/P																				
-\SHA											Во	oring ter	minated at 2.5	feet.						
OCA																				
OBIS.I	3																			
4-\N																				
1 14:4																				
8/4/2					-		-													
GDT.																				
2011.	,																			
7	4				1															
-ATE (
LEMPI																				
ATA	Ī																			
L L																				
SBIS G	_			<u> </u>																
کا <u>د</u> 5 +-	Soil		centag 5 - 10	e Non-S very fe		OTES		ollecto	2d 6	at 2 ft. bg	c	_			_		_			_
	ace ttle	10	0 - 20	few	/ 2	2) Refu	usal a	t 2.5 f	t. b	at ∠ it. bg gs. Refus vith hand	sal p	otential	ly caused by m	etal.						
OHI a	nd		0 - 35 5 - 50	sever numer) sam	ibie c	onecte	eu V	viui nand	aug	Jei metr	iou.							
о́ s	oil de	escriptions	s, and lith	ology, are base	ed on visual	classificat	tions and	should be	e con	sidered approx	ximate	e. Stratification	on lines are approximate	boundarie	es between stratu	ns; transitio	ns may be gr	adual. Pa	age No. 1 o	of $\overline{1}$

Α.																			
A\0											BOR	ING LOG		Boring	g No.:	SI	3-8/N	B-3	
0\DA														Boring	g Location:	See Site	Sketo	h	
100								P	rojec	t: Robi	in Rug			l					
8										-				Checl	ked by:	Е	3. Ear	nes	
KS 2			r	nob	ic									Date	Start:	June 8, 2	2021		
TAS			- 1	IOL	113			N	obis	Project N	lo.: <u>9556</u>	0.26		Date	Finish:	June 8,	2021		
SE	Con	tractor	r. G	Geosearch	Inc			-	ia Tv	ne / Mod	<u></u>	Geoprobe 6610			nd Surface				
														Groui	iu Suriace				
님				 Freema Powers 										Dotum					
200	NOD	is Kep) <u> </u>						amm	iei noisi.					n:				
- 97	_			Drilling N			Samp			Date	Time	Depth Below Ground (ft.)	undwater (ottom of Hol	e (ft)	Stabilization	Time
	Тур	=		Geopr	obe	Mad	cro-Cor	e Line	ers T	4 06/08/2		6.5	15	<u> </u>			- ()	while drill	
₩ ₩	Size	ID (in	1.)				2												
	Adv	ancem	nent	Direct l	Push		Pus	h	\vdash										
R	r.)	SA	MPLE	INFORMAT	ION		σ.		THOL	.OGY						10/6	ELL DE	TAII	S
RUG	Depth (ft.)	Туре	Rec	Depth	Blows/	PID (ppm)	Ground Water	Graphic		tratum		SAMPLE DESCRIPTION (Classification System: I				VVE	ELL DE	IAIL	NOTES
ROBIN	۵	& No.	(in.)	(ft.)	6 in.		0-	Q ā		(ft.)	0.44 (511)	`						1011	\perp^{z}
6-R		S-1	33	0-5	-		-	XXX	AS	PHALT T	S-1A (5"): fine Grave	Brown, fine to coarse el. Dry.	SAND, tra	ce Silt,	trace			JSH JUNT	
560.2	1				1			×	' ـــ ــــــــــــــــــــــــــــــــ	BBLES	S-1B (1"):	Dry. (ASPHALT). Stic	ky, black o	old pat				ADBOX	
0/95560	2				1		1				asphalt. S-1C (6")	Brown, fine to coarse	SAND tra			1	PV	C RISER	
FOL											(FILL). Cr	ushed stone and asph							
PORT	3				-	8.0						Cobbles. Dry. Brown, fine to mediur	~~~~~		j				
¥	4				-		1				coarsè Sa	and, trace fine Roots. [Dry.				⋖ BE	NTONITE	
SULLIV	4				1						S-1F (4"): coarse Sa	Hard, grey, fine to me	edium SAN	D and S	Silt, trace				
	5					<1					S-1G (4")	: Brown, fine to mediur	m SAND, s	ome Si	lt, trace				
BRADY		S-2	46	5-10							coarse Sa S-2A (11"): Brown, fine to mediu	ım SAND,	some S	ilt, trace				
8	6				-		 _		. 8			and, crushed Brick. Dry): Grey, fine to mediun		nd Silt t	race				
95560	7				1	<1	▼				coarse Sa	and, fine Gravel. Wet.	Spots of iro	on stain	ing.				
Ĭ N	•				1														
SACTIVE	8								:										
<u>"</u>					-	4													
SIPROJ	9				1	<1	1												
ĘS K	10				1		1		:								▼FIL SA	TER ND -	
SHA		S-3	55	10-15					7-		S-3A (45"): Dense, gray, SILT & ce fine Gravel. Wet.	CLAY, litt	le fine t	o coarse		SIZ	Έ 2	
Š	11				1	3.7			1		Sanu, irai	ce iiile Gravei. vvet.						REENED C - 2"	
S.LC	12				1				1	CLAY									
NOB	14				1		1												
44 - \	13					<1													
1 14:					_		-		_	CANID		Gray, fine to coarse S			t.				
8/4/2	14				-		-		:	SAND	S-3C (3"):	Yellow, fine to coarse	SAND. W	et.					
- 105	15				1		1												
2011.									Γ		Boring ter	minated at 15 feet.					-		
	16				1		-												
EOC	17				1		-												
Y N	17				1		1												
EM	18]														
DAIA					1		-												
	19				-		-												
BIS G	20						1												
2		Perd	centag	e Non-S	oil N	IOTES	:												
DC	trace little		5 - 10 0 - 20	very few	ew	2) Stat	ic wate	er lev	el is	likely infl at 7 - 9 ft.	uenced by	the tide. Water level v	was measu	red at l	ow tide (12	::30).			
	some	e 20	0 - 35	sever	al							sal encountered.							
	and		5 - 50	numero		classifies	tions and	should b	e coroi-	dered approxi-	nate Stratificati	on lines are approximate boundarie	s hetween stret	ne: transiti-	ne may be grad	al	Pag	e No. 1 o	of 1
ചി	2011 d	escription	s, and lith	υιυgy, are base	u on visual	ciassificat	uoris and	snould b	e consid	uereu approxir	nate. Stratificati	on lines are approximate boundarie	s between stratur	ııs, ıransıtıo	ъ may be gradua	aı.	rag	⊏ INU. I 0	4 <u>L</u>

<u>.</u> —																	
Z Z										BOR	RING LOG		Borin	g No.:	SB-9)	
ΔĀ										50.			Borin	g Location: See Site	e Sketo	ch	
100			H		-			Pro	ject: Rob	oin Rug							
2													Chec	ked by:	B Far	mes	
3 200				1-				Loc	ation: Bris	stol, RI				Start:June 9,		1103	
ASK			r	nob	IS						60.26						
			1	V. C. S.									Date	Finish: June 9	, 2021		
ğ C	ontr	ractor	:	Geosearch	, Inc.			_ Rig	Type / Mod	del:	Geoprobe 6610		Grour	nd Surface Elev.: _			
돌 D	rille	r:		D. Freema	n			_ Har	nmer Type	:	N/A						
g N	obis	s Rep	.: S	S. Powers				Har	nmer Hoist	:	N/A		Datur	n:			
			$- \mp$	Drilling N			Samp		1			undwater C					_
; T	уре			Geopr				e Liners	Date	Time	Depth Below Ground (ft.)	_		1	ole (ft.)	Stabilization	Time
200				Соорі		IVIGO			¥ 06/09/2	1 08:00	8					while drill	ing
[®] S	ize	ID (in	.)				2										
를 A	dva	ncem	ent	Direct I	Push		Pus	h									
2 A B	· T	SA	MPLE	INFORMAT	ION			LITH	HOLOGY								Τ,,
SIN RUG BH		Туре	Rec	Depth	Blows/	PID (ppm)	Ground Water	Graphic	Stratum					D REMARKS ied Burmister)			NOTES
ROBIN	\$ 8	& No.	(in.)	(ft.)	6 in.	(ррііі)	გ≤	Grap	Elev. / Depth (ft.)		(Classili	callon System	i. iviouii	ied buillister)			Įž
1		S-1	26	0-5				- * * * * *	ASPHALT	S-1A (3")	: Dry. (ASPHALT). Cru	shed aspha	alt.) Tuess soubalt			Ţ
	1				1		_	WY.	- FILE -		: Brown, fine to coarse "): Brown, fine to media						
099960					-				COBBLES		, trace ash, glass fragi					,	1
_	2				1	<1				S-1D (5")	: Crushed Cobble. Dry						
조 전 전	3				_												
<u>ا ۱</u>																	
AN 4	1					<1											
SUL																	
BRADY	5	0.0	4.4	5.40			_			C 2A /4"\	Cauched Cabble Day						
	-	S-2	44	5-10	-	<1			SAND	S-2B (1")	: Crushed Cobble. Dry : Cobble. Dry.						
	+									S-2C (10)	"): Grey, fine to mediur "): Brown, fine to coars	n SAND, tra	ace Silf	i. Dry.			
9226	,	1					-			3-20 (10). Drown, line to coars	e sand, iii	ace on	i. Diy.			
S/ACTIVE\95560										S_2E (16'	'): Gray, medium to co	area SAND	trace	fine Sand trace Sil	t Wat		
<u>ğ</u> [3					<1	Ţ			3-2L (10). Gray, medium to co	aise SAND	, liace	illie Gariu, trace Gii	ı. vvei.		
ပူ	. -																
	9						-										
	0					<1	_										
Ř F	_	S-3	40	10-15						S-3A (13'	'): Gray, fine to coarse	SAND, trac	e Silt.	Wet.			1
1	1																
Ö.EO					-				CLAY	S-3B (6")	: Gray, Clayey SILT ar	nd fine to me	edium	Sand, trace coarse	Sand.	Wet.	
	2				-	<1											
≨ ↓ 1	3				1		-										+
4.4 4.	+				1					S-3C (21)	"): Gray, fine to coarse	SAND, trad	e Silt.	Wet.			
1 4/21	4					<1			SAND								
χ. -					-												
원 1	5			-			-			Boring te	rminated at 15 feet.						4
7 23	6				1		1			_sing to	atod at 10 loot.						
	\dashv				1		1										
	7]												
EMPLA					1												
1	8				-												
1	۱ ا						_										
	9				1		1										
2	_																
2 5	Soil			ge Non-S		IOTES											
~	ace ttle		5 - 10 0 - 20	very fe	ew 2	2) Sam 1) Fnd	of exr	ollected	10 - 12 ft. n at 15 ft bo	bgs. gs. No refu	sal encountered.						
الرا الا	me	20	- 35	sever	al	,				,							
ਾਂ ⊢	ind oil des		5 - 50	numero		classificat	ione and	should be s	oneidered approv	imate Stratificat	ion lines are approximate boundarie	s hetween stratum	e: transitio	ns may be gradual	Pan	e No. 1 o	of 1

~ -								_									
Ž Ž										BOR	RING LOG		Boring	g No.:	SB-10	0	
ΔĀ										50.			Borin	g Location: See Site	Sketo	:h	
1000					_			Proj	ect: Rob	in Rug							
2													Chec	ked by:	R Fan	nes	
3 200				1-				Loca	ation: Bris	stol, RI				-		1103	
ASK			r	nob	IS						60.26			Start: June 8, 2			
			1	2 5 5 5 7									Date	Finish: June 8,	2021		
Ž C	ontr	actor	:	Geosearch	, Inc.			_ Rig	Type / Mod	del:	Geoprobe 6610		Grour	nd Surface Elev.:			
	riller	r:). Freema	n			_ Ham	mer Type	:	N/A						
티 N	obis	Rep	.: S	S. Powers				I		:			Datur	n:			
			$\overline{}$	Drilling N	/lethod		Samp					oundwater (
- z	уре			Geopr			•	e Liners	Date	Time	Depth Below Ground (ft.)				le (ft.)	Stabilization	Time
) 				Осорі	000	IVIA	510-001	e Lilieis	¥ 06/08/2	1 09:00	10					while dri	lling
S S	ize I	ID (in	.)				2										
g a	dvar	ncem	ent	Direct F	Push		Pus	h									
BRIS	- T	SA	MPLE	INFORMAT	ION			LITH	OLOGY								Т.,
IN RUG B		Туре	Rec	Depth	Blows/	PID	Ground Water		Stratum					D REMARKS			NOTES
ROBIN	8	% No.	(in.)	(ft.)	6 in.	(ppm)	ნ≥	Graphic	lev. / Depth (ft.)		(Classif	ication System	n: Modii	ied Burmister)			۱×
8 -		S-1	20	0-5					ASPHALT_		: Dry. (ASPHALT).						\overline{A}
	Ц									S-1B (7")	: Dry. (FILL). Crushed	brick.					
0/95560	. -						-			S-1C (4")	: Crushed white/grey s : Brown, fine SAND, li	stone. Dry.	oo Clov	trace Ach Dry			
	2				-					3-10(3)	. DIOWII, IIIIE SAND, II	ille Siil, ila	Se Clay	, trace Asii. Dry.			
ZTFOI	3				1				FILL								
Z	+				1												
NA Z	1																
SULL																	
	5			- 10		4.3		R	COBBLES	0.04 (011)	. Fire to we adjust OAA						7
- BRAD	-	S-2	43	5-10	1	26					<u>: Fine to medium SAN</u> '): Brown, fine to medi				trace		
8 -	+				1		-			Gravel. D		um or me,	11400 0	odroc odria, intio oin	.,	7 11110	
9226	,				1												
ACTIVE										S-2C (8")	: Grey, fine to coarse	SAND, little	Silt. Di	٧.			
NAC 3	3					1.1				S-2D (9")	: Brown, fine to coarse	SAND tra	ice Silt	Dry			
JECT	、				1				SAND	0 25 (0)	. Brown, mio to ocuro	o o, vo,		<i>5.</i> 7.			
SIPRO	,				1		-										
[] []	οL					16.4	▼										
SHA		S-3	60	10-15						S-3A (16'	'): Brown, fine to coars	se SAND, ti	ace Bri	ck. Wet.			
[]	1																
SICO	<u>,</u>				-			WY .		7S-3B (1")	: Brown, SILT & CLAY	/, little fine	o medi	um Sand. Wet.		ı	-
ᆰ	2				1	3.8			LAYEY SILT		: Brown, fine to coarse			Canal Mat			_
- - 1	3						1			'S-3E (9")	: Grey, Clayey SILT, li : Brown, fine to coarse	e SAND, tra	ce frag	ments Gravel. Wet.		i	'
14:4]				044.5	S-3F (28'): Hard, grey, Clayey	SILT, trace	fine to	medium Sand. Wet.			
1 3475	4								SAND								
<u>۔ ا</u> ج	<u>.</u>					14.5	-										
<u> </u>	5				1 1		-			Borina te	rminated at 15 feet.						\dashv
Ö 1	6 H						1										
	Ì																
<u> </u> 1	7																
EMPL/	_																
₹ ∐	8																
<u> </u>	<u>,</u>						1										
	_						1										
SIB 2	_																
<u>.</u>	\neg			ge Non-S		OTES											
.	ace ttle		5 - 10) - 20	very fe	ew 3	1) Sam 2) End	pled of of exr	collected	d at 10 - 12 at 15 ft b	2 ft. bgs. N gs. No refu	o odors observed. sal encountered.						
الم	me	20	- 35	sever	al	,				,							
~ —	nd oil des		5 - 50	numero		classificat	ions and	should be so	neidered approv	imate Stratificat	ion lines are approximate boundari	es hetween stratu	ne: transitio	ne may be gradual	Page	e No. 1	of 1

1/08- F													INCLOC		Boring	g No.:		SI	B-11		
ECTSIACTIVE195560.00 - BRADY SULLIVAN PORTFOLIO195560.26 - ROBIN RUG BRISTOL R195560.26 - BRISTOL R1 PHASE II TASKS 200 TO 1000/DATAI08-												אל	ING LOG			_		e Site SI	ketch	1	
TO 100								'	Proje	ect: Rob	oin Rug										
S 200				nob				ı	Loca	tion: Bris	stol, RI							B. l		es	
ITASK			- 1	IOL	115					s Project I								une 9, 20			
ASE C	ont	racto	r:	Seosearch	, Inc.			_	Rig 1	Гуре / Мос	del:		Geoprobe 6610		Grour	nd Surfa	ce Ele	ev.:			
D F	rille	er:). Freema	n					mer Type:					-						
RISTO N	obi	s Rep).: _S	S. Powers					Ham	mer Hoist	:										
T. 26-B	ype			Drilling N Geopr		Mad	Samp cro-Cor		ners	Date	Time	е	Depth Below Ground (ft.)	undwater Depth of C			o Bottor	m of Hole (ft.) S	Stabilizati	on Time
N9556(ID (in	1.)	· ·			2			▼ 06/09/2	1 07:3	30	6.5							while d	irilling
A R R		ncerr		Direct F	Push		Pus	:h		-											
G BRIS		SA	MPLE	INFORMAT	ION		P =			DLOGY			0.44451		TION AND		21.0				ıχ
IN RUC	Ceptil	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	PID (ppm)	Ground	Graphic	EI	Stratum lev. / Depth (ft.)				E DESCRIF cation Syste							NOTES
- ROB		S-1	29	0-5				33.2	4	ASPHALT SAND	~ — `		Yellow, fine to coarse			HALT).	Crush	ned asph	alt		-/-
260.26	1							H		SILT / COBBLES /	1S-1C (7"):	Tan, fine to coarse SA Brown, fine to coarse	AND. Dry. SAND, tr	ace Silt,	trace fin	ne Gra	vel. Dry.			
10/95	2								∤]	T AND CLAY	S-1E (3	3"):	Gray, Cobble. Dry. Brown, SILT, little fine	to coars	e Sand,	trace bri	ick fra	gments.	Dry.		_
S S	3					<1					S-1G (5"):	Gray, Cobble/crushed Brown, SILT & CLAY	, trace fine	e Sand.	Dry.	-4-!!				
IVAN PO											S-1H (2 S-1 <u>I (2</u>	4"): I	Gray, fine SAND, trac Brown, fine to coarse S	SAND, tra	ce Silt. [Ory. Iron	oxida	ng. it <u>ion stair</u>	ning.		_/
	•					<1															
ZAD√ 5	-	S-2	39	5-10						SAND	S-2A (2	20"): Brown, fine to coars	e SAND, t	race Silt	. Dry.					
8 6 8 6	3					.4															
7 7	,					<1	Ţ				S-2B (2	א"ן.	GRAVEL. Wet.								
ACTIVE	,									COBBLES	S-2C (4	4"):	Coarse SAND, little fir Fine to medium SANI								
CTS/A	,					<1					S-2E (): Gray, fine to mediun						 ushe	d rock.	_
PROJE	9										Wet.										
ARES/	_	0.0	40	40.45		-4				SAND	S 2A /	11"). Cray modium to oo	aroo CANII) trace	fina San	ما ۱۸۷	\ +			
AL\SH	H	S-3	43	10-15		<1					5-3A (11,): Gray, medium to coa	arse SAIN	J, liace	iiie San	ia. vve	t.			
BIS.LOC	2							N	CL	AYEY SILT	\S-3B (4 -S-3C (4"): 21"	Gray, Clayey SILT, lit	tle fine Sa	nd. Wet	<u>-</u>					_′
NOB -	_					<1					~		<u>, </u>								
14:44	3				-		-			SAND	6-3D /	7"\-	Gray CLAV 9 CHT 4	race fine	Sand M	lot.					
8/4/21	4]]				J-JD (,):	Gray, CLAY & SILT, t	iace iiilė	oanu. W	€l.					
- - - - - - - - - - - - - - - - - - -	5				1 1				CLA	AY AND SILT											
7 2011.	6						-				Boring	ter	minated at 15 feet.								
001							1														
1 LATE	7						-														
1 4	8				1]														
1 DAT	9						1														
NIS GIN 2	۱						-														
ov s	Soil		centaç			OTES			<u> </u>												
Iil Iii	ace ttle	10	5 - 10 0 - 20	very fe	2	2) Sam	iple co	olled	ted 8	gs during 8 - 10 ft. b	gs.		and an any unit are d								
SC a	nd	35	0 - 35 5 - 50	numero	ous								sal encountered.								
Ω s	oil de	scription	s, and lith	ology, are base	d on visual	classificat	tions and	should	be cor	nsidered approxi	mate. Stratif	icatio	on lines are approximate boundaries	s between stratu	ıms; transitio	ns may be gr	radual.	F	age	No. 1	of 1

Ε

					TES	T PIT LOG				
		obis				PROJECT Robin Rug 125 Thames St. Bristol, RI		TEST SHEE FILE N DATE	NO. 095	TP-1 of 1 5560.260
Engineer Contracto Operator Weather	or	Geo Shawr	rd Rizza search n Preston sunny		Make Model Capacity Reach	Deer 60 C 0.3 cu. 12 ft	yd.	Groun Datum Time S	Start	0950 1030
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level			Subsurface De	escription		Excavation Effort	Boulder Qty/Class	Remarks
<1 <1	1 2		trace coars	e Gravel, some co	obbles, trace Cl	lium to coarse Sand, l ass A Boulders, Dry. Seashell fragments.	ittle fine Gravel,	M/D	A	Fill
<1	3			n/grey, SILT and to e coarse Gravel,		e medium to coarse Sa Dry.	and, little fine			Native
<1	5 6 7		Excavation	terminated at 5 fe	et below groun	d surface. No refusal.				
	9									
	11 12									
	14 15									
REMARK	1) Ground	dwater: 5' bgs. depth: Ranged fro	m 0 to 2 ft bo	gs, sampled at 10	15.					
11'	TE	ST PIT PLAN	↑ N	BOULDER 6"-8" 18"-36" >36"	CLASS A B C	PROPOR 0-10' 10-2' 20-3: 35-5(0% Little (Li.) 5% Some (So.)		EXCAVATION E E = Eas M = Mode D = Diffic	y erate

					TES	T PIT LOG					
	no	obis				PROJECT Robin Rug 125 Thames S Bristol, RI	i.		TEST PIT SHEET FILE NO. DATE		TP-2 1 of 1 995560.260 6/11/2021
Engineer Contractor Operator Weather	or	Richa Geo Shawi	nrd Rizza osearch n Preston , sunny		Make Model Capacity Reach		Deere 60 G 0.3 cu. yd. 12'		Ground E Datum Time Stal Time End	rt	1030 1115
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level			Subsurface De	escription			Excavation Effort	Boulder Qty/Class	Remarks
<1 <1	1 2			oarse, Gravel,	I Silt, trace medi , some Cobbles, ments, Glass, S	, trace Class A	Boulders, Dry		M/D	А	Fill
<1	3							_			
1.1 <1	5		5 - 7': Brown/gr	ey, SILT and	fine Sand, little	medium to coa	rse Sand, little	e fine			Possible Native
<1 <1	6 7				trace Cobbles,			_			or Fill
	8		Exploration tern	ninated 7 feet	below ground s	surface. No ref	ısal.				
	10										
	11										
	13 14										
REMAR	1) Ground	dwater: 7' bgs.	m 2 to 4 ft has a	compled at 10	.EE						
11'		ST PIT PLAN 5'	•	BOULDER 6"-8" 18"-36" >36"	CLASS A B C	PR	10-20% I 20-35% S	USED Trace (Tr.) Little (Li.) Some (So.)		EXCAVATION E = E M = Mo D = Di	asy oderate

					TES	ST PIT LOG				
	no	obis				PROJECT Robin Rug 125 Thames St. Bristol, RI		TEST PIT SHEET FILE NO. DATE	1 0955	TP-3 of 1 60.260
Engineer Contractor Operator Weather	or	Richa Geo Shaw	ard Rizza osearch n Preston s, sunny		Make Model Capacity Reach	Deere 60 G 0.3 cu. yo 12'	d.	Ground E Datum Time Star Time End	t <u>1</u>	115 150
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level			Subsurface D	Description		Excavation Effort	Boulder Qty/Class	Remarks
<1	1				e Silt, trace med	lium to coarse Sand, trad	ce,	М		Fill
			0 - 3': Numero	us Seashells.						
<1	2		1	•	w Brick fragment Pipe, numerous	ts, very few fine fragments to pieces	of Slag,			
<1	3		few fine to coa	rse fragments	Concrete.					
<1	4									
<1	5									
<1	6									
<1	7		6 - 6.5': Wet							
			Exploration ter	minated 7 feet	below ground s	surface. No refusal.				
	8									
	9									
	10									
	11									
	12									
	13									
	14									
REMARK	1) Ground	dwater: 6.5' bgs. depth: Ranged fro	om 2 to 3 ft bgs,	sampled at 11	40.					<u> </u>
11'	<u>TE</u>	ST PIT PLAN	↑ N	BOULDER 6"-8" 18"-36" >36"	CLASS A B C	PROPORTI 0-10% 10-20% 20-35% 35-50%	Some (So.)		EXCAVATION EF E = Easy M = Moder D = Difficu	ate

				TES	ST PIT LOG				
	no	obis			PROJECT Robin Rug 125 Thames St. Bristol, RI		TEST PIT SHEET FILE NO. DATE	1 0955	TP-4 of 1 660.260 0/2021
Engineer Contracto Operator Weather		Richa Geo Shaw	ard Rizza osearch n Preston s, sunny	Make Model Capacity Reach	Deere 60 G 0.3 cu. yd. 12'		Ground El Datum Time Start Time End	t <u>1</u> 4	425 505
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level		Subsurface D	escription		avation Effort	Boulder Qty/Class	Remarks
<1	1 2		trace fine Grave	rown, fine SAND, some Silt, tel, trace cobbles, trace Class red Brick fragments.	race medium to coarse sand, A Boulders, Dry.		Е	А	Fill
	3		2.5 - 7': Dark gr	rey/grey, SILT, little fine Sand	d, little medium to coarse Sand,				Native
<1	4			, trace coarse Gravel, Dry.			М	NA	
	5								
<1	6						M/D	Very few A	
	7								
<1 <1	9		Gravel, trace co	parse Gravel, trace Cobbles,	e Silt, little coarse Sand, little fine Moist. trace medium to coarse Sand,		M/D	Very few A	
<1	10		1	, trace coarse Gravel, trace					
	11		Exploration term	ninated 10 feet below ground	l surface. No refusal.				
	12							1	
	13							ı	
	14							ı	
REMARK		dwater: 10' bgo							<u> </u>
		dwater: 10' bgs. e depth: 9 ft bgs, sa	ampled at 1450.						
11'	<u>TE</u>	ST PIT PLAN	↑ N E	BOULDER CLASS 6"-8" A 18"-36" B	10-20% Littl	ice (Tr.) le (Li.)		EXCAVATION EF E = Easy M = Moders	ate
			1	>36" C	20-35% Som	ne (So.)		D = Difficu	ΙT

					TES	T PIT LOG					
	n	obis				PROJECT Robin Rug 125 Thames St. Bristol, RI		TEST SHEE FILE N	NO	1 09556	TP-5 of 1 60.260 /2021
Engineer Contracto Operator Weather		Richa Geo Shawr	ard Rizza search n Preston , sunny		Make Model Capacity Reach	Deere 60 G 0.3 cu. y 12'		Groun Datum Time S	Start		245
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level			Subsurface De	escription		Excavation Effort	n Boul Qty/C		Remarks
	1		0 - 3': Brown, for coarse Gravel,		id Silt, trace medi	ium to coarse sand, little	e fine and	E	N/	4	Native
<1	2			·							
	3							E	N/	4	Native
<1	4		-			ilt, little medium Sand, t	trace				
	5					· · · ·					
<1	6							E	N/	A	Native
	7		Exploration ter	minated 6.5 f	feet below grounc	d surface. No refusal.					
	8										
	9										
	10										
	11										
	12										
	13										
	14										
REMARK	15 (S:		<u> </u>								
		dwater: Not encoun e depth: 6 ft bgs, sa									
	<u>TE</u>	ST PIT PLAN	, N	BOULDER 6"-8"	<u>CLASS</u> A	PROPORT 0-10%	IONS USED Trace (Tr.)		EXCAVA ⁻	TION EFF	-ORT
9'			Ī	18"-36" >36"	B C	10-20% 20-35%	% Little (Li.)		M	= Modera = Difficul	

					TE	ST PIT LOG			
	n	obis			-	PROJECT Robin Rug 125 Thames St. Bristol, RI	TEST FILE N DATE	O. 095	TP-6 of 1 5560.260 10/2021
Engineer Contractor Operator Weather	or	Richa Geo Shaw	osearch n Preston s, sunny		Make Model Capacity Reach	Deere 60 G 0.3 cu. yd. 12'	Ground Datum Time S Time E	tart	1025 1125
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level			Subsurface	Description	Excavation Effort	Boulder Qty/Class	Remarks
<1	1 2 3 4 5 6 7 8		fine Gravel, ver FILL: Few red E fragmetns of G black plastic tul	y few Class A Bricks, few pions ass, very few bing, very few	A boulders, Dry. eces to block siz v Metal Bars, ve	ze Concrete, very few ry few 2" Steel Pipe, 1" diameter Fiberglass, metal Chicken Wire,	M	A	Fill
65.6	9					, little Silt, trace to coarse Sand, 9.5 ft bgs. Petroleum odor observed.			Native
	11 12 13 14		Exploration terr	ninated 10 fe	eet below ground	d surface. No refusal.			
REMAR	(S: 1) Groun	dwater: 9.5' bgs. e depth: 9-10 ft bgs	s, sampled at 111	5.				-	<u>'</u>
7'		EST PIT PLAN	↑ N	6"-8" 18"-36" >36"	CLASS A B C	PROPORTIONS USED 0-10% Trace (Tr 10-20% Little (Li.) 20-35% Some (So 35-50% And		EXCAVATION E E = Eas M = Mod D = Diffi	y erate

					TES	ST PIT LOG	i				
	no	obis				PROJECT Robin Rug 125 Thames S Bristol, RI			TEST PIT SHEET FILE NO. DATE	1 0955	TP-7 (1) of 1 560.260 0/2021
Engineer Contracto Operator Weather		Richa Geo Shawr	rd Rizza search n Preston 0's, sunny	Mo	ake odel apacity each		Deere 60 G 0.3 cu. yd. 12'		Ground E Datum Time Star Time End	t 0	830 935
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level		S	Subsurface De	escription			Excavation Effort	Boulder Qty/Class	Remarks
<1	1						coarse sand, trac	e fine	E	А	Fill
	2		and coarse Gra FILL: very few re few concrete pie	ed Bricks, black		-	nt wood, very				
	3								M		
<1	5		3.5 - 6': Brown/g coarse Sand, tra			-			М		Native
	6								М	А	Native
<1	7		6 - 8': Dark brov coarse Sand, tra			nd,little mediur	n Sand, trace				
	8		Exploration term	ninated 8 feet be	elow around s	surface. No re	fusal.		М		Native
	9				g						
	11										
	12										
	14										
REMARK	15										
	1) Ground	dwater: Not encoun depth: Ranged fro		sampled at 090	00.						
4.5'	TE	ST PIT PLAN	↑ N	60ULDER 6"-8" 18"-36" >36"	CLASS A B C	<u>P</u>	10-20% Litt	SED ace (Tr.) tle (Li.) me (So.)		EXCAVATION EF E = Easy M = Moder D = Difficu	rate

				TES'	T PIT LOG			
	no	obis		1	PROJECT Robin Rug 25 Thames St. Bristol, RI	TEST I SHEET FILE N DATE	Γ <u>1</u> IO. 0955	TP-7 (2) of 1 560.260 0/2021
Engineer Contracto Operator Weather		Richa Geo Shawr	rd Rizza search n Preston 0's, sunny	Make Model Capacity Reach	Deere 60 G 0.3 cu. yd. 12'	Ground Datum Time S	Start 1	600
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level		Subsurface De	scription	Excavation Effort	Boulder Qty/Class	Remarks
	1			vn, fine SAND and Silt, trace of Gravel, trace Class A Boulde	medium to coarse sand, trace rs, very few red Bricks, Dry.	E	А	Fill
<1	2							
<1	3 4		3.5 - 6': Brown/	grey, SILT, some fine Sand, ti	race Clay trace medium to	M		Native
7	5			ace fine and coarse Gravel, tr				
<1	6					M/D		
<1	7		6 - 8': Dark brov Sand, trace fine	wn/grey, SILT, some fine Sand Gravel, Dry.	d,little medium Sand, trace			
<1	8							
	9		Exploration term	ninated 8 feet below ground s	urface. No refusal.			
	10							
	11							
	12							
	13 14							
	15							
REMARK	1) Ground	dwater: Not encoun depth: No laborato		collected.				
	TE	ST PIT PLAN	↑ N E	8OULDER CLASS 6"-8" A 18"-36" B	PROPORTIONS USED 0-10% Trace 10-20% Little (I		EXCAVATION EF E = Easy M = Moder	

>36"

С

20-35% Some (So.) 35-50% And D = Difficult

					TES	T PIT LOG				
					123	PROJECT		TEST PIT	- NO	TP-8
						Robin Rug		SHEET	1_	
						125 Thames St		FILE NO.	0955	60.260
	\mathbf{n}	obis				Bristol, RI		DATE	6/10	/2021
Engineer		Richa	ard Rizza		Make	Deere		Ground E	1.	
Contracto		Geo	search		Model	60 G		Datum		
Operator			n Preston		Capacity	0.3 cu. y	rd.	Time Star		935
Weather		70's - 8	30's, sunny		Reach	12'		Time End	1(025
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level			Subsurface De	escription		Excavation Effort	Boulder Qty/Class	Remarks
<1	1				ome Silt, trace me ss A Boulders, D	edium to coarse Sand,	trace fine	М	А	Fill
,,	2			red Bricks ar		of steel rebar observed,	not			
	3									
<1	4		_	-		medium to coarse sand lass B Boulder, Dry.	d, trace	М	A, very few B	Native
	5									
<1	6		5 - 6.5': Dark br SAND, trace fin			tle medium Sand, trace	coarse			
	7		Exploration term	ninated 6.5 fo	eet below ground	surface. No refusal.				
	8									
	9									
	10									
	11									
	12									
	13									
	14									
	15									
REMARK	1) Ground	dwater: Not encour e depth: No laborato		collected.						
	<u>TE</u>	ST PIT PLAN		BOULDER 6"-8"	<u>CLASS</u> A	PROPORT 0-10%	IONS USED Trace (Tr.)		EXCAVATION EF E = Easy	<u>FORT</u>
12'			1	18"-36" >36"	B C	10-209 20-359	% Little (Li.)		M = Modera D = Difficu	

					TES	T PIT LOG				
	n	obis				PROJECT Robin Rug 125 Thames St. Bristol, RI		TEST PIT SHEET FILE NO. DATE	1 0955	TP-9 of 1 660.260
Engineer Contracto Operator Weather		Richa Geo Shawr	ard Rizza search n Preston , sunny		Make Model Capacity Reach	Deere 60 G 0.3 cu. yd 12'	l	Ground El Datum Time Star Time End	t1;	315 340
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level			Subsurface De	escription		Excavation Effort	Boulder Qty/Class	Remarks
,	1		and coarse Gra FILL: Very few r	vel, Dry. red Bricks an	nd Glass fragmer		ce fine	E	NA	Fill
<1	3		Observed one E	3rick in sidew	vall at 3' bgs. Ver	'y little Fill.	-			
<1	4		-		ID and Silt, trace gravel, trace Col	Clay, trace medium to cobbles, Dry.	oarse			Native
	5						_			
<1	6 7		Exploration term	ninated 6 fee	t below ground s	surface. No refusal.				
	8									
	9									
	10									
	12									
	13									
	14									
	1) Ground	L dwater: Not encoun e depth: No laborato		collected.						
5'	TE	ST PIT PLAN	↑ N	8OULDER 6"-8" 18"-36" >36"	CLASS A B C	PROPORTIO 0-10% 10-20% 20-35%	Trace (Tr.) Little (Li.)		EXCAVATION EF E = Easy M = Moder D = Difficu	ate

					TES	T PIT LOG			
	no	obis			1	PROJECT Robin Rug 25 Thames St. Bristol, RI	TEST P SHEET FILE NO DATE	-	TP-10 1 of 1 095560.260 6/10/2021
Engineer Contractor Operator Weather	or	Richa Geo Shawr 80's,	ard Rizza osearch n Preston , sunny	Make Mode Capa	el acity	Deere 60 G 0.3 cu. yd. 12'	Ground Datum Time St	art	1530 1600
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level		Subs	surface Des	scription	Excavation Effort	Boulder Qty/Class	
<1	1		and coarse Gra	ne SAND, some Silivel, trace cobbles, red Brick fragments	trace Class	ium to coarse sand, some fine s A Boulders, Dry.	E	А	Fill
<1	3		and coarse Gra	vel, Dry.		ium to coarse sand, trace fine	E	NA	Native
<1 <1	4 5	ı	Gravel, Dry/Moi		trace medi	um to coarse sand, trace fine			
	6	ı					E	NA	Native
<1	7	[
<1	9			fine SAND, trace Si Gravel, Moist (8 - 9		dium Sand, trace soarse Sand, trace 9.5 - 10').	E/M	NA NA	
<1	10		Exploration term	ninated 10 feet belo	ow ground s	surface. No refusal.	E/M	NA	
	12	ſ							
	14	ı							
REMARK	1) Ground 2) Sample	dwater: 10' bgs. depth: No laborato ST PIT PLAN			CLASS	PROPORTIONS USED	<u> </u>	EXCAVATIO	N FFFORT
01	15	<u>STITIFLAN</u>	↑ N I	6"-8" 18"-36"	A B	0-10% Trace (Tr. 10-20% Little (Li.))	E = E	

>36"

С

20-35% Some (So.) 35-50% And D = Difficult

					TES	T PIT LOG				
						PROJECT		TEST PIT	NO	TP-11
						Robin Rug		SHEET	1_	of <u>1</u>
						125 Thames St.		FILE NO.	0955	60.260
	no	obis		l		Bristol, RI		DATE	6/10	0/2021
			1.5:					0 15		
Engineer Contracto			ard Rizza osearch		Make Model	Deere 60 G	·	Ground E Datum	l	
Operator			n Preston		Capacity	0.3 cu. y	/d.	Time Star		125
Weather		80's	s, sunny		Reach	12'		Time End	1	150
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level			Subsurface De	escription		Excavation Effort	Boulder Qty/Class	Remarks
	1		0 - 2': Brown, and coarse G		ome Silt, trace me	edium to coarse sand, t	trace fine	Е	NA	Fill
<1	2		FILL: Very fev	v red Bricks.				Е	NA	Native
	3		2 - 7': Grey/br		me fine Sand, tra	ace medium to coarse s	sand, little			
	4									
<1	5									
	6						-			
<1	7									
	8		Exploration te	rminated 7 fee	et below ground s	surface. No refusal.				
	9									
	10									
	11									
	12									
	13									
	14									
REMARK	15									
	1) Ground	dwater: Not encou		s collected.						
	TE	ST PIT PLAN	N	BOULDER 6"-8"	<u>CLASS</u> A	PROPORT 0-10%	TIONS USED Trace (Tr.)		EXCAVATION EF E = Easy	
10'				18"-36" >36"	B C	10-20 ⁹ 20-35 ⁹	% Little (Li.)		M = Moder D = Difficu	ate

					TES	Γ PIT LOG			
	n	obis			1	PROJECT Robin Rug 25 Thames St. Bristol, RI	TEST P SHEET FILE NO DATE	1 O. 0955	TP-12 of 1 560.260 0/2021
Engineer Contracto Operator Weather	or	Richa Geo: Shawn 80's,	rd Rizza search n Preston , sunny	Make Model Capacit Reach	ty _	Deere 60 G 0.3 cu. yd. 12'	Ground Datum Time Sta	art 1	505 530
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level		Subsu	urface Des	scription	Excavation Effort	Boulder Qty/Class	Remarks
<1	1 2		fine and coarse		es, trace C	nedium to coarse sand, trace Class A Boulders, Dry. mic Tile.	E	А	Fill
<1	3			rey/grey, SILT, little fir I, trace coarse Gravel		little medium to coarse Sand,			Native
<1	5								
<1	7		Evaluation tors	ninated 7 feet below o	around ou	urface. No refuge!			
	8		Exploration tem	minated 7 feet below (ground Sc	anace. No refusal.			
	10								
	11 12								
	13								
	14 15								
	(S: 1) Ground	dwater: Not encoun depth: No laborato		collected.					
-	<u>TE</u>	ST PIT PLAN	↑ N E	6"-8"	ASS A B	PROPORTIONS USED 0-10% Trace (T 10-20% Little (Li.		EXCAVATION EF E = Easy M = Moder	

>36"

С

20-35% Some (So.)

35-50% And

D = Difficult

					TES	T PIT LOG	i					
	no	obis				PROJECT Robin Rug 125 Thames 9 Bristol, RI	St.		TEST F SHEET FILE NO DATE		1 09556	of 1 60.260 (2021
Engineer Contracto Operator Weather	or	Geo Shaw	nrd Rizza search n Preston , sunny		Make Model Capacity Reach		Deere 60 G 0.3 cu. yd. 12'		Ground Datum Time St	art		40
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level			Subsurface De	escription			Excavation Effort		ulder Class	Remarks
<1	1		0 - 2': Brown, fi gravel ,trace co FILL: Very few	obbles, Dry.			sand, trace f	îne	E			Fill
<1	3		2 - 6.5': Grey/b trace fine and o			trace medium	to coarse Sa	and,				Native
	4		Very dense, Na	ative material.	Possible Till.			-	M/D			
<1	5							-				
<1	7		Exploration ten	minated 6.5 fee	et below ground	I surface due	to dense soil	-				
	8		and difficulty ex	xcavating.								
	9											
	10											
	12											
	13											
	14 15											
REMARK	1) Ground	dwater: Not encour depth: No laborate		collected.								
5'	TE	ST PIT PLAN	↑ N	6"-8" 18"-36" >36"	CLASS A B C	<u>P</u>	0-10% 10-20% 20-35% 35-50%	Trace (Tr.) Little (Li.) Some (So.) And		E N	ATION EFF = Easy M = Modera D = Difficul	ite

					TES	T PIT LOG				
		obis				PROJECT Robin Rug 125 Thames St. Bristol, RI		TEST PIT SHEET FILE NO. DATE	1 09556	TP-14 of 1 60.260 2021
Engineer Contracto Operator Weather	or	Ged Shawi	search n Preston , sunny		Make Model Capacity Reach	Deere 60 G 0.3 cu. yd. 12'	<u> </u>	Ground El. Datum Time Start Time End	30	20 45
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level			Subsurface Do	escription		avation ffort	Boulder Qty/Class	Remarks
<1 <1	1 2		Gravel, little	coarse Gravel, v	ery few red and and Silt, little r	dium to coarse Sand, some fine I yellow Bricks, Dry medium to coarse Sand, little fine ick fragments, Dry		E	А	Fill
<1	3					e medium to coarse Sand, trace			NA	
<1 <1	5		4 - 5': Tan/g	rey, fine SAND, li	ittle Silt, Moist.	few red Brick fragments, Moist.		М		
<1 <1	6 7		coarse Grav	vel, trace Cobbles	s, Moist/Wet.	cand, trace medium to coarse				
<1	8		Sana, trace	iiile and odarse c	stavot, trado oc	ables, we.				
<1	9		Exploration	terminated 9 feet	below ground s	surface. No refusal.				
	11									
	13									
25.44.814	14									
REMARK	1) Ground	dwater: 8.5 - 9' bgs depth: Ranged fro		ps, sampled at 08	30.					
4.5'	<u>TE</u>	ST PIT PLAN	↑ N	BOULDER 6"-8" 18"-36" >36"	CLASS A B C	10-20% Little	ED e (Tr.) e (Li.) e (So.)		EXCAVATION EFF E = Easy M = Modera D = Difficul	ite

				TES	T PIT LOG			
	no	obis			PROJECT Robin Rug 125 Thames St. Bristol, RI	TEST PI SHEET FILE NO DATE	1 0955	TP-17 of 1 60.260
Engineer Contracto Operator Weather	or	Geo Shawr	ard Rizza search n Preston , sunny	Make Model Capacity Reach	Deere 60 G 0.3 cu. yd. 12'	Ground Datum Time Sta	art 1	215
PID (ppm)	Depth Below Grade (ft)	Strata Change & Water Level		Subsurface De	escription	Excavation Effort	Boulder Qty/Class	Remarks
<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1 2 3 4 5 6 7 8		trace coarse, Gr. 0 - 3': Numerous FILL: very few re coarse fragment concrete, numer	d and yellow fine to coarse I	lass A Boulders, Dry. Brick fragments, very few ire, very few pieces block size of Slag.	E/M		Fill
	1) Ground	dwater: 7 - 7.5' bgs depth: No laborato		ollected.				
9.5'	TE	ST PIT PLAN	↑ N	OULDER CLASS 6"-8" A 18"-36" B >36" C	PROPORTIONS USEI 0-10% Trace 10-20% Little 20-35% Some 35-50% And	(Tr.) (Li.)	EXCAVATION EF E = Easy M = Moder D = Difficu	ate

Bettina Eames Nobis Group 18 Chenell Drive Concord, NH 03301

TNI

Laboratory Report for:

Eastern Analytical, Inc. ID: 227592

Client Identification: Robin Rug | 095560.260

Date Received: 6/14/2021

Enclosed are the analytical results per the Chain of Custody for sample(s) in the referenced project. All analyses were performed in accordance with our QA/QC Program, NELAP and other applicable state requirements. All quality control criteria was within acceptance criteria unless noted on the report pages. Results are for the exclusive use of the client named on this report and will not be released to a third party without consent.

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the written approval of the laboratory.

The following standard abbreviations and conventions apply to all EAI reports:

< : "less than" followed by the reporting limit

> : "greater than" followed by the reporting limit

%R: % Recovery

Certifications:

Eastern Analytical, Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012), New York (12072), West Virginia (9910C) and Alabama (41620). Please refer to our website at www.easternanalytical.com for a copy of our certificates and accredited parameters.

References:

- EPA 600/4-79-020, 1983
- Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd edition or noted revision year.
- Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
- Hach Water Analysis Handbook, 4th edition, 1992

If you have any questions regarding the results contained within, please feel free to contact customer service. Unless otherwise requested, we will dispose of the sample(s) 6 weeks from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

6.22.21

of pages (excluding cover letter)

SAMPLE CONDITIONS PAGE

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Received on ice or cold packs (Yes/No): Y

EAI ID#: 227592

Acceptable temperature range (°C): 0-6

Temperature upon receipt (°C): 3,3

Lab ID	Sample ID	Date Received	Date/T Samp		Sample Matrix	% Dry Weight	Exceptions/Comments (other than thermal preservation)
227592.01	SB-10 (10-12')	6/14/21	6/8/21	10:15	soil		Sample canceled at customer's request
227592.02	SB-8/NB-2 (7-9')	6/14/21	6/8/21	14:20	soil	96.4	Adheres to Sample Acceptance Policy
227592.03	SB-11 (8-10')	6/14/21	6/9/21	08:30	soil	90.1	Adheres to Sample Acceptance Policy
227592.04	SB-9 (10-12')	6/14/21	6/9/21	09:30	soil		Sample canceled at customer's request
227592.05	SB-4 (7-9')	6/14/21	6/9/21	12:25	soil	85.1	Adheres to Sample Acceptance Policy
227592.06	SB-5/NB-1 (10-12')	6/14/21	6/9/21	13:25	soil	89.2	Adheres to Sample Acceptance Policy
227592.07	SB-3 (7-9')	6/14/21	6/10/21	15:35	soil	88.3	Adheres to Sample Acceptance Policy
227592.08	SB-2 (12-14')	6/14/21	6/10/21	16:35	soil	87.5	Adheres to Sample Acceptance Policy
227592.09	SB-6 (2.0')	6/14/21	6/11/21	13:30	soil	86.2	Adheres to Sample Acceptance Policy
227592.1	SB-7 (2.0')	6/14/21	6/11/21	11:50	soil	84.1	Adheres to Sample Acceptance Policy
227592.11	Trip Blank	6/14/21	6/8/21	07:00	soil	100.0	Adheres to Sample Acceptance Policy

All results contained in this report relate only to the above listed samples.

Unless otherwise noted:

- Hold times, preservation, container types, and sample conditions adhered to EPA Protocol.
- Solid samples are reported on a dry weight basis, unless otherwise noted. pH/Corrosivity, Flashpoint, Ignitability, Paint Filter, Conductivity and Specific Gravity are always reported on an "as received" basis.
- Analysis of pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite were performed at the laboratory outside of the recommended 15 minute hold time.
- Samples collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures.

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	SB-8/NB-2 (7-9')	SB-11 (8-10')	SB-4 (7-9')	SB-5/NB-1 (10-12')
Lab Sample ID:	227592.02	227592.03	227592.05	227592.06
Matrix:	soil	soil	soil	soil
Date Sampled:	6/8/21	6/9/21	6/9/21	6/9/21
Date Received:	6/14/21	6/14/21	6/14/21	6/1 <u>4/2</u> 1
Units:				mg/kg
	mg/kg	mg/kg	mg/kg	
Date of Analysis:	6/15/21	6/15/21	6/15/21	6/15/21
Analyst:	JAK	JAK	JAK	JAK
Method:	8260C	8260C	8260C	8260C
Dilution Factor:	1	1	1	1
Dichlorodifluoromethane	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane	< 0.1	< 0.1	< 0.1	< 0.1
Vinyl chloride Bromomethane	< 0.02 < 0.1	< 0.02 < 0.1	< 0.02 < 0.1	< 0.02 < 0.1
Chloroethane	< 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane	< 0.1	< 0.1	< 0.1	< 0.1
Diethyl Ether	< 0.05	< 0.05	< 0.05	< 0.05
Acetone	< 2	< 2	< 2	< 2
1,1-Dichloroethene	< 0.05	< 0.05	< 0.05	< 0.05
tert-Butyl Alcohol (TBA) Methylene chloride	< 2 < 0.1	< 2 < 0.1	< 2 < 0.1	< 2 < 0.1
Carbon disulfide	< 0.1	< 0.1	< 0.1	< 0.1
Methyl-t-butyl ether(MTBE)	< 0.1	< 0.1	< 0.1	< 0.1
Ethyl-t-butyl ether(ETBE)	< 0.1	< 0.1	< 0.1	< 0.1
Isopropyl ether(DIPE)	< 0.1	< 0.1	< 0.1	< 0.1
tert-amyl methyl ether(TAME)	< 0.1	< 0.1	< 0.1	< 0.1 < 0.05
trans-1,2-Dichloroethene 1,1-Dichloroethane	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
2,2-Dichloropropane	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
cis-1,2-Dichloroethene	< 0.05	< 0.05	< 0.05	< 0.05
2-Butanone(MEK)	< 0.5	< 0.5	< 0.5	< 0.5
Bromochloromethane	< 0.05	< 0.05	< 0.05	< 0.05
Tetrahydrofuran(THF)	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform 1,1,1-Trichloroethane	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Carbon tetrachloride	< 0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloropropene	< 0.05	< 0.05	< 0.05	< 0.05
Benzene	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichloroethane	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethene	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05
1,2-Dichloropropane Dibromomethane	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
Bromodichloromethane	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dioxane	< 1	< 1	< 1	< 1
4-Methyl-2-pentanone(MIBK)	< 0.5	< 0.5	< 0.5	< 0.5
cis-1,3-Dichloropropene	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
2-Hexanone	< 0.1	< 0.1	< 0.1	< 0.1
Tetrachloroethene	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichloropropane	< 0.05	< 0.05	< 0.05	< 0.05
Dibromochloromethane	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dibromoethane(EDB)	< 0.02	< 0.02	< 0.02 < 0.05	< 0.02 < 0.05
Chlorobenzene 1,1,1,2-Tetrachloroethane	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05

EAIID#: 227592

EAIID#: 227592

Client: Nobis Group

Sample ID:	SB-8/NB-2 (7-9')	SB-11 (8-10')	SB-4 (7-9')	SB-5/NB-1 (10-12')
Lab Sample ID:	227592.02	227592.03	227592.05	227592.06
Matrix:	soil	soil	soil	soil
Date Sampled:	6/8/21	6/9/21	6/9/21	6/9/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Analysis:	6/15/21	6/15/21	6/15/21	6/15/21
Analyst:	JAK	JAK	JAK	JAK
Method:	8260C	8260C	8260C	8260C
Dilution Factor:	1	1	1	1
Bliddolf Factor.	•	•		•
Ethylbenzene	< 0.05	< 0.05	< 0.05	< 0.05
mp-Xylene	< 0.05	< 0.05	< 0.05	< 0.05
o-Xylene	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	< 0.05	< 0.05	< 0.05	< 0.05
Bromoform	< 0.05	< 0.05	< 0.05	< 0.05
IsoPropylbenzene	< 0.05	< 0.05	< 0.05	< 0.05
Bromobenzene	< 0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	< 0.05	< 0.05	< 0.05	< 0.05
1,2,3-Trichloropropane	< 0.05	< 0.05	< 0.05	< 0.05
n-Propylbenzene	< 0.05	< 0.05	< 0.05	< 0.05
2-Chlorotoluene 4-Chlorotoluene	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05
	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05
1,3,5-Trimethylbenzene	< 0.05	< 0.05	< 0.05	< 0.05
tert-Butylbenzene 1,2,4-Trimethylbenzene	< 0.05	< 0.05	< 0.05	< 0.05
sec-Butylbenzene	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
1,3-Dichlorobenzene	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05
p-Isopropyltoluene	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
1,4-Dichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.05
n-Butylbenzene	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dibromo-3-chloropropane	< 0.05	< 0.05	< 0.05	< 0.05
1,3,5-Trichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	< 0.1	< 0.1	< 0.1	< 0.1
1,2,3-Trichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.05
4-Bromofluorobenzene (surr)	88 %R	87 %R	87 %R	89 %R
1,2-Dichlorobenzene-d4 (surr)	103 %R	103 %R	103 %R	102 %R
Toluene-d8 (surr)	96 %R	95 %R	96 %R	97 %R
1,2-Dichloroethane-d4 (surr)	102 %R	104 %R	104 %R	104 %R

EAI ID#: 227592

Client: Nobis Group

Soil Soil Soil Soil Soil Soil Soil Soil Date Sampled: 6/10/21 6/11/21 6/	Sample ID:	SB-3 (7-9')	SB-2 (12-14')	SB-6 (2.0')	SB-7 (2.0')
Date Sampled: 6/10/21 6/10/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/15/21	Lab Sample ID:	227592.07	227592.08	227592.09	227592.1
Date Sampled: 6/10/21 6/10/21 6/11/21	Matrix:	soil	soil	soil	soil
Date Received: 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/15/21	Date Sampled:	6/10/21	6/10/21	6/11/21	6/11/21
Units: mg/kg d15/21 6/15/21					6/14/21
Date of Analysis: B/15/21 B/15					ma/ka
Analyst: JAK JAK JAK JAK Method: 8260C					
Method:					
Dilution Factor: 1					
Dichlorodifluormethane		8260C			
Chloromethane	Dilution Factor:	1	1	1	1
Vinyl chloride < 0.02					< 0.1
Strommethane					
Chloroethane < 0.1 < 0.1 < 0.1 < 0.1 Trichlorofluoromethane < 0.1					< 0.1
Diethyl Ether				< 0.1	< 0.1
Acetone					< 0.1
1,1-Dichloroethene					
tert-Butyl Alcohol (TBA) < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <td></td> <td></td> <td></td> <td></td> <td>< 0.05</td>					< 0.05
Methyléne chloride < 0.1 < 0.1 < 0.1 < 0.1 Carbon disulfide < 0.1					< 2
Methyl-t-butyl ether(MTBE) < 0.1 < 0.1 < 0.1 Ethyl-t-butyl ether(ETBE) < 0.1	Methylene chloride	< 0.1	< 0.1		< 0.1
Ethyl-butyl ether(ETBE)					
Isopropyl ether(DIPE)					
tert-amyl methyl ether(TAME) < 0.1		=			< 0.1
trans-1,2-Dichloroethene < 0.05					< 0.1
2,2-Dichloropropane < 0.05	trans-1,2-Dichloroethene	< 0.05			< 0.05
cis-1,2-Dichloroethene < 0.05					
2-Butanone(MEK)					
Bromochloromethane					< 0.5
Chloroform				< 0.05	< 0.05
1,1,1-Trichloroethane < 0.05	Tetrahydrofuran(THF)	< 0.5			< 0.5
Carbon tetrachloride < 0.05					
1,1-Dichloropropene < 0.05	• •				< 0.05
Benzene < 0.05	1.1-Dichloropropene				< 0.05
Trichloroethene < 0.05		< 0.05	< 0.05		< 0.05
1,2-Dichloropropane < 0.05					< 0.05
Dibromomethane					
Bromodichloromethane < 0.05					< 0.05
4-Methyl-2-pentanone(MIBK) < 0.5					< 0.05
cis-1,3-Dichloropropene < 0.05 < 0.05 < 0.05 Toluene < 0.05		· · · · · · · · · · · · · · · · · · ·			< 1
Toluene < 0.05	• • • • • • • • • • • • • • • • • • • •				
trans-1,3-Dichloropropene < 0.05					< 0.05
1,1,2-Trichloroethane < 0.05					< 0.05
Tetrachloroethene < 0.05 < 0.05 < 0.05 1,3-Dichloropropane < 0.05	1,1,2-Trichloroethane	< 0.05	< 0.05		< 0.05
1,3-Dichloropropane < 0.05					< 0.1
Dibromochloromethane < 0.05 < 0.05 < 0.05 1,2-Dibromoethane(EDB) < 0.02					< 0.40 < 0.05
1,2-Dibromoethane(EDB) < 0.02					< 0.05
Chlorobenzene < 0.05 < 0.05 < 0.05 < 0.00				< 0.02	< 0.02
1,1,1,2-Tetrachloroethane < 0.05 < 0.05 < 0.05 < 0.05	Chlorobenzene	< 0.05	< 0.05		< 0.05
	1,1,1,2-Tetrachloroethane	< 0.05	< 0.05	< 0.05	< 0.05

EAI ID#: 227592

Client: Nobis Group

Sample ID:	SB-3 (7-9')	SB-2 (12-14')	SB-6 (2.0')	SB-7 (2.0')
Lab Sample ID:	227592.07	227592.08	227592.09	227592.1
Matrix:	soil	soil	soil	soil
Date Sampled:	6/10/21	6/10/21	6/11/21	6/11/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Analysis:	6/15/21	6/15/21	6/15/21	6/15/21
Analyst:	JAK	JAK	JAK	JAK
Method:	8260C	8260C	8260C	8260C
Dilution Factor:	1	1	1	1
		. 2.25	40.05	< 0.05
Ethylbenzene	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
mp-Xylene o-Xylene	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05
Styrene	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
Bromoform	< 0.05	< 0.05	< 0.05	< 0.05
IsoPropylbenzene	< 0.05	< 0.05	< 0.05	< 0.05
Bromobenzene	< 0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	< 0.05	< 0.05	< 0.05	< 0.05
1,2,3-Trichloropropane	< 0.05	< 0.05	< 0.05	< 0.05
n-Propylbenzene	< 0.05	< 0.05	< 0.05	< 0.05
2-Chlorotoluene	< 0.05	< 0.05	< 0.05	< 0.05
4-Chlorotoluene	< 0.05	< 0.05	< 0.05	< 0.05
1,3,5-Trimethylbenzene	< 0.05	< 0.05	< 0.05	< 0.05
tert-Butylbenzene	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trimethylbenzene	< 0.05	< 0.05	< 0.05	< 0.05
sec-Butylbenzene	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05
1,3-Dichlorobenzene	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05
p-Isopropyltoluene	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
1,4-Dichlorobenzene 1,2-Dichlorobenzene	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05
n-Butylbenzene	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
1,2-Dibromo-3-chloropropane	< 0.05	< 0.05	< 0.05	< 0.05
1,3,5-Trichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	< 0.1	< 0.1	0.10	< 0.1
1,2,3-Trichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.05
4-Bromofluorobenzene (surr)	86 %R	86 %R	88 %R	91 %R
1,2-Dichlorobenzene-d4 (surr)	103 %R	103 %R	102 %R	101 %R
Toluene-d8 (surr)	95 %R	95 %R	95 %R	93 %R
1,2-Dichloroethane-d4 (surr)	105 %R	105 %R	105 %R	105 %R

$\Lambda \Lambda \Lambda$

LABORATORY REPORT

EALID#: 227592

Client: Nobis Group

	-9	
Sample ID:	Trip Blank	
Lab Sample ID:	227592.11	
Matrix:	soil	
Date Sampled:	6/8/21	
Date Received:	6/14/21	
Units:	mg/kg	
Date of Analysis:	6/15/21	
Analyst:	JAK	
Method:	8260C	
Dilution Factor:	1	
Diddion'i actor.	·	
Dichlorodifluoromethane	< 0.1	
Chloromethane	< 0.1	
Vinyl chloride	< 0.02	
Bromomethane	< 0.1	
Chloroethane Trichlorofluoromethane	< 0.1 < 0.1	
Diethyl Ether	< 0.05	
Acetone	< 2	
1,1-Dichloroethene	< 0.05	
tert-Butyl Alcohol (TBA)	< 2	
Methylene chloride	< 0.1	
Carbon disulfide	< 0.1 < 0.1	
Methyl-t-butyl ether(MTBE) Ethyl-t-butyl ether(ETBE)	< 0.1	
Isopropyl ether(DIPE)	< 0.1	
tert-amyl methyl ether(TAME)	< 0.1	
trans-1,2-Dichloroethene	< 0.05	
1,1-Dichloroethane	< 0.05	
2,2-Dichloropropane cis-1,2-Dichloroethene	< 0.05 < 0.05	
2-Butanone(MEK)	< 0.05	
Bromochloromethane	< 0.05	
Tetrahydrofuran(THF)	< 0.5	
Chloroform	< 0.05	
1,1,1-Trichloroethane Carbon tetrachloride	< 0.05 < 0.05	
1,1-Dichloropropene	< 0.05 < 0.05	
Benzene	< 0.05	
1,2-Dichloroethane	< 0.05	
Trichloroethene	< 0.05	
1,2-Dichloropropane	< 0.05	
Dibromomethane Bromodichloromethane	< 0.05 < 0.05	
1,4-Dioxane	< 1	
4-Methyl-2-pentanone(MIBK)	< 0.5	
cis-1,3-Dichloropropene	< 0.05	
Toluene	< 0.05	
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	< 0.05 < 0.05	
2-Hexanone	< 0.05 < 0.1	
Tetrachloroethene	< 0.05	
1,3-Dichloropropane	< 0.05	•
Dibromochloromethane	< 0.05	
1,2-Dibromoethane(EDB)	< 0.02	
Chlorobenzene 1,1,1,2-Tetrachloroethane	< 0.05 < 0.05	
1, 1, 1,2-1 ett aufflutuett lane	~ 0.00	f

EAIID#: 227592

Client: Nobis Group

Sample ID:	Trip Blank	
Lab Sample ID:	227592.11	•
Matrix:	soil	
Date Sampled:	6/8/21	
Date Received:	6/14/21	
Units:	mg/kg	
Date of Analysis:	6/15/21	
Analyst:	JAK	
Method:	8260C	
Dilution Factor:	1	
Ethylbenzene	< 0.05	
mp-Xylene	< 0.05	
o-Xylene	< 0.05	
Styrene	< 0.05	
Bromoform IsoPropylbenzene	< 0.05 < 0.05	
Bromobenzene	< 0.05 < 0.05	
1,1,2,2-Tetrachloroethane	< 0.05	
1,2,3-Trichloropropane	< 0.05	
n-Propylbenzene	< 0.05	
2-Chlorotoluene	< 0.05	
4-Chlorotoluene	< 0.05	
1,3,5-Trimethylbenzene	< 0.05	
tert-Butylbenzene	< 0.05	
1,2,4-Trimethylbenzene	< 0.05	
sec-Butylbenzene	< 0.05	
1,3-Dichlorobenzene	< 0.05	
p-Isopropyltoluene	< 0.05	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	< 0.05	
n-Butylbenzene	< 0.05 < 0.05	
1,2-Dibromo-3-chloropropane	< 0.05 < 0.05	
1,3,5-Trichlorobenzene	< 0.05	
1,2,4-Trichlorobenzene	< 0.05	
Hexachlorobutadiene	< 0.05	
Naphthalene	< 0.1	
1,2,3-Trichlorobenzene	< 0.05	
4-Bromofluorobenzene (surr)	89 %R	
1,2-Dichlorobenzene-d4 (surr)	101 %R	
Toluene-d8 (surr)	95 %R	
1,2-Dichloroethane-d4 (surr)	103 %R	

EAI ID#: 227592

Client: Nobis Group

Sample ID:	SB-8/NB-2 (7-9')	SB-11 (8-10')	SB-4 (7-9')	SB-5/NB-1 (10-12')
Lab Sample ID:	227592.02	227592.03	227592.05	227592.06
Matrix:	soil	soil	soil	soil
Date Sampled:	6/8/21	6/9/21	6/9/21	6/9/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
	6/16/21	6/14/21	6/14/21	6/16/21
Date of Extraction/Prep:				6/17/21
Date of Analysis:	6/17/21	6/15/21	6/15/21	
Analyst:	JMR	JMR	JMR	JMR
Method:	8270D	8270D	8270D	8270D
Dilution Factor:	1	1	1	1
alpha-Terpineol	< 0.34	< 0.4	< 0.4	< 0.4
Phenol	< 0.07	< 0.08	< 0.08	< 0.08 < 0.08
2-Chlorophenol	< 0.07	< 0.08 < 0.08	< 0.08 < 0.08	< 0.08 < 0.08
2,4-Dichlorophenol 2,4,5-Trichlorophenol	< 0.07 < 0.07	< 0.08	< 0.08	< 0.08
2,4,6-Trichlorophenol	< 0.07	< 0.08	< 0.08	< 0.08
Pentachlorophenol	< 0.34	< 0.4	< 0.4	< 0.4
2-Nitrophenol	< 0.34	< 0.4	< 0.4	< 0.4
4-Nitrophenol	< 0.34	< 0.4	< 0.4	< 0.4
2,4-Dinitrophenol	< 0.7	< 0.7	< 0.8	< 0.7
2-Methylphenol	< 0.07	< 0.08 < 0.08	< 0.08 < 0.08	< 0.08 < 0.08
3/4-Methylphenol 2,4-Dimethylphenol	< 0.07 < 0.34	< 0.4	< 0.4	< 0.4
4-Chloro-3-methylphenol	< 0.07	< 0.08	< 0.08	< 0.08
4,6-Dinitro-2-methylphenol	< 0.34	< 0.4	< 0.4	< 0.4
Benzoic Acid	< 3.4	< 4	< 4	< 4
N-Nitrosodimethylamine	< 0.07	< 0.08	< 0.08	< 0.08
n-Nitroso-di-n-propylamine	< 0.04	< 0.04	< 0.05	< 0.04 < 0.08
n-Nitrosodiphenylamine	< 0.07	< 0.08	< 0.08 < 0.08	< 0.08
bis(2-Chloroethyl)ether bis(2-chloroisopropyl)ether	< 0.07 < 0.07	< 0.08 < 0.08	< 0.08	< 0.08
bis(2-Chloroethoxy)methane	< 0.07 < 0.07	< 0.08	< 0.08	< 0.08
1,3-Dichlorobenzene	< 0.07	< 0.08	< 0.08	< 0.08
Acetophenone	< 0.7	< 0.7	< 0.8	< 0.7
1,4-Dichlorobenzene	< 0.07	< 0.08	< 0.08	< 0.08
1,2-Dichlorobenzene	< 0.07	< 0.08	< 0.08	< 0.08
1,2,4-Trichlorobenzene	< 0.07	< 0.08	< 0.08 < 0.08	< 0.08 < 0.08
2-Chloronaphthalene	< 0.07 < 0.07	< 0.08 < 0.08	< 0.08	< 0.08
4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether	< 0.07 < 0.07	< 0.08	< 0.08	< 0.08
Hexachloroethane	< 0.07	< 0.08	< 0.08	< 0.08
Hexachlorobutadiene	< 0.07	< 0.08	< 0.08	< 0.08
Hexachlorocyclopentadiene	< 0.34	< 0.4	< 0.4	< 0.4
Hexachlorobenzene	< 0.07	< 0.08	< 0.08	20.08 20.08 20.08
4-Chloroaniline	< 0.07 < 0.07	< 0.08 < 0.08	< 0.08 < 0.08	< 0.08
2,3-Dichloroaniline 2-Nitroaniline	< 0.07	< 0.4	< 0.4	< 0.4
2-Nitroaniine 3-Nitroaniline	< 0.34	< 0.4	< 0.4	< 0.4
4-Nitroaniline	< 0.34	< 0.4	< 0.4	< 0.4
Aniline	< 0.07	< 0.08	< 0.08	< 0.08
Benzyl alcohol	< 0.7	< 0.7	< 0.8	< 0.7 0.08 >
Nitrobenzene	< 0.07	< 0.08 < 0.08	< 0.08 < 0.08	< 0.08
Isophorone	< 0.07 < 0.14	< 0.08	< 0.2	< 0.2
2,4-Dinitrotoluene 2,6-Dinitrotoluene	< 0.14	< 0.2	< 0.2	< 0.2
Benzidine (estimated)	< 0.34	< 0.4	< 0.4	< 0.4
3,3'-Dichlorobenzidine	< 0.07	< 0.08	< 0.08	< 0.08

EALID#: 227592

Client: Nobis Group

-	.			
Sample ID:	SB-8/NB-2 (7-9')	SB-11 (8-10')	SB-4 (7-9')	SB-5/NB-1 (10-12')
Lab Sample ID:	227592.02	227592.03	227592.05	227592.06
Matrix:	lios	soil	soil	soil
Date Sampled:	6/8/21	6/9/21	6/9/21	6/9/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
	mg/kg	mg/kg	mg/kg	mg/kg
Units:		6/14/21	6/14/21	6/16/21
Date of Extraction/Prep:	6/16/21			
Date of Analysis:	6/17/21	6/15/21	6/15/21	6/17/21
Analyst:	JMR	JMR	JMR	JMR
Method:	8270D	8270D	8270D	8270D
Dilution Factor:	1	1	1	1
			< 0.4	< 0.4
Pyridine Azobenzene	< 0.34 < 0.07	< 0.4 < 0.08	< 0.08	< 0.08
Carbazole	< 0.07	< 0.08	< 0.08	< 0.08
Dimethylphthalate	< 0.07	< 0.08	< 0.08	< 0.08
Diethylphthalate	< 0.34	< 0.4	< 0.4	< 0.4
Di-n-butylphthalate	< 0.34	< 0.4	< 0.4	< 0.4
Butylbenzylphthalate	< 0.34	< 0.4	< 0.4	< 0.4
bis(2-Ethylhexyl)phthalate	< 0.34	< 0.4	< 0.4	< 0.4
Di-n-octylphthalate	< 0.34	< 0.4	< 0.4	< 0.4 < 0.08
Dibenzofuran	< 0.07	< 0.08	< 0.08 < 0.08	< 0.08
Naphthalene	< 0.07	< 0.08 < 0.08	< 0.08	< 0.08
2-Methylnaphthalene	< 0.07 < 0.07	< 0.08	< 0.08	< 0.08
1-Methylnaphthalene Acenaphthylene	< 0.07 < 0.07	< 0.08	< 0.08	< 0.08
Acenaphthene	< 0.07	< 0.08	< 0.08	< 0.08
Fluorene	< 0.07	< 0.08	< 0.08	< 0.08
Phenanthrene	< 0.07	< 0.08	< 0.08	0.11
Anthracene	< 0.07	< 0.08	< 0.08	< 0.08
Fluoranthene	< 0.07	< 0.08	< 0.08	0.14 0.12
Pyrene	< 0.07	< 0.08	< 0.08 < 0.08	< 0.08
Benzo[a]anthracene	< 0.07 < 0.07	< 0.08 < 0.08	< 0.08	< 0.08
Chrysene Benzo[b]fluoranthene	< 0.07 < 0.07	< 0.08	< 0.08	< 0.08
Benzo[k]fluoranthene	< 0.07	< 0.08	< 0.08	< 0.08
Benzo[a]pyrene	< 0.07	< 0.08	< 0.08	< 0.08
Indeno[1,2,3-cd]pyrene	< 0.07	< 0.08	< 0.08	< 0.08
Dibenz[a,h]anthracene	< 0.07	< 0.08	< 0.08	< 0.08
Benzo[g,h,i]perylene	< 0.07	< 0.08	< 0.08	< 0.08
n-Decane	< 0.34	< 0.4	< 0.4 < 0.4	< 0.4 < 0.4
n-Octadecane	< 0.34	< 0.4	68 %R	62 %R
2-Fluorophenol (surr)	68 %R	58 %R 61 %R	72 %R	67 %R
Phenol-d6 (surr) 2,4,6-Tribromophenol (surr)	71 %R 84 %R	74 %R	88 %R	83 %R
Nitrobenzene-D5 (surr)	77 %R	67 %R	77 %R	70 %R
2-Fluorobiphenyl (surr)	80 %R	70 %R	83 %R	75 %R
p-Terphenyl-D14 (surr)	82 %R	76 %R	83 %R	76 %R

EALID#: 227592

Client: Nobis Group

Sample ID:	SB-3 (7-9')	SB-2 (12-14')	SB-6 (2.0')	SB-7 (2.0')
Lab Sample ID:	227592.07	227592.08	227592.09	227592.1
Matrix:	soil	soil	soil	soil
	6/10/21	6/10/21	6/11/21	6/11/21
Date Sampled:			6/14/21	6/14/21
Date Received:	6/14/21	6/14/21		
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	6/16/21	6/16/21	6/16/21	6/14/21
Date of Analysis:	6/17/21	6/17/21	6/17/21	6/15/21
Analyst:	JMR	JMR	JMR	JMR
Method:	8270D	8270D	8270D	8270D
Dilution Factor:	1	1	6	1
alpha-Terpineol	< 0.4	< 0.4	< 2	< 0.4
Phenol	< 0.08	< 0.08	< 0.4	< 0.08
2-Chlorophenol	< 0.08	< 0.08	< 0.4	< 0.08
2,4-Dichlorophenol	< 0.08	< 0.08	< 0.4	< 0.08
2,4,5-Trichlorophenol	< 0.08	< 0.08	< 0.4	< 0.08
2,4,6-Trichlorophenol	< 0.08	< 0.08	< 0.4	< 0.08
Pentachlorophenol	< 0.4	< 0.4	< 2	< 0.4
2-Nitrophenol	< 0.4	< 0.4	< 2 < 2	< 0.4 < 0.4
4-Nitrophenol	< 0.4	< 0.4 < 0.8	< 4	< 0.4 < 0.8
2,4-Dinitrophenol 2-Methylphenol	< 0.8 < 0.08	< 0.08	< 0.4	< 0.08
2-Methylphenol	< 0.08	< 0.08	< 0.4	< 0.08
2,4-Dimethylphenol	< 0.4	< 0.4	< 2	< 0.4
4-Chloro-3-methylphenol	< 0.08	< 0.08	< 0.4	< 0.08
4,6-Dinitro-2-methylphenol	< 0.4	< 0.4	< 2	< 0.4
Benzoic Acid	< 4	< 4	< 20	< 4
N-Nitrosodimethylamine	< 0.08	< 0.08	< 0.4	< 0.08
n-Nitroso-di-n-propylamine	< 0.04	< 0.05	< 0.2	< 0.05
n-Nitrosodiphenylamine	< 0.08	< 0.08	< 0.4 < 0.4	< 0.08 < 0.08
bis(2-Chloroethyl)ether	< 0.08	< 0.08 < 0.08	< 0.4	< 0.08
bis(2-chloroisopropyl)ether bis(2-Chloroethoxy)methane	< 0.08 < 0.08	< 0.08	< 0.4	< 0.08
1,3-Dichlorobenzene	< 0.08	< 0.08	< 0.4	< 0.08
Acetophenone	< 0.8	< 0.8	< 4	< 0.8
1,4-Dichlorobenzene	< 0.08	< 0.08	< 0.4	< 0.08
1,2-Dichlorobenzene	< 0.08	< 0.08	< 0.4	< 0.08
1,2,4-Trichlorobenzene	< 0.08	< 0.08	< 0.4	< 0.08
2-Chloronaphthalene	< 0.08	< 0.08	< 0.4	< 0.08
4-Chlorophenyl-phenylether	< 0.08	< 0.08	< 0.4 < 0.4	< 0.08 < 0.08
4-Bromophenyl-phenylether	< 0.08	< 0.08	< 0.4	< 0.08
Hexachloroethane	< 0.08 < 0.08	< 0.08 < 0.08	< 0.4	< 0.08
Hexachlorobutadiene Hexachlorocyclopentadiene	< 0.4	< 0.4	< 2	< 0.4
Hexachlorobenzene	< 0.08	< 0.08	< 0.4	< 0.08
4-Chloroaniline	< 0.08	< 0.08	< 0.4	< 0.08
2,3-Dichloroaniline	< 0.08	< 0.08	< 0.4	< 0.08
2-Nitroaniline	< 0.4	< 0.4	< 2	< 0.4
3-Nitroaniline	< 0.4	< 0.4	< 2	< 0.4 < 0.4
4-Nitroaniline	< 0.4	< 0.4	< 2 < 0.4	< 0.4 < 0.08
Aniline Ronzyl alcohol	< 0.08 < 0.8	< 0.08 < 0.8	< 4	< 0.8
Benzyl alcohol Nitrobenzene	< 0.8 < 0.08	< 0.08	< 0.4	< 0.08
Isophorone	< 0.08	< 0.08	< 0.4	< 0.08
2,4-Dinitrotoluene	< 0.2	< 0.2	< 0.8	< 0.2
2,6-Dinitrotoluene	< 0.2	< 0.2	< 0.8	< 0.2
Benzidine (estimated)	< 0.4	< 0.4	< 2	< 0.4
3,3'-Dichlorobenzidine	< 0.08	< 0.08	< 0.4	< 0.08

EAI ID#: 227592

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	SB-3 (7-9')	SB-2 (12-14')	SB-6 (2.0')	SB-7 (2.0')
Lab Sample ID:	227592.07	227592.08	227592.09	227592.1
Matrix:	soil	soil	soil	soil
Date Sampled:	6/10/21	6/10/21	6/11/21	6/11/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
	6/16/21	6/16/21	6/16/21	6/14/21
Date of Extraction/Prep:		6/17/21	6/17/21	6/15/21
Date of Analysis:	6/17/21			
Analyst:	JMR	JMR	JMR	JMR
Method:	8270D	8270D	8270D	8270D
Dilution Factor:	1	1	6	1
Pyridine	< 0.4	< 0.4	< 2	< 0.4
Azobenzene	< 0.08	< 0.08	< 0.4	< 0.08
Carbazole	< 0.08	< 0.08	3.1	0.57
Dimethylphthalate	< 0.08	. < 0.08	< 0.4	< 0.08
Diethylphthalate	< 0.4	< 0.4	< 2	< 0.4
Di-n-butylphthalate	< 0.4	< 0.4	< 2 < 2	< 0.4 < 0.4
Butylbenzylphthalate	< 0.4	< 0.4 < 0.4	< 2	< 0.4
bis(2-Ethylhexyl)phthalate	< 0.4 < 0.4	< 0.4 < 0.4	< 2	< 0.4
Di-n-octylphthalate Dibenzofuran	< 0.08	< 0.08	2.2	0.31
Naphthalene	< 0.08	< 0.08	2.6	0.35
2-Methylnaphthalene	< 0.08	< 0.08	0.73	0.12
1-Methylnaphthalene	< 0.08	< 0.08	0.55	0.13
Acenaphthylene	< 0.08	< 0.08	2.8	0.57
Acenaphthene	< 0.08	< 0.08	2.4	0.41
Fluorene	< 0.08	< 0.08	2.6	0.40
Phenanthrene	< 0.08	< 0.08	30	4.9
Anthracene	< 0.08	< 0.08	8 <u>.1</u>	1.4
Fluoranthene	< 0.08	< 0.08	57 27	7.2 6.8
Pyrene	< 0.08	< 0.08	37 25	4.6
Benzo[a]anthracene	< 0.08	< 0.08	25 22	4.2
Chrysene	< 0.08	< 0.08 < 0.08	27	6.1
Benzo[b]fluoranthene Benzo[k]fluoranthene	< 0.08 < 0.08	< 0.08	7.8	2.3
Benzo[a]pyrene	< 0.08	< 0.08	22	4.6
Indeno[1,2,3-cd]pyrene	< 0.08	< 0.08	9.2	1.3
Dibenz[a,h]anthracene	< 0.08	< 0.08	2.2	0.31
Benzo[g,h,i]perylene	< 0.08	< 0.08	6.3	0.98
n-Decane	< 0.4	< 0.4	< 2	< 0.4
n-Octadecane	< 0.4	< 0.4	< 2	< 0.4
2-Fluorophenol (surr)	57 %R	61 %R	59 %R	66 %R
Phenol-d6 (surr)	62 %R	65 %R	64 %R	70 %R
2,4,6-Tribromophenol (surr)	80 %R	79 %R	83 %R	88 %R 74 %R
Nitrobenzene-D5 (surr)	62 %R	69 %R	68 %R	74 %R 81 %R
2-Fluorobiphenyl (surr) p-Terphenyl-D14 (surr)	70 %R 79 %R	74 %R 78 %R	76 %R 80 %R	83 %R

Deviations from the Report:

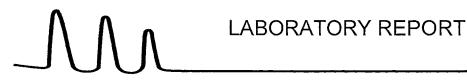
SB-6 (2.0'): Parameter: Fluoranthene Date of Analysis: 6/18/2021 Dilution Factor: 30

SB-6 (2.0'): Detection limits elevated due to sample matrix causing internal standard failure in initial extraction.

EAI ID#: 227592

Client: Nobis Group

Sample ID:	SB-8/NB-2 (7-9')	SB-11 (8-10')	SB-4 (7-9')	SB-5/NB-1 (10-12')
Lab Sample ID:	227592.02	227592.03	227592.05	227592.06
Matrix:	soil	soil	soil	soil
Date Sampled:	6/8/21	6/9/21	6/9/21	6/9/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	6/15/21	6/15/21	6/15/21	6/15/21
Date of Analysis:	6/15/21	6/15/21	6/15/21	6/15/21
Analyst:	JLB	JLB	JLB	JLB
Method:	8100mod	8100mod	8100mod	8100mod
Dilution Factor:	1	1	1	1
TPH (C9-C40)	< 30	< 30	< 30	90
p-Terphenyl-D14 (surr)	78 %R	77 %R	77 %R	85 %R


EAI ID#: 227592

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	SB-3 (7-9')	SB-2 (12-14')	SB-6 (2.0')	SB-7 (2.0')
Lab Sample ID:	227592.07	227592.08	227592.09	227592.1
Matrix:	soil	soil	soil	soil
Date Sampled:	6/10/21	6/10/21	6/11/21	6/11/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	6/15/21	6/15/21	6/15/21	6/15/21
Date of Analysis:	6/15/21	6/15/21	6/15/21	6/15/21
Analyst:	JLB	JLB	JLB	JLB
Method:	8100mod	8100mod	8100mod	8100mod
Dilution Factor:	1	1	11	2
TPH (C9-C40) p-Terphenyl-D14 (surr)	< 30 55 %R	< 30 69 %R	800 DOR	190 118 %R

DOR: Diluted out of range.

EAI ID#: 227592

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	SB-8/NB-2 (7-9')	SB-11 (8-10')	SB-4 (7-9')	SB-5/NB-1 (10-12')
Lab Sample ID:	227592.02	227592.03	227592.05	227592.06
Matrix:	soil	soil	soil	soil
Date Sampled:	6/8/21	6/9/21	6/9/21	6/9/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
% Solid:	96.4	90.1	85.1	89.2
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	6/14/21	6/14/21	6/14/21	6/14/21
Date of Analysis:	6/18/21	6/18/21	6/18/21	6/18/21
Analyst:	0/10/21 MB	0/10/21 MB	0/10/21 MB	0/10/21 MB
•				
Extraction Method:	3540C	3540C	3540C	3540C
Analysis Method:	8081B	8081B	8081B	8081B
Dilution Factor:	1	1	1	1
Aldrin	< 0.005	< 0.005	< 0.006	< 0.006
alpha-BHC	< 0.005	< 0.005	< 0.006	< 0.006
beta-BHC	< 0.005	< 0.005	< 0.006	< 0.006
Lindane(gamma-BHC)	< 0.005	< 0.005	< 0.006	< 0.006
delta-BHC	< 0.005	< 0.005	< 0.006	< 0.006
Chlordane	< 0.02	< 0.02	< 0.02	< 0.02
4,4'-DDT	< 0.005	< 0.005	< 0.006	< 0.006
4,4'-DDE	< 0.005	< 0.005	< 0.006	< 0.006
4,4'-DDD	< 0.005	< 0.005	< 0.006	< 0.006
Dieldrin	< 0.005	< 0.005	< 0.006	< 0.006
Endosulfan I	< 0.005	< 0.005	< 0.006	< 0.006
Endosulfan II	< 0.005	< 0.005	< 0.006	< 0.006
Endosulfan Sulfate	< 0.005	< 0.005	< 0.006	< 0.006
Endrin	< 0.005	< 0.005	< 0.006	< 0.006
Endrin Aldehyde	< 0.005	< 0.005	< 0.006	< 0.006
Endrin Ketone	< 0.005	< 0.005	< 0.006	< 0.006
Heptachlor	< 0.005	< 0.005	< 0.006	< 0.006
Heptachlor Epoxide	< 0.005	< 0.005	< 0.006	< 0.006
Methoxychlor	< 0.005	< 0.005	< 0.006	< 0.006
Toxaphene	< 0.05	< 0.05	< 0.06	< 0.06
TMX (surr)	64 %R	57 %R	62 %R	61 %R
DCB (surr)	46 %R	45 %R	41 %R	41 %R

Clean-up was performed on the samples and associated batch QC.

EAI ID#: 227592

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	SB-3 (7-9')	SB-2 (12-14')	SB-6 (2.0')	SB-7 (2.0')
Lab Sample ID:	227592.07	227592.08	227592.09	227592.1
Matrix:	soil	soil	soil	soil
Date Sampled:	6/10/21	6/10/21	6/11/21	6/11/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
% Solid:	88.3	87.5	86.2	84.1
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	6/14/21	6/15/21	6/15/21	6/15/21
Date of Analysis:	6/18/21	6/18/21	6/18/21	6/18/21
Analyst:	MB	MB	MB	MB
Extraction Method:	3540C	3540C	3540C	3540C
	8081B	8081B	8081B	8081B
Analysis Method:			1	1
Dilution Factor:	1	1	l	l
Aldrin	< 0.006	< 0.006	< 0.006	< 0.006
alpha-BHC	< 0.006	< 0.006	< 0.006	< 0.006
beta-BHC	< 0.006	< 0.006	< 0.006	< 0.006
Lindane(gamma-BHC)	< 0.006	< 0.006	< 0.006	< 0.006
delta-BHC	< 0.006	< 0.006	< 0.006	< 0.006
Chlordane	< 0.02	< 0.02	< 0.02	< 0.02
4,4'-DDT	< 0.006	< 0.006	< 0.006	< 0.006
4,4'-DDE	< 0.006	< 0.006	< 0.006	< 0.006
4,4'-DDD	< 0.006	< 0.006	< 0.006	< 0.006
Dieldrin	< 0.006	< 0.006	< 0.006	< 0.006
Endosulfan I	< 0.006	< 0.006	< 0.006	< 0.006
Endosulfan II	< 0.006	< 0.006	< 0.006	< 0.006
Endosulfan Sulfate	< 0.006	< 0.006	< 0.006	< 0.006
Endrin	< 0.006	< 0.006	< 0.006	< 0.006
Endrin Aldehyde	< 0.006	< 0.006	< 0.006	< 0.006
Endrin Ketone	< 0.006	< 0.006	< 0.006	< 0.006
Heptachlor	< 0.006	< 0.006	< 0.006	< 0.006
Heptachlor Epoxide	< 0.006	< 0.006	< 0.006	< 0.006
Methoxychlor	< 0.006	< 0.006	< 0.006	< 0.006
Toxaphene	< 0.06	< 0.06	< 0.06	< 0.06
TMX (surr)	57 %R	57 %R	36 %R	39 %R
DCB (surr)	45 %R	43 %R	35 %R	33 %R

Clean-up was performed on the samples and associated batch QC.

EAI ID#: 227592

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	SB-8/NB-2 (7-9')	SB-11 (8-10')	SB-4 (7-9')	SB-5/NB-1 (10-12')
Lab Sample ID:	227592.02	227592.03	227592.05	227592.06
Matrix:	soil	soil	soil	soil
Date Sampled:	6/8/21	6/9/21	6/9/21	6/9/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
% Solid:	96.4	90.1	85.1	89.2
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	6/14/21	6/14/21	6/14/21	6/14/21
Date of Analysis:	6/15/21	6/15/21	6/15/21	6/15/21
Analyst:	MB	MB	MB	MB
Extraction Method:	3540C	3540C	3540C	3540C
Analysis Method:	8082A	8082A	8082A	8082A
Dilution Factor:	1	1	1	1
PCB-1016	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1221	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1232	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1242	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1248	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1254	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1260	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1262	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1268	< 0.02	< 0.02	< 0.02	< 0.02
TMX (surr)	94 %R	85 %R	99 %R	98 %R
DCB (surr)	98 %R	97 %R	99 %R	84 %R

Acid clean-up was performed on the samples and associated batch QC.

EAIID#: 227592

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

SB-3 (7-9')	SB-2 (12-14')	SB-6 (2.0')	SB-7 (2.0')
227502.07	227502.08	227502.00	227592.1
			soil
			6/11/21
			6/14/21
88.3	87.5		84.1
mg/kg	mg/kg	mg/kg	mg/kg
6/14/21	6/15/21	6/15/21	6/15/21
6/15/21	6/16/21	6/16/21	6/16/21
MB	MB	MB	MB
3540C	3540C	3540C	3540C
8082A	8082A	8082A	8082A
1	1	1	1
< 0.02	< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02
97 %R	85 %R	51 %R	56 %R
108 %R	96 %R	52 %R	56 %R
	227592.07 soil 6/10/21 6/14/21 88.3 mg/kg 6/14/21 6/15/21 MB 3540C 8082A 1 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.07 R	227592.07 soil	227592.07

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 227592

Client: Nobis Group

Sample ID:	SB-8/NB-2 (7-9')	SB-11 (8-10')	SB-4 (7-9')	SB-5/NB-1 (10 -12')					
Lab Sample ID:	227592.02	227592.03	227592.05	227592.06					
Matrix:	soil	soil	lios	soil					
Date Sampled:	6/8/21	6/9/21	6/9/21	6/9/21		Δna	ilysis		
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21	Units	Date	Time	Method /	Analyst
Cyanide Total	< 0.5	< 0.5	< 0.5	< 0.5	mg/kg	06/16/21	8:55	9010/9014	RB

Sample ID:	SB-3 (7-9')	SB-2 (12-14')	SB-6 (2.0')	SB-7 (2.0')					
Lab Sample ID:	227592.07	227592.08	227592.09	227592.1					
Matrix:	soil	soil	soil	soil					
Date Sampled:	6/10/21	6/10/21	6/11/21	6/11/21		Ana	ılysis		
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21	Units	Date	Time	Method	Analyst
Cyanide Total	< 0.5	< 0.5	0.54	< 0.5	mg/kg	06/16/21	8:55	9010/90	14 RB

EAI ID#: 227592

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

									_
Sample ID:	SB-8/NB-2 (7-9')	SB-11 (8-10')	SB-4 (7-9')	SB-5/NB-1 (10-12')					
Lab Sample ID:	227592.02	227592.03	227592.05	227592.06					
Matrix:	soil	soil	soil	soil					
Date Sampled:	6/8/21	6/9/21	6/9/21	6/9/21	Analytical		Date of		
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21	Matrix	Units	Analysis	Method	Analyst
Arsenic	8.5	4.5	1.5	4.2	SolTotDry	mg/kg	6/15/21	6020	DS
Barium	16	18	2.3	8.5	SolTotDry	mg/kg	6/15/21	6020	DS
Cadmium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	6/15/21	6020	DS
Chromium	12	12	6.1	24	SolTotDry	mg/kg	6/15/21	6020	DS
Lead	6.6	7.7	2.3	19	SolTotDry	mg/kg	6/15/21	6020	DS
Mercury	< 0.1	< 0.1	< 0.1	< 0.1	SolTotDry	mg/kg	6/15/21	6020	DS
Selenium	0.57	< 0.5	< 0.5	0.52	SolTotDry	mg/kg	6/15/21	6020	DS
Silver	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDrv	mg/kg	6/15/21	6020	DS

Sample ID: SB-3 (7-9') SB-2 (12-14')

Lab Sample ID:	227592.07	227592.08					
Matrix:	soil	soil					
Date Sampled:	6/10/21	6/10/21	Analytical		Date of		
Date Received:	6/14/21	6/14/21	Matrix	Units	Analysis	Method	An
Arsenic	4.1	4.0	SolTotDry	mg/kg	6/15/21	6020	
Barium	19	11	SolTotDry	mg/kg	6/15/21	6020	
Cadmium	< 0.5	< 0.5	SolTotDry	mg/kg	6/15/21	6020	
Chromium	14	7.7	SolTotDry	mg/kg	6/15/21	6020	
Lead	6.7	5.7	SolTotDry	mg/kg	6/15/21	6020	
Mercury	< 0.1	< 0.1	SolTotDry	mg/kg	6/15/21	6020	
Selenium	< 0.5	< 0.5	SolTotDry	mg/kg	6/15/21	6020	
Silver	< 0.5	< 0.5	SolTotDry	mg/kg	6/15/21	6020	

EAI ID#: 227592

Client: Nobis Group

SB-6 (2.0')	SB-7 (2.0')				
227592.09	227592.1				
soil	soil				
6/11/21	6/11/21	Analytical		Date of	
6/14/21	6/14/21	Matrix	Units	Analysis	Method Analyst
6.1	4.7	SolTotDry	mg/kg	6/15/21	6020 DS
92	62	SolTotDry	mg/kg	6/15/21	6020 DS
< 0.5	< 0.5	SolTotDry	mg/kg	6/15/21	6020 DS
25	17	SolTotDry	mg/kg	6/15/21	6020 DS
310	260	SolTotDry	mg/kg	6/15/21	6020 DS
0.60	0.16	SolTotDry	mg/kg	6/15/21	6020 DS
< 0.5	< 0.5	SolTotDry	mg/kg	6/15/21	6020 DS
< 0.5	< 0.5	SolTotDry	mg/kg	6/15/21	6020 DS
< 0.5	< 0.5	TCLPsolid	mg/L	6/18/21	6020 DS
	227592.09 soil 6/11/21 6/14/21 6.1 92 < 0.5 25 310 0.60 < 0.5 < 0.5	227592.09 227592.1 soil soil 6/11/21 6/11/21 6/14/21 6/14/21 6.1 4.7 92 62 < 0.5 < 0.5 25 17 310 260 0.60 0.16 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	227592.09 227592.1 soil soil 6/11/21 6/11/21 Analytical Matrix 6/14/21 6/14/21 Matrix 6.1 4.7 SolTotDry 92 62 SolTotDry < 0.5	227592.09 227592.1 soil soil 6/11/21 6/11/21 Analytical Matrix 6/14/21 Matrix Units 6.1 4.7 SolTotDry mg/kg 92 62 SolTotDry mg/kg < 0.5	227592.09 227592.1 soil soil 6/11/21 6/11/21 Analytical Matrix Date of Analysis 6.1 4.7 SolTotDry mg/kg 6/15/21 92 62 SolTotDry mg/kg 6/15/21 < 0.5

Tuesday, June 22, 2021

Attn: Front Office Eastern Analytical 25 Chenell Drive Concord, NH 03301

Project ID: 227592 SDG ID: GCI54779

Sample ID#s: CI54779 - CI54782

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

June 22, 2021

SDG I.D.: GCI54779

Project ID: 227592

Client Id	Lab Id	Matrix	
SB-4 (7-9`)	CI54779	SOIL	
SB-6 (2.0`)	CI54780	SOIL	
SB-7 (2.0`)	CI54781	SOIL	
SB-5/NB-1 (10-12`)	CI54782	SOIL	

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 22, 2021

FOR: Attn: Front Office

> Eastern Analytical 25 Chenell Drive Concord, NH 03301

Sample Information

Matrix:

SOIL

Location Code:

EASTANAL-NH

Rush Request:

Standard

P.O.#:

55122

Custody Information

Collected by:

Analyzed by:

Received by:

SW

see "By" below

06/09/21

Date

12:25

06/15/21

11:33

Time

aboratory Data

SDG ID: GCI54779

Phoenix ID: CI54779

Project ID:

227592

Client ID:

SB-4 (7-9')

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	84		%		06/15/21	AR	SW846-%Solid
Chromium, Hex. (SW3060 digestion)	< 0.43	0.43	mg/Kg	1	06/17/21	BJA	SW7196A
pH at 25C - Soil	7.15	1.00	pH Units	1	06/16/21 12:37	DJ/EG	SW846 9045D
Redox Potential	231		mV	1	06/16/21	DJ/EG	SM2580B-09

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of holdtime.

Hexavalent Chromium:

This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 22, 2021

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 22, 2021

FOR:

Attn: Front Office

Eastern Analytical 25 Chenell Drive Concord, NH 03301

Sample Information

SOIL.

EASTANAL-NH

Location Code: Rush Request:

Standard

P.O.#:

Matrix:

55122

Custody Information

Collected by:

Received by:

Analyzed by:

aboratory Data

SW

see "By" below

06/11/21

Date

13:30

Time

06/15/21

11:33

SDG ID: GCI54779

Phoenix ID: CI54780

Project ID:

227592

Client ID:

SB-6 (2.0')

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	85		%		06/15/21	AR	SW846-%Solid
Chromium, Hex. (SW3060 digestion)	< 0.44	0.44	mg/Kg	1	06/17/21	BJA	SW7196A
pH at 25C - Soil	7.38	1.00	pH Units	1	06/16/21 12:37	DJ/EG	SW846 9045D
Redox Potential	314		mV	1	06/16/21	DJ/EG	SM2580B-09

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of holdtime.

Hexavalent Chromium:

This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 22, 2021

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 22, 2021

FOR:

Attn: Front Office Eastern Analytical 25 Chenell Drive

Concord, NH 03301

Sample Information

SOIL

<u>Custody Information</u>

Date <u>Time</u>

Matrix:

Collected by:

06/11/21

11:50

Location Code:

EASTANAL-NH

Received by:

SW

06/15/21 11:33

Rush Request:

Standard

Analyzed by:

see "By" below

P.O.#:

55122

aboratory Data

SDG ID: GCI54779

Phoenix ID: CI54781

Project ID:

227592

Client ID:

SB-7 (2.0°)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	87		%		06/15/21	AR	SW846-%Solid
Chromium, Hex. (SW3060 digestion)	< 0.44	0.44	mg/Kg	1	06/18/21	BJA/QH	SW7196A
pH at 25C - Soil	7.93	1.00	pH Units	1	06/16/21 12:37	DJ/EG	SW846 9045D
Redox Potential	338		mV	1	06/16/21	DJ/EG	SM2580B-09

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of holdtime.

Hexavalent Chromium:

This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 22, 2021

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 22, 2021

FOR: Attn: Front Office

Eastern Analytical 25 Chenell Drive Concord, NH 03301

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:06/09/2113:25Location Code:EASTANAL-NHReceived by:SW06/15/2111:33

Rush Request: Standard Analyzed by: see "By" below

P.O.#: Standard Analyzed by: see "By" below

<u>aboratory Data</u>
SDG ID: GCI54779
Phoenix ID: CI54782

Project ID: 227592

Client ID: SB-5/NB-1 (10-12')

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	91		%		06/15/21	AR	SW846-%Solid
Chromium, Hex. (SW3060 digestion)	< 0.41	0.41	mg/Kg	1	06/18/21	BJA/QH	SW7196A
pH at 25C - Soil	7.39	1.00	pH Units	1	06/16/21 12:37	DJ/EG	SW846 9045D
Redox Potential	320		mV	1	06/16/21	DJ/EG	SM2580B-09

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

Hexavalent Chromium:

This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 22, 2021

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

June 22, 2021

QA/QC Data

SDG I.D.: GCI54779

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 579920 (mg/kg),	QC Sam	ple No:	CI54469	40X (CI	54779,	CI5478	30)							
Chromium, Hexavalent - S	<u>Soil</u>													
Chromium, Hexavalent	BRL	0.40	< 0.39	<0.42	NC	94.1						85 - 115	30	
Chromium, Hexavalent (Ins)						95.1			92.8			85 - 115	30	
Chromium, Hexavalent (Sol)						93.4			90.8			85 - 1 15	30	
QA/QC Batch 580132 (mg/kg),	QC Sam	ple No:	CI57461	40X (CI	54781,	CI5478	32)							
Chromium, Hexavalent - :	<u>Soil</u>													
Chromium, Hexavalent	BRL	0.40	< 0.42	< 0.42	NC	95.1						85 - 115	30	
Chromium, Hexavalent (Ins)						103			94.3			85 - 115	30	
Chromium, Hexavalent (Sol)						92.2			56.7			85 - 115	30	m

m = This parameter is outside laboratory MS/MSD specified recovery limits.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

June 22, 2021

QA/QC Data

SDG I.D.: GCI54779

Parameter	Blank F	3lk Sample RL Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 579781 (PH), pH at 25C - Soil	QC Sample N	No: CI54731 (C 7.50	0154779, 7.46	CI5478	0, Cl54 99.7	1781, CI	54782)				85 - 115	20	_

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

June 22, 2021

		State: RI SampNo Acode *** No Data to Display *** Phoenix Laboratories does professional's responsibility
		RI Acode Phoenix Analyte Alories does not assume responsibility for the data (obtained from alesponsibility to determine appropriate comparations)
		Samplo Sale: No Data to Display *** Phoenix Analyte Phoenix Analyte Sample Criteria Exceedances Report GCI54779 - EASTANAL-NH Professional's responsibility to determine appropriate compliance, agencies). A lack of exceedance information does not necessarily suggest conformance to the orderia. It is ultimately the site
		Sample Criteria Exceedances Report Criteria Criteria Criteria Fained in this exceedance report. It is provided as an additional tool to in the content of the content o
		Result RL Cool to identify requested criteria excentions on the criteria.
	·	riteria RL Analysis Units ^{edences,} All efforts are · It is ultimately the site

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

June 22, 2021

SDG I.D.: GCI54779

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

CHAIN-OF-CUSTODY RECORD

EALID# 227502

Dogo 1

Sample ID	Date Sample	d Matrix	aParameters	Sample Notes								
SB-4 (7-9')	6/9/2021 12:25	soil	Subcontract - Hexavalent Chromium Soil 3060/7196	54779								
SB-6 (2.0')	6/11/2021 13:30	soil	Subcontract - Hexavalent Chromium Soil 3060/7196	54780								
SB-7 (2.0')	6/11/2021 11:50	soil	Subcontract - Hexavalent Chromium Soil 3060/7196	54781								
SB-5/NB-1 (10-12')	6/9/2021 13:25	soil	Subcontract - Hexavalent Chromium Soil 3060/7196	54782								

Rud- 1802 jar pursample.

EAI ID# 2	27592 Project State: RI	RUSH Due Date:	PO #:55122 EAI ID# 227592
	Project ID: 0	QC Deliverables	Data Deliverable (circle)
Company	Phoenix Environmental Labs	Notes about project:	Excel NH EMD EQUIS ME EGAD
Address	587 East Middle Turnpike	Email login confirmation, pdf of results and invoice to customerservice@easternanalytical.com.	Call prior to analyzing, if RUSH charges will be applied.
Address	Manchester, CT 06040	invoice to customerservice deasternanalytical.com.	Samples Collected by: 6/14/21 1500 VPS
Account #			Relinquished by Date/Time Received by
Phone #	(860) 645-1102	1	ups Kyukum (1/15/21/1/33
			Relinquished by Date/Time Received by

Eastern Analytical, Inc. 25 Chenell Dr. Concord, NH 03301

Phone: (603)228-0525 1-800-287-0525

customerservice@easternanalytical.com

As a subcontract lab to EAI, you will defend, indemnify and hold Eastern Analytical, Inc., its officers, employees, and agents harmless from and against any and all liability, loss, expense or claims for injury or damages arising out of the performance against this chain of custody but only in proportion to and to the extent such liability, loss, expense, or claims for injury or damages are caused by or result from the negligent or intentional acts or omissions of you as a subcontract lab, your officers, agents or employees

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

dan a pata hamatan sa misa a manatan	Y Y		V	OC		S	Ve	C		TCLP	Ma	TAL5	dean Herre	I	NOR	GΑ	NIC	15	***********	M	CHO	0	THE	R			
SAMPLE I.D.	SAMPLING DATE/TIME **IF COMPOSITE, INDICATE BOTH START & FINISH DATE/TIME	MATRIX (SEE BELOW) GRABI*COMPOSITE	24.2 ETEX 524.2 ATBE DICK 24.2 ETEX 524.2 ATBE 24.2 EXP VITCA	DI BIEK HALOS	OIS GRO. HAYTH. 21. 425 SYTIC: EBB DBCP.	MA SH PAN	US DIO HAEPH		11 & Great 1664 TPH 1664	CLP (131) SBN Metus OC Pest Hem	gsored Herus (List Relow)	of their sur brown & P.	s iss Ids spector	A KO, KO, KO,	OB CROD I. ALL	I L LEE CROOME	OD PRESENT TOC DOC	ONL CARRES TOTAL STATE	EXTENSION LINES (MADE	on Quene Ethi	CIEVEDOCO ETELETIONIC, PLATE CONT	KOFK MADS	Hexavalent C		# or Coxtained	Notes NeOH Via. #	1 .
SB-VOID-12		2 12						ij	•				the second	261			19	7	-		-		I	ness in	ŝ	53 XI T	DNA
SB-8 NB-20	06611211A	56	the exponent enemy	e signaturie		12		Z						seasime e				1				2			5	23239	1382
SB-11 (8-101)	The second secon	<u> </u>		A Promoton		/	1	1	:				Constant of the Constant of th	1				/							5	53424	4
	while orse	3 6	$+ + \ell$	<u> </u>	//	\mathbb{H}^{\prime}	1 -	$\bot \mathcal{L}$	الهوابد						-4-			¥		1		1	4		5	<u> </u>	DNA
SB-4(1-41)	69/21/1225	دا کا		Column Tile	1	\mathbb{Z}		1			* 9 * \$. 8				1				1				5 3673	BEE
SB-5 INB-VIOL	W19/21 1325	56] [7		7			7					-			*		V				1	ZV	7	5	53433	6/14/1
SB-3 (7-91)		c /-	17	-		7	. A SA	1/										1			eiumė.	1	7		******	53829	a • •
53-2(12-141)			17	1	7	77		7	1 1				SCALAR PROPERTY OF STREET	,				1		1		1	2		-	5 3 የ	
SB-6(2.0/)	6/11/21 19:30	56				/ /	1	7	فينسط						1		o ile pii cem	7	in Street	nt (41360115)	і возменина 1	J	刀			5 ንፖንጊ	
156-7 (2.01)	will as use	15/17	1 1			/ /		7	rinniumn.			بنسنبه.			-		17		1		e di cari	1	7	, 1	۲,	58830	& RUPO
MATRIX: A-AIR: 5-SOIL: GW-GROUND WATER WW-WASTE WATER	E SW-SUAFACE WATER, DW-DIEN	UNG WATER		T					ipici, kunga		21			Ť	uione oice	INCOME MICHINE	and in the same			1					1	<u> </u>	'w\w
PRESERVATIVE: H-HCL; N-HNO,; S-H-504; N	Ka-NaOH; M-MEOH]/M	1		eleconomic in the second	1	ر. تدرین				A. 17										,		<i>h</i> :		3	1
PROJECT MANAGER: PULL	an Earlis			د ا	ATE NE	ga. Idhe		an.	adı	Avn	7	Pr	T			. p.			J. Ma	TALS	6	RCRA	13	PP	Fe	Mn Pa C	#
COMPANY: NOVOIS		•		:					أفسون					-	TEMP	3.	<u>ر</u>	<u>.</u> "C					, .				•
ADDRESS: 18 Chanell	price		о диника	QA RE	/QC PORTING	LEV	nodę	واكل	H.	REPO Paelih	RTIN(C. Yes	G OP	MONS MONS		ICE?	Œ	/ H	0,	OTI	ier Me	IAUS:						- ·
cm. Conco			30		Α	В		C		* ********		,(,			*			4				YES 🗀 N	
PHONE: ((003) 224-	पाइठः	Ext.			•	OR "				Elect	RONIC	OP:	LIONS				Ŕ									INFO, IF DIFFENER	-
FAX: E-MAIL: DROWNOS OF Y SITE HAME: PONIVA PUR	MDbrs-demin	PM	<u> </u>		M	A MC	P	v.		E-HAIL			Equis		Exgl				H	רב	M	4=	Du	W	+/	maly?	e,
		الثلاث الماسات	13		~:.,	45		19854			منا			•				.!		C	-+6	5	44	وباد		58- 0 5	/NB-1
Project # 0955 6013		:		- Sufficients: S-POWLUS - SB-4 SB-6 SB-7 ONLY SMAN Parcells 10/11/21 1910 - BEOGRAPHICS SB-4 SB-6 SB-7 ONLY																							
	VT ONE PET				INQUISH	///	TCI v		Vd~ (Date:			INE:	(O	Rece	THE BY:					ريع	4/1	4/2	4				Contract to
REGULATORY PROGRAM: NPDES: RGP GWP, OIL FUND, BROWNE					النفاع المستعندات	***	un dissure	:	? ([2]			7.0	برع	L	A			-Cire	Hiern	n. T		n le	M.	1)	at 2 s	4
OUOTE #:	1			REI	INQUISH	IED B	Y:		DATE:	TOPETER		INE:			IVED BY		**	1	1		CONTAN			ń.	; 	1.4	- .'. -
	PO #:	·····		RE	JNQUISH	LED R		بيسو	Ditt.	4/2	Ĩ	MC.		Rec	jupo By:	_			Rici	n Dran	turr.	7	Mai∘	אמי כ	Λ T	ŽID	_
Eastern Analy	tical, Inc. 2	5 CHENEU	DRIVE C	ONCOR	D. NHO	RAT	hel: 6	503/22	B:0/2	8/1	800.2	87.05	25 €	MAIL	r Ja	MERSI	RVICE	r DEAS	TERNA	NALY	CAL.C	:ом	www	EASTE	erna	NALYTICAL.COM	- 1

professional laboratory and drilling services

(WHITE: ORIGINAL GREEN: PROJECT MANAGER)

Page 2 of 2					3.1	-							Y R						٠.					į	ik I		*	22	75	92 ^{- 2}	
age or or or	· · · · · · · · · · · · · · · · · · ·	Вс	LD		LDS VC		٠.	(ED				1 2 E	CLE TCLP							s. GAI		980 - Z	ite. ↑	M	e CRO		TH	्ता । देशका व		e pra uliusiana	
SAMPLE I.D.	SAMPLING DATE/TIME *IF COMPOSITE, INDICATE BOTH START & FINISH DATE/TIME		GRAB/*COMPOSITE	524.2 HTBE own		EX STALOS	KKVPH	ASTA AS SYTIC FOR DREP LASY, A BY PAH		MEPH	PEST 608 PCB 608 PEST 6081 PCB 8982	1664 TPH 1664	Menus	us (Lat Below)	loni, Henry (List Briow)	ISS TOS SPR. COL.	O F SQ. W. NO. NO. NO.	CBOD T. ALK	Title Mily I. Prox. O. Prox.	I. Rix Crioune	COD PARTITION TOU DOC	Toru Craine Toru Syupe	RESERVE CHAINE REACTER SUBINE	iera Coursin E Cou	Enthococa Hetelanopea Plate Court			a.	# of Coramer	Notes Not vide	#
Trip Blank	6/8/21 0700	X	6		/			· ·			-	Sacrami	-			_	<u> .,</u>		1		-	ļ	1 j		S		18 14 14 2		1	5382v	2
				-93	::			ا كانسىيپ		-	 		ļ			1	-				-			10.00		8					45
		-	-		1		Mk 2 r			-	 		-			-	3"	-	 	 		 	24. 8	-				;	<u>e.</u>		
	Chicaman Lagran Co. Land Co.													.,		7.	-		1		¥:#	4 É	AL.		4 47	. :	9. 71 2.7		٠		2001 .t
2018 2018 2018 2018 2018 2018 2018 2018			140	-3	- Marian		7	. A.,		Fij.			-	alirur	37.				je.	1	2. %			1. Y . 4	-						
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,			; 52								,			-			'					-45	1	î.		ć ₅₀		ян.	**************************************
				<u>;</u>				94		, š				· <u>}</u> :	s	_	<u> </u>		* :-:	() N		24.					<u>څ. ۽</u>	, i			
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* · · · · · · · · · · · · · · · · · · ·				ļ	1,12	L ¹³	e ^{ri}	- 1	<u> </u>	_		_	11014			A	<u> </u>	-	-	_	ļ	11.33	12.27	-		*		K		- 15.
Matrix: A-Air; S-Soil; GW-Ground Water	A; SW-SURFACE WATER; DW-DRIH	KING W	ATEA;					3 			10			W	3		1.7	-	:3	-	-	1		L		-	1.7		<u>1</u>		
WW-Waste water Preservative: H-HCL; H-HNO;; S-H ₂ SO ₄ ; H		ki.	, e		M		¥	;>	1-						Ÿ								4	1.4 23	.:			,			
PROJECT MANAGER: BLHIV COMPANY: NEWLS AND CONCOLC HONE [603] 224 AN:	Dave Sur: NH	ZIP: C				QA	/QC PORT	ING I	LEVE B		ta c		REPO PARUM ELECT	RTING E YES	OR C	HOIT HO	S		ICE?	3 ©			OTH Sad	ER MEI IPLES	als: Fiel	D FII		(D?		Max Pe; Yes Info, le Differn	No.
*	DGO RT-	J. S.	-0	ΩC	1	Rei	MENT	I S 102 DISHE	M D B)	0 W	38 	DATE	14	λ <u>ι</u> [2]	19() THE:		A.	CELVETO	Bi: 5	- Ore			Sine	Huston	r I	L X	th	01	<u> </u>	1 33- 5 1 2 47- 5 5	·
JUOYE #:	PO #:		. ::		- 1,- 4,			113ME	יני ני על	1			h					Agris Ag	. wii	::							HŁ		9 #.	,	

RELINGUISHED BY: DAIL: JHE'S STEENED BY FIELD READINGS: C 19 19 1 VID

25 CHENELL DRIVE | CONCORD (1H 0250) | TEL 603/228(0525 | 1.800,287,0526 | C-MAND CUSTOMERSERVICE@EASTERNANALYTICAL.COM | WWW.EASTERNANALYTICAL.COM | WWW.E

Bettina Eames
Nobis Group
18 Chenell Drive
Concord, NH 03301

Laboratory Report for:

Eastern Analytical, Inc. ID: 227591

Client Identification: Robin Rug | 095560.260

Date Received: 6/14/2021

Enclosed are the analytical results per the Chain of Custody for sample(s) in the referenced project. All analyses were performed in accordance with our QA/QC Program, NELAP and other applicable state requirements. All quality control criteria was within acceptance criteria unless noted on the report pages. Results are for the exclusive use of the client named on this report and will not be released to a third party without consent.

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the written approval of the laboratory.

The following standard abbreviations and conventions apply to all EAI reports:

< : "less than" followed by the reporting limit

> : "greater than" followed by the reporting limit

%R: % Recovery

Certifications:

Eastern Analytical, Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012), New York (12072), West Virginia (9910C) and Alabama (41620). Please refer to our website at www.easternanalytical.com for a copy of our certificates and accredited parameters.

References:

- EPA 600/4-79-020, 1983
- Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd edition or noted revision year.
- Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
- Hach Water Analysis Handbook, 4th edition, 1992

If you have any questions regarding the results contained within, please feel free to contact customer service. Unless otherwise requested, we will dispose of the sample(s) 6 weeks from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

SAMPLE CONDITIONS PAGE

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

EAI ID#: 227591

Temperature upon receipt (°C): 2.9

Acceptable temperature range (°C): 0-6

Received on ice or cold packs (Yes/No): Y

Lab ID	Sample ID	Received	Sampled		Sample Matrix		(other than thermal preservation)
227591.01	Trip Blank	6/14/21	6/10/21	08:00	soil	100.0	Adheres to Sample Acceptance Policy
227591.02	TP-7 0-3.5'	6/14/21	6/10/21	09:00	soil	82.1	Adheres to Sample Acceptance Policy
227591.03	TP-6 9-10'	6/14/21	6/10/21	11:15	soil	86.7	Adheres to Sample Acceptance Policy
227591.04	TP-5 6'	6/14/21	6/10/21	13:00	soil	93.9	Adheres to Sample Acceptance Policy

227591.02	TP-7 0-3.5'	6/14/21	6/10/21	09:00	soil	82.1	Adheres to Sample Acceptance Policy
227591.03	TP-6 9-10'	6/14/21	6/10/21	11:15	soil	86.7	Adheres to Sample Acceptance Policy
227591.04	TP-5 6'	6/14/21	6/10/21	13:00	soil	93.9	Adheres to Sample Acceptance Policy
227591.05	TP-4 9'	6/14/21	6/10/21	14:50	soil	89.5	Adheres to Sample Acceptance Policy
227591.06	Trip Blank	6/14/21	6/11/21	07:00	soil	100.0	Adheres to Sample Acceptance Policy
227591.07	TP-14 1-2'	6/14/21	6/11/21	08:30	soil	90.3	Adheres to Sample Acceptance Policy
227591.08	TP-1 0-2'	6/14/21	6/11/21	10:15	soil	92.1	Adheres to Sample Acceptance Policy
227591.09	TP-2 3-4'	6/14/21	6/11/21	10:55	soil	92.0	Adheres to Sample Acceptance Policy
227591.1	TP-3 2-3'	6/14/21	6/11/21	11:40	soil	81.6	Adheres to Sample Acceptance Policy

All results contained in this report relate only to the above listed samples.

Unless otherwise noted:

- Hold times, preservation, container types, and sample conditions adhered to EPA Protocol.
- Solid samples are reported on a dry weight basis, unless otherwise noted. pH/Corrosivity, Flashpoint, Ignitability, Paint Filter, Conductivity and Specific Gravity are always reported on an "as received" basis.
- Analysis of pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite were performed at the laboratory outside of the recommended 15 minute hold time.
- Samples collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures.

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	Trip Blank	TP-7 0-3.5'	TP-6 9-10'	TP-5 6'
Lab Sample ID:	227591.01	227591.02	227591.03	227591.04
Matrix:	soil	soil	soil	soil
	6/10/21	6/10/21	6/10/21	6/10/21
Date Sampled: Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Analysis:	6/14/21	6/14/21	6/15/21	6/15/21
Analyst:	JAK	JAK	JAK	JAK
Method:	8260C	8260C	8260C	8260C
Dilution Factor:	1	2	1	1
Dichlorodifluoromethane	< 0.1	< 0.2	< 0.1	< 0.1
Chloromethane	< 0.1 < 0.02	< 0.2 < 0.03	< 0.1 < 0.02	< 0.1 < 0.02
Vinyl chloride Bromomethane	< 0.02	< 0.2	< 0.1	< 0.1
Chloroethane	< 0.1	< 0.2	< 0.1	< 0.1
Trichlorofluoromethane	< 0.1	< 0.2	< 0.1	< 0.1
Diethyl Ether	< 0.05	< 0.08	< 0.05 < 2	< 0.05 < 2
Acetone 1,1-Dichloroethene	< 2 < 0.05	< 3 < 0.08	< 0.05	< 0.05
tert-Butyl Alcohol (TBA)	< 2	< 3	< 2	< 2
Methylene chloride	< 0.1	< 0.2	< 0.1	< 0.1
Carbon disulfide	< 0.1	< 0.2	< 0.1	< 0.1 < 0.1
Methyl-t-butyl ether(MTBE)	< 0.1 < 0.1	< 0.2 < 0.2	< 0.1 < 0.1	< 0.1
Ethyl-t-butyl ether(ETBE) Isopropyl ether(DIPE)	< 0.1	< 0.2	< 0.1	< 0.1
tert-amyl methyl ether(TAME)	< 0.1	< 0.2	< 0.1	< 0.1
trans-1,2-Dichloroethene	< 0.05	< 0.08	< 0.05	< 0.05 < 0.05
1,1-Dichloroethane	< 0.05 < 0.05	< 0.08 < 0.08	< 0.05 < 0.05	< 0.05
2,2-Dichloropropane cis-1,2-Dichloroethene	< 0.05	< 0.08	< 0.05	< 0.05
2-Butanone(MEK)	< 0.5	< 0.8	< 0.5	< 0.5
Bromochloromethane	< 0.05	< 0.08	< 0.05	< 0.05 < 0.5
Tetrahydrofuran(THF)	< 0.5 < 0.05	< 0.8 < 0.08	< 0.5 < 0.05	< 0.05
Chloroform 1,1,1-Trichloroethane	< 0.05 < 0.05	< 0.08	< 0.05	< 0.05
Carbon tetrachloride	< 0.05	< 0.08	< 0.05	< 0.05
1,1-Dichloropropene	< 0.05	< 0.08	< 0.05	< 0.05
Benzene	< 0.05 < 0.05	< 0.08 < 0.08	< 0.05 < 0.05	< 0.05 < 0.05
1,2-Dichloroethane Trichloroethene	< 0.05	< 0.08	< 0.05	< 0.05
1,2-Dichloropropane	< 0.05	< 0.08	< 0.05	< 0.05
Dibromomethane	< 0.05	< 0.08	< 0.05	< 0.05
Bromodichloromethane	< 0.05	< 0.08	< 0.05 < 1	< 0.05 < 1
1,4-Dioxane 4-Methyl-2-pentanone(MIBK)	< 1 < 0.5	< 2 < 0.8	< 0.5	< 0.5
cis-1,3-Dichloropropene	< 0.05	< 0.08	< 0.05	< 0.05
Toluene	< 0.05	< 0.08	< 0.05	< 0.05
trans-1,3-Dichloropropene	< 0.05	< 0.08	< 0.05 < 0.05	< 0.05 < 0.05
1,1,2-Trichloroethane 2-Hexanone	< 0.05 < 0.1	< 0.08 < 0.2	< 0.05 < 0.1	< 0.1
Tetrachloroethene	< 0.05	< 0.08	< 0.05	< 0.05
1,3-Dichloropropane	< 0.05	< 0.08	< 0.05	< 0.05
Dibromochloromethane	< 0.05	< 0.08	< 0.05	< 0.05 < 0.02
1,2-Dibromoethane(EDB)	< 0.02 < 0.05	< 0.03 < 0.08	< 0.02 < 0.05	< 0.02 < 0.05
Chlorobenzene 1,1,1,2-Tetrachloroethane	< 0.05	< 0.08	< 0.05	< 0.05

EAIID#: 227591

EAIID#: 227591

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	Trip Blank	TP-7 0-3.5'	TP-6 9-10'	TP-5 6'
Lab Sample ID:	227591.01	227591.02	227591.03	227591.04
Matrix:	soil	soil	soil	soil
Date Sampled:	6/10/21	6/10/21	6/10/21	6/10/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
		• •		6/15/21
Date of Analysis:	6/14/21	6/14/21	6/15/21	
Analyst:	JAK	JAK	JAK	JAK
Method:	8260C	8260C	8260C	8260C
Dilution Factor:	1	2	1	1
Ethylbenzene	< 0.05	< 0.08	< 0.05	< 0.05
mp-Xylene	< 0.05	< 0.08	< 0.05	< 0.05
o-Xylene	< 0.05	< 0.08	< 0.05	< 0.05
Styrene	< 0.05	< 0.08	< 0.05	< 0.05
Bromoform	< 0.05	< 0.08	< 0.05	< 0.05
IsoPropylbenzene	< 0.05	< 0.08	< 0.05	< 0.05
Bromobenzene	< 0.05	< 0.08	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	< 0.05	< 0.08	< 0.05	< 0.05
1,2,3-Trichloropropane	< 0.05	< 0.08	< 0.05	< 0.05
n-Propylbenzene	< 0.05	< 0.08	< 0.05	< 0.05
2-Chlorotoluene	< 0.05	< 0.08	< 0.05	< 0.05
4-Chlorotoluene	< 0.05	< 0.08	< 0.05	< 0.05
1,3,5-Trimethylbenzene	< 0.05	< 0.08	< 0.05	< 0.05
tert-Butylbenzene	< 0.05	< 0.08	< 0.05	< 0.05
1,2,4-Trimethylbenzene	< 0.05	< 0.08	< 0.05	< 0.05
sec-Butylbenzene	< 0.05	< 0.08	< 0.05	< 0.05
1,3-Dichlorobenzene	< 0.05	< 0.08	< 0.05	< 0.05
p-Isopropyltoluene	< 0.05	< 0.08	< 0.05	< 0.05 < 0.05
1,4-Dichlorobenzene	< 0.05	< 0.08	< 0.05	< 0.05
1,2-Dichlorobenzene	< 0.05	< 0.08	< 0.05	< 0.05 < 0.05
n-Butylbenzene	< 0.05	< 0.08	< 0.05 < 0.05	< 0.05 < 0.05
1,2-Dibromo-3-chloropropane	< 0.05	< 0.08	< 0.05 < 0.05	< 0.05
1,3,5-Trichlorobenzene	< 0.05	< 0.08 < 0.08	< 0.05 < 0.05	< 0.05
1,2,4-Trichlorobenzene	< 0.05	< 0.08	< 0.05 < 0.05	< 0.05
Hexachlorobutadiene	< 0.05 < 0.1	< 0.08 < 0.2	< 0.03	< 0.1
Naphthalene	< 0.1 < 0.05	< 0.2	< 0.05	< 0.05
1,2,3-Trichlorobenzene 4-Bromofluorobenzene (surr)	< 0.05 92 %R	90 %R	140 %R	88 %R
	92 %R 100 %R	102 %R	92 %R	102 %R
1,2-Dichlorobenzene-d4 (surr) Toluene-d8 (surr)	95 %R	95 %R	88 %R	96 %R
1,2-Dichloroethane-d4 (surr)	95 %R 101 %R	102 %R	108 %R	101 %R

TP-7 0-3.5': Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis. TP-6 9-10': Non target interference in the sample resulted in recovery high outside of the acceptance control limits of 70-130%R for the surrogate 4-Bromofluorobenzene (surr).

EAI ID#: 227591

Client: Nobis Group

Matrix: Soil Soil Soil Soil Soil Soil Soil Date Sampled: 8/11/21 6/11/21	Sample ID:	Trip Blank	TP-14 1-2'	TP-1 0-2'	TP-3 2-3'
Matrix	Lab Sample ID:	227591.06	227591.07	227591.08	227591.1
Date Sampled: 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/11/21 6/15/21	•	soil	soil	soil	soil
Date Received: 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/14/21 6/15/21					6/11/21
Units: mg/kg d1 2 Analyster John 400 400 400 200	· · · · · · · · · · · · · · · · · · ·				
Date of Analysis: 6/15/21 6/15					
Analyst: JAK JAK JAK JAK JAK Method: 8260C 8					
Method: 8260C 82	Date of Analysis:	6/15/21	6/15/21	6/15/21	
Dilution Factor: 1	Analyst:	JAK	JAK		JAK
Dichlorodiffuoromethane	Method:	8260C	8260C	8260C	8260C
Chloromethane	Dilution Factor:	1	1	1	2
Vinylchloride	Dichlorodifluoromethane				< 0.2
Bromomethane					
Chloroethane					
Trichiorofluoromethane 0.1					
Diethyl Ether	- · · · · · ·				< 0.2
1,1-Dichloroethene					< 0.1
Tetrabuty Alcohol (TBA)		-			< 4
Methylene chloride < 0.1					
Carbon disulfide	` ,				
Methyl-butyl ether(MTBE) < 0.1					
Ethyl-t-butyl ether(ETBE)					< 0.2
Isopropy ether(DIPE)					< 0.2
trans-1,2-Dichloroethene < 0.05		< 0.1		=	< 0.2
1,1-Dichloroethane < 0.05					
2,2-Dichloropropane < 0.05					
cis-1,2-Dichloroethene < 0.05					
2-Butanone(MEK)					< 0.1
Bromochloromethane					< 1
Chloroform < 0.05	Bromochloromethane	< 0.05			< 0.1
1,1,1-Trichloroethane < 0.05					
Carbon letrachloride < 0.05					
1,1-Dichloropropene < 0.05	• •				
Benzene < 0.05					< 0.1
1,2-Dichloroethane < 0.05					< 0.1
1,2-Dichloropropane < 0.05	1,2-Dichloroethane				< 0.1
Dibromomethane < 0.05	Trichloroethene				
Bromodichloromethane < 0.05					
1,4-Dioxane < 1					
4-Methyl-2-pentanone(MIBK) < 0.5					< 2
cis-1,3-Dichloropropene < 0.05	4-Methyl-2-pentanone(MIBK)				< 1
trans-1,3-Dichloropropene < 0.05					< 0.1
1,1,2-Trichloroethane < 0.05					
2-Hexanone < 0.1					
Tetrachloroethene < 0.05					
1,3-Dichloropropane < 0.05					< 0.1
Dibromochloromethane < 0.05 < 0.05 < 0.05 < 0.04 1,2-Dibromoethane(EDB) < 0.02					< 0.1
Chlorobenzene < 0.05 < 0.05 < 0.05			< 0.05	< 0.05	< 0.1
OTHORODOR TO THE PROPERTY OF T					< 0.04
1,1,1,2-1 etrachioroetnane < 0.05 < 0.05 < 0.05					
	1,1,1,2-1 etrachloroethane	< 0.05	< 0.05	< 0.05	< 0.1

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	Trip Blank	TP-14 1-2'	TP-1 0-2'	TP-3 2-3'
Lab Sample ID:	227591.06	227591.07	227591.08	227591.1
Matrix:	soil	soil	soil	soil
Date Sampled:	6/11/21	6/11/21	6/11/21	6/11/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
	6/15/21	6/15/21	6/15/21	6/15/21
Date of Analysis:				JAK
Analyst:	JAK	JAK	JAK	
Method:	8260C	8260C	8260C	8260C
Dilution Factor:	1	1	1	2
Ethylbenzene	< 0.05	< 0.05	< 0.05	< 0.1
mp-Xylene	< 0.05	< 0.05	< 0.05	< 0.1
o-Xylene	< 0.05	< 0.05	< 0.05	< 0.1
Styrene	< 0.05	< 0.05	< 0.05	5.1
Bromoform	< 0.05	< 0.05	< 0.05	< 0.1
IsoPropylbenzene	< 0.05	< 0.05	< 0.05	< 0.1
Bromobenzene	< 0.05	< 0.05	< 0.05	< 0.1
1,1,2,2-Tetrachloroethane	< 0.05	< 0.05	< 0.05	< 0.1
1,2,3-Trichloropropane	< 0.05	< 0.05	< 0.05	< 0.1
n-Propylbenzene	< 0.05	< 0.05	< 0.05	< 0.1 < 0.1
2-Chlorotoluene	< 0.05	< 0.05	< 0.05	< 0.1
4-Chlorotoluene	< 0.05	< 0.05	< 0.05	< 0.1
1,3,5-Trimethylbenzene	< 0.05	< 0.05	< 0.05 < 0.05	< 0.1
tert-Butylbenzene	< 0.05	< 0.05	< 0.05 < 0.05	< 0.1
1,2,4-Trimethylbenzene	< 0.05	< 0.05	< 0.05 < 0.05	< 0.1
sec-Butylbenzene	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.1
1,3-Dichlorobenzene	< 0.05	< 0.05 < 0.05	< 0.05	< 0.1
p-Isopropyltoluene 1,4-Dichlorobenzene	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.1
1,4-Dichlorobenzene	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.1
n-Butylbenzene	< 0.05 < 0.05	< 0.05	< 0.05	< 0.1
1,2-Dibromo-3-chloropropane	< 0.05 < 0.05	< 0.05	< 0.05	< 0.1
1,3,5-Trichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.1
1,2,4-Trichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.1
Hexachlorobutadiene	< 0.05	< 0.05	< 0.05	< 0.1
Naphthalene	< 0.1	< 0.1	< 0.1	< 0.2
1,2,3-Trichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.1
4-Bromofluorobenzene (surr)	88 %R	88 %R	89 %R	103 %R
1,2-Dichlorobenzene-d4 (surr)	101 %R	102 %R	102 %R	95 %R
Toluene-d8 (surr)	96 %R	95 %R	95 %R	95 %R
1,2-Dichloroethane-d4 (surr)	101 %R	102 %R	103 %R	102 %R

TP-3 2-3': Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis.

EAI ID#: 227591

EAIID#: 227591

Client: Nobis Group

Sample ID:	TP-7 0-3.5'	TP-6 9-10'	TP-5 6'	TP-4 9'
Lab Sample ID:	227591.02	227591.03	227591.04	227591.05
Matrix:	soil	soil	soil	soil
Date Sampled:	6/10/21	6/10/21	6/10/21	6/10/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	6/15/21	6/15/21	6/15/21	6/15/21
Date of Analysis:	6/15/21	6/15/21	6/15/21	6/15/21
Analyst:	JMR	JMR	JMR	JMR
Method:	8270D	8270D	8270D	8270D
Dilution Factor:	1	1	1	1
Naphthalene	< 0.09	< 0.08	< 0.07	< 0.08
2-Methylnaphthalene	< 0.09	< 0.08	< 0.07	< 0.08
1-Methylnaphthalene	< 0.09	< 0.08	< 0.07	< 0.08
Acenaphthylene	< 0.09	< 0.08	< 0.07	< 0.08
Acenaphthene	< 0.09	< 0.08	< 0.07	< 0.08
Fluorene	< 0.09	< 0.08	< 0.07	< 0.08
Phenanthrene	0.17	< 0.08	< 0.07	< 0.08
Anthracene ·	< 0.09	< 0.08	< 0.07	< 0.08
Fluoranthene	0.53	< 0.08	< 0.07	< 0.08
Pyrene	0.61	< 0.08	< 0.07	< 0.08
Benzo[a]anthracene	0.44	< 0.08	< 0.07	< 0.08
Chrysene	0.40	< 0.08	< 0.07	< 0.08
Benzo[b]fluoranthene	0.40	< 0.08	< 0.07	< 0.08
Benzo[k]fluoranthene	0.14	< 0.08	< 0.07	< 0.08
Benzo[a]pyrene	0.35	< 0.08	< 0.07	< 0.08
Indeno[1,2,3-cd]pyrene	0.21	< 0.08	< 0.07	< 0.08
Dibenz[a,h]anthracene	< 0.09	< 0.08	< 0.07	< 0.08
Benzo[g,h,i]perylene	0.22	< 0.08	< 0.07	< 0.08
p-Terphenyl-D14 (surr)	71 %R	79 %R	76 %R	70 %R

EAI ID#: 227591

Client: Nobis Group

	227591.07			
Lab Sample ID:		227591.08	227591.09	227591.1
Matrix:	soil	soil	soil	soil
Date Sampled:	6/11/21	6/11/21	6/11/21	6/11/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
	6/15/21			
Date of Extraction/Prep:		6/15/21	6/15/21	6/15/21
Date of Analysis:	6/15/21	6/15/21	6/15/21	6/15/21
Analyst:	JMR	JMR	JMR	JMR
Method:	8270D	8270D	8270D	8270D
Dilution Factor:	1	1	1	1
Naphthalene	< 0.08	< 0.07	0.086	< 0.09
2-Methylnaphthalene	< 0.08	< 0.07	< 0.08	< 0.09
1-Methylnaphthalene	< 0.08	< 0.07	< 0.08	< 0.09
Acenaphthylene	< 0.08	0.10	0.19	< 0.09
Acenaphthene	< 0.08	< 0.07	0.13	< 0.09
Fluorene	< 0.08	0.073	0.19	< 0.09
Phenanthrene	0.38	0.75	1.5	0.57
Anthracene	0.12	0.22	0.46	0.12
Fluoranthene	0.71	1.3	2.4	0.95
Pyrene	0.59	1.1	2.1	0.79
Benzo[a]anthracene	0.37	0.71	1.3	0.70
Chrysene	0.38	0.69	1.3	0.75
Benzo[b]fluoranthene	0.47	0.83	1.6	0.93
Benzo[k]fluoranthene	0.16	0.33	0.54	0.35
Benzo[a]pyrene	0.36	0.68	1.3	0.65
Indeno[1,2,3-cd]pyrene	0.26	0.32	0.58	0.28
Dibenz[a,h]anthracene	< 0.08	0.081	0.15	< 0.09
Benzo[g,h,i]perylene p-Terphenyl-D14 (surr)	0.22 69 %R	0.24 74 %R	0.43 75 %R	0.21 66 %R

EAI ID#: 227591

Client: Nobis Group

Sample ID:	TP-7 0-3.5'	TP-6 9-10'	TP-5 6'	TP-4 9'
		00 10	,,	
•				
Lab Sample ID:	227591.02	227591.03	227591.04	227591.05
Matrix:	soil	soil	soil	soil
Date Sampled:	6/10/21	6/10/21	6/10/21	6/10/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	6/15/21	6/15/21	6/15/21	6/15/21
Date of Analysis:	6/15/21	6/15/21	6/15/21	6/15/21
Analyst:	JLB	JLB	JLB	JLB
Method:	8100mod	8100mod	8100mod	8100mod
Dilution Factor:	1	1	1	1
TPH (C9-C40)	69	580	< 30	< 30
p-Terphenyl-D14 (surr)	86 %R	97 %R	81 %R	68 %R

EAIID#: 227591

Client: Nobis Group

Sample ID:	TP-14 1-2'	TP-1 0-2'	TP-2 3-4'	TP-3 2-3'
Lab Sample ID:	227591.07	227591.08	227591.09	227591.1
Matrix:	soil	soil	soil	soil
Date Sampled:	6/11/21	6/11/21	6/11/21	6/11/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	6/15/21	6/15/21	6/15/21	6/15/21
Date of Analysis:	6/15/21	6/15/21	6/15/21	6/15/21
Analyst:	JLB	JLB	JLB	JLB
Method:	8100mod	8100mod	8100mod	8100mod
Dilution Factor:	1	1	1	1
TPH (C9-C40)	59	69	93	230
p-Terphenyl-D14 (surr)	84 %R	89 %R	96 %R	107 %R

EAI ID#: 227591

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

				
Sample ID:	TP-7 0-3.5'	TP-6 9-10'	TP-14 1-2'	TP-1 0-2'
Lab Sample ID:	227591.02	227591.03	227591.07	227591.08
Matrix:	soil	soil	soil	soil
Date Sampled:	6/10/21	6/10/21	6/11/21	6/11/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
% Solid:	82.1	86.7	90.3	92.1
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	6/14/21	6/14/21	6/14/21	6/14/21
Date of Analysis:	6/18/21	6/18/21	6/18/21	6/18/21
Analyst:	MB	MB	MB	MB
Extraction Method:	3540C	3540C	3540C	3540C
Analysis Method:	8081B	8081B	8081B	8081B
<u>*</u>			1	1
Dilution Factor:	1	1	1	ı
Aldrin	< 0.006	< 0.006	< 0.006	< 0.005
alpha-BHC	< 0.006	< 0.006	< 0.006	< 0.005
beta-BHC	< 0.006	< 0.006	< 0.006	< 0.005
Lindane(gamma-BHC)	< 0.006	< 0.006	< 0.006	< 0.005
delta-BHC	< 0.006	< 0.006	< 0.006	< 0.005
Chlordane	< 0.02	< 0.02	< 0.02	< 0.02
4,4'-DDT	0.014	0.040	< 0.006	< 0.005
4,4'-DDE	0.012	< 0.006	< 0.006	< 0.005
4,4'-DDD	< 0.006	0.063	< 0.006	< 0.005
Dieldrin	< 0.006	< 0.006	< 0.006	< 0.005
Endosulfan I	< 0.006	< 0.006	< 0.006	< 0.005
Endosulfan II	< 0.006	< 0.006	< 0.006	< 0.005
Endosulfan Sulfate	< 0.006	< 0.006	< 0.006	< 0.005
Endrin	< 0.006	< 0.006	< 0.006	< 0.005
Endrin Aldehyde	< 0.006	< 0.006	< 0.006	< 0.005
Endrin Ketone	< 0.006	< 0.006	< 0.006	< 0.005
Heptachlor	< 0.006	< 0.006	< 0.006	< 0.005
Heptachlor Epoxide	< 0.006	< 0.006	< 0.006	< 0.005
Methoxychlor	< 0.006	< 0.006	< 0.006	< 0.005
Toxaphene	< 0.06	< 0.06	< 0.06	< 0.05
TMX (surr)	61 %R	45 %R	60 %R	53 %R
DCB (surr)	44 %R	56 %R	45 %R	35 %R

Clean-up was performed on the samples and associated batch QC.

EAI ID#: 227591

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	TP-3 2-3'
Sample ID.	

Lab Sample ID:	227591.1
Matrix:	soil
Date Sampled:	6/11/21
Date Received:	6/14/21
% Solid:	81.6
Units:	mg/kg
Date of Extraction/Prep:	6/14/21
Date of Analysis:	6/18/21
Analyst:	MB
Extraction Method:	3540C
Analysis Method:	8081B
Dilution Factor:	1
Aldrin	< 0.006
alpha-BHC	< 0.006
beta-BHC	< 0.006

Aldrin	< 0.006
alpha-BHC	< 0.006
beta-BHC	< 0.006
Lindane(gamma-BHC)	< 0.006
delta-BHC	< 0.006
Chlordane	< 0.02
4,4'-DDT	< 0.006
4,4'-DDE	< 0.006
4,4'-DDD	< 0.006
Dieldrin	< 0.006
Endosulfan I	< 0.006
Endosulfan II	< 0.006
Endosulfan Sulfate	< 0.006
Endrin	< 0.006
Endrin Aldehyde	< 0.006
Endrin Ketone	< 0.006
Heptachlor	< 0.006
Heptachlor Epoxide	< 0.006
Methoxychlor	< 0.006
Toxaphene	< 0.06
TMX (surr)	49 %R
DCB (surr)	37 %R

Clean-up was performed on the samples and associated batch QC.

EAI ID#: 227591

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	TP-7 0-3.5'	TP-6 9-10'	TP-14 1-2'	TP-1 0-2'
Lab Sample ID:	227591.02	227591.03	227591.07	227591.08
Matrix:	soil	soil	soil	soil
Date Sampled:	6/10/21	6/10/21	6/11/21	6/11/21
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21
% Solid:	82.1	86.7	90.3	92.1
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	6/14/21	6/14/21	6/14/21	6/14/21
Date of Analysis:	6/15/21	6/15/21	6/15/21	6/15/21
Analyst:	MB	MB	MB	MB
Extraction Method:	3540C	3540C	3540C	3540C
Analysis Method:	8082A	8082A	8082A	8082A
Dilution Factor:	1	1	1	1
PCB-1016	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1221	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1232	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1242	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1248	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1254	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1260	< 0.02	< 0.02	< 0.02	0.040
PCB-1262	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1268	< 0.02	< 0.02	< 0.02	< 0.02
TMX (surr)	96 %R	58 %R	79 %R	88 %R
DCB (surr)	94 %R	93 %R	87 %R	78 %R

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 227591

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	TP-3 2-3'
------------	-----------

Lab Sample ID:	227591.1
Matrix:	soil
Date Sampled:	6/11/21
Date Received:	6/14/21
% Solid:	81.6
Units:	mg/kg
Date of Extraction/Prep:	6/14/21
Date of Analysis:	6/15/21
Analyst:	MB
Extraction Method:	3540C
Analysis Method:	8082A
Dilution Factor:	1
PCB-1016	< 0.02
PCB-1221	< 0.02
PCB-1232	< 0.02
PCB-1242	< 0.02
PCB-1248	< 0.02
PCB-1254	< 0.02
PCB-1260	< 0.02
PCB-1262	< 0.02
PCB-1268	< 0.02
TMX (surr)	76 %R
DCB (surr)	73 %R

Acid clean-up was performed on the samples and associated batch QC.

\mathcal{M}

LABORATORY REPORT

EAI ID#: 227591

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	TP-6 9-10'	TP-5 6'	TP-4 9'	TP-1 0-2'					
Lab Sample ID:	227591.03	227591.04	227591.05	227591.08					
Matrix:	soil	soil	soil	soil					
Date Sampled:	6/10/21	6/10/21	6/10/21	6/11/21	Analytical		Date of		
Date Received:	6/14/21	6/14/21	6/14/21	6/14/21	Matrix	Units	Analysis	Method	Analyst
Arsenic	2.3	2.9	4.9	8.4	SolTotDry	mg/kg	6/15/21	6020	DS
Barium	8.3	11	20	29	SolTotDry	mg/kg	6/15/21	6020	DS
Cadmium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	6/15/21	6020	DS
Chromium	7.1	8.4	13	14	SolTotDry	mg/kg	6/15/21	6020	DS
Lead	8.4	6.0	7.7	55	SolTotDry	mg/kg	6/15/21	6020	DS
Mercury	< 0.1	< 0.1	< 0.1	< 0.1	SolTotDry	mg/kg	6/15/21	6020	DS
Selenium	0.82	< 0.5	< 0.5	0.65	SolTotDry	mg/kg	6/15/21	6020	DS
Silver	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	6/15/21	6020	DS

Sample ID:

TP-3 2-3'

Lab Sample ID:	227591.1
Matrix:	soil
Date Sampled:	6/11/21
Date Received:	6/14/21
Arsenic	18
Barium	120
Cadmium	1.2
Chromium	15
Lead	63
Mercury	0.13
Selenium	2.4
Silver	< 0.5

Analytical Matrix	Units	Date of Analysis	Method	Analyst
SolTotDry	mg/kg	6/15/21	6020	DS
SolTotDry	mg/kg	6/15/21	6020	DS
SolTotDry	mg/kg	6/15/21	6020	DS
SolTotDry	mg/kg	6/15/21	6020	DS
SolTotDry	mg/kg	6/15/21	6020	DS
SolTotDry	mg/kg	6/15/21	6020	DS
SolTotDry	mg/kg	6/15/21	6020	DS
SolTotDry	mg/kg	6/15/21	6020	DS

EAI ID#: 227591

Client: Nobis Group

Sample ID:	TP-7 0-3.5'	TP-14 1-2'	TP-2 3-4'					
Lab Sample ID:	227591.02	227591.07	227591.09					
Matrix:	soil	soil	soil					
Date Sampled:	6/10/21	6/11/21	6/11/21	Analytical		Date of		
Date Received:	6/14/21	6/14/21	6/14/21	Matrix	Units	Analysis	Method Analyst	Ł
Arsenic	6.6	4.2	6.9	SolTotDry	mg/kg	6/15/21	6020 DS	
Barium	1500	72	43	SolTotDry	mg/kg	6/15/21	6020 DS	
Cadmium	< 0.5	< 0.5	0.59	SolTotDry	mg/kg	6/15/21	6020 DS	
Chromium	13	15	25	SolTotDry	mg/kg	6/15/21	6020 DS	
Lead	4600	99	130	SolTotDry	mg/kg	6/15/21	6020 DS	
Mercury	0.28	0.22	0.28	SolTotDry	mg/kg	6/15/21	6020 DS	
Selenium	1.3	0.54	0.66	SolTotDry	mg/kg	6/15/21	6020 DS	
Silver	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	6/15/21	6020 DS	
Lead	1.4	< 0.5	< 0.5	TCLPsolid	mg/L	6/18/21	6020 DS	

Page of	*					~,,,			,,,,	U			~ I \ I \	'										227	'59 1		
		Во	LD	FIELDS		UIRE		12			CLE	REQ	UES	TED	AN	ALY	SIS.							75.	ricke value		
		Ì			OC.		S	VC	C	1	TCLP		N	ORC	SAN	IC	S	Ī	Micro	эΜ	ETALS	s	Oπ	HER	,		
Sample 1.D.	SAMPLING DATE/TIME *IF COMPOSITE, INDICATE BOTH START & FINISH DATE/TIME	MATRIX (SEE BELOW)	GRAB/*COMPOSITE	224.1 HTBE OUT 226.7 624 VIICS 11, 4 Docane	1021 ME CAS HERMI	ETO CAS		BOIS DIAO NAEPH	188 67 Ci 808 73	di & Gran 1664 TPH 1664	TCLP ISII ABH METALS TOC PEST HERB	830 C800 IS TSS TBS	NO,	T. PHOS. 0, PHOS.	SPEC, CON. T. ALK. COD PARNOS TOC GOC.	, and a second s	DACATE CRATER REGISTRATES	riasgrount lenganistr	Here Courses C. Courses Ferre Courses C. Courses Ferre Courses C.	DESCRETED HERES (LIST BELOW)	iotal Henus (Ust Below)	11.00 8 Witals	5		# 07 Containes	NeC	lotes)H Yul #
Trip blank	6-10-21 /0800	5	6	X						and And											1				1	1	
TP-7 0-3.5'			6	X		X	X		X	777	1	·		Ī		1			_	1	1	X			3		
TP-6 9-10'	1115	5	6	X	1	×			X			,				T	7	5/	(45)		1	X	-		3		
TP-5 6'	1300	5	6		परा	χ	-	_	妣	38	14	14	21	T	7		文に	724	(4)	1		×	1 1		3	1	***************************************
TP-4 9'	V /1450		E	M			X	-	~~~~~~			/IY	Acres and the					-		T		X			3		
Trip blank	6-11-21/0700	5	ف	X																	-				1		
TP-14 1-2'	1 /0830	5	6	X			(X		X			4		All or al							NACOCOLEGA (N	X	,		3	1	
TP-1 0-2'	11015	5	6			X	X		K.									T		Γ		X			3	Ī.,	
TP-2 3-41	1655		6	X W		X	X		N.	1	40	0/1	1/2	i						T		X	:		3		
MATRIX: A-AIR; S-Soil; GW-Ground Wate	V /1140	5	6	يخ		X	CX		×				•									×			3	1.4.	
MATRIX: A-Air; S-Soil; GW-Ground Wate WW-Waste water Preservative: H-HCL; N-HNO;; S-H;SO;; I		KING W	ATER;	M								·															
PROJECT HAHAGER: Belle COMPANY: No 61.3 ADDRESS: B Chapter	ina Eam	e_5	Taj (4)	- 14 - 1	QA	/QC A	REPO B		G			ing (: Yes				24hr		481	Time br*			•	8 KCRA) 13	PΡ	FE, MI	ı Pa, Cu
CITY:	SINIE; PLOFF	ZIP: _<	233	0/		M/ (R. . 2)	MC	P **	1			NIC (5 Day		11	Day	1				LTERED:			No
E-MAIL: SITE NAME: Robin R.	ur.				ICE		- Farth	No No		O	THER _	Equis		-	. † P	•		-	juired					PAH			
Project #: <u>0955560.00</u> State: NH MA ME	VT OTHER: A2		•		SAMPL	FR(S):	4	Ry	بِعج	4							2									•	•
REGULATORY PROGRAM: NPDES: RGP			indensia d		RELU				Y a	DATE:	£	4/1	2)_ HE:	5%	Retern	ED BY	4	ŋL.	EL-L	1	2 40						
QUOTE #:	PO #:				RELH	H OUS	HED 1	1	<u></u>	DATE:	4	2 j	HE:	1/2_	RECEIVE	ED BY	. ,	·		Sm	E Histo	irt:					

51 Antrim Avenue | Concord, NH 03301 | Tel: 603;228.0525 | 1.800;287.0525 | E-Mail: CustomerService@EasternAnalytical.com | www.EasternAnalytical.com (WHITE: Lab Copy GREEN: Customer Copy)

FIELD READINGS:

professional laboratory and drilling services

Bettina Eames Nobis Group 18 Chenell Drive Concord, NH 03301

Laboratory Report for:

Eastern Analytical, Inc. ID: 228404

Client Identification: Robin Rug | 095560.260

Date Received: 7/1/2021

Enclosed are the analytical results per the Chain of Custody for sample(s) in the referenced project. All analyses were performed in accordance with our QA/QC Program, NELAP and other applicable state requirements. All quality control criteria was within acceptance criteria unless noted on the report pages. Results are for the exclusive use of the client named on this report and will not be released to a third party without consent.

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the written approval of the laboratory.

The following standard abbreviations and conventions apply to all EAI reports:

< : "less than" followed by the reporting limit

> : "greater than" followed by the reporting limit

%R: % Recovery

Certifications:

Eastern Analytical, Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012), New York (12072), West Virginia (9910C) and Alabama (41620). Please refer to our website at www.easternanalytical.com for a copy of our certificates and accredited parameters.

References:

- EPA 600/4-79-020, 1983
- Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd edition or noted revision year.
- Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
- Hach Water Analysis Handbook, 4th edition, 1992

If you have any questions regarding the results contained within, please feel free to contact customer service. Unless otherwise requested, we will dispose of the sample(s) 6 weeks from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director Date

·7·21 __

of pages (excluding cover letter)

SAMPLE CONDITIONS PAGE

EAI ID#: 228404

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Temperature upon receipt (°C): 3.8

Received on ice or cold packs (Yes/No): Y

Acceptable temperature range (°C): 0-6

Lab ID	Sample ID	Date Received	Date/Time Sampled		Sample Matrix	% Dry Weight	Exceptions/Comments (other than thermal preservation)
228404.01	Trip Blank	7/1/21	6/29/21	07:00	aqueous		Adheres to Sample Acceptance Policy
228404.02	NB-2	7/1/21	6/30/21	08:00	aqueous		Adheres to Sample Acceptance Policy
228404.03	NB-3	7/1/21	6/29/21	15:10	aqueous		Adheres to Sample Acceptance Policy
228404.04	GZA-1	7/1/21	6/29/21	16:50	aqueous		Adheres to Sample Acceptance Policy
228404.05	GZA-2	7/1/21	6/29/21	17:35	aqueous		Adheres to Sample Acceptance Policy
228404.06	GZA-3	7/1/21	6/29/21	16:15	aqueous		Adheres to Sample Acceptance Policy

All results contained in this report relate only to the above listed samples.

Unless otherwise noted:

- Hold times, preservation, container types, and sample conditions adhered to EPA Protocol.
- Solid samples are reported on a dry weight basis, unless otherwise noted. pH/Corrosivity, Flashpoint, Ignitability, Paint Filter, Conductivity and Specific Gravity are always reported on an "as received" basis.
- Analysis of pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite were performed at the laboratory outside of the recommended 15 minute hold time.
- Samples collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures.

EAI ID#: 228404

Client: Nobis Group

Sample ID:	Trip Blank	NB-2	NB-3	GZA-1
Lab Sample ID:	228404.01	228404.02	228404.03	228404.04
Matrix:	aqueous	aqueous	aqueous	aqueous
Date Sampled:	6/29/21	6/30/21	6/29/21	6/29/21
Date Received:	7/1/21	7/1/21	7/1/21	7/1/21
Units:	ug/L	ug/L	ug/L	ug/L
Date of Analysis:	7/1/21	7/1/21	7/1/21	7/1/21
Analyst:	DGM	DGM	DGM	DGM
Method:	8260C	8260C	8260C	8260C
Dilution Factor:	1	1	1	1
Dichlorodifluoromethane	< 2	< 2	< 2	< 2
Chloromethane	< 2	< 2	< 2	< 2
Vinyl chloride	< 1	< 1	< 1	< 1
Bromomethane Chloroethane	< 2 < 2	< 2 < 2	< 2 < 2	< 2 < 2
Trichlorofluoromethane	< 2	< 2	< 2	< 2
Diethyl Ether	< 2	< 2	< 2	< 2
Acetone	< 10	< 10	< 10	< 10
1,1-Dichloroethene	< 0.5	< 0.5	< 0.5	< 0.5
tert-Butyl Alcohol (TBA)	< 30	< 30	< 30	< 30
Methylene chloride	< 1	< 1	< 1	< 1
Carbon disulfide Meth y l-t-butyl ether(MTBE)	< 2 < 1	< 2 < 1	< 2 < 1	< 2 < 1
Ethyl-t-butyl ether(ETBE)	< 2	< 2	< 2	< 2
Isopropyl ether(DIPE)	< 2	< 2	< 2	< 2
tert-amyl methyl ether(TAME)	< 2	< 2	< 2	< 2
trans-1,2-Dichloroethene	< 1	< 1	< 1	< 1
1,1-Dichloroethane	< 1	< 1	< 1	< 1
2,2-Dichloropropane cis-1,2-Dichloroethene	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
2-Butanone(MEK)	< 10	< 10	< 10	< 10
Bromochloromethane	< 1	< 1	< 1	< 1
Tetrahydrofuran(THF)	< 10	< 10	< 10	< 10
Chloroform	< 1	< 1	< 1	< 1
1,1,1-Trichloroethane	< 1	< 1	< 1	< 1
Carbon tetrachloride	< 1	< 1	< 1	< 1
1,1-Dichloropropene Benzene	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
1,2-Dichloroethane	< 1	<1	< 1	< 1
Trichloroethene	< 1	< 1	< 1	· < 1
1,2-Dichloropropane	< 1	< 1	< 1	< 1
Dibromomethane	< 1	< 1	< 1	< 1
Bromodichloromethane	< 0.5	< 0.5	< 0.5	< 0.5
1,4-Dioxane 4-Methyl-2-pentanone(MIBK)	< 50 < 10	< 50	< 50 < 10	< 50 < 10
cis-1,3-Dichloropropene	< 0.5	< 10 < 0.5	< 0.5	< 0.5
Toluene	< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-Trichloroethane	< 1	< 1	< 1	< 1
2-Hexanone	< 10	< 10	< 10	< 10
Tetrachloroethene	< 1	< 1	<1	< 1
1,3-Dichloropropane Dibromochloromethane	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
1,2-Dibromoethane(EDB)	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	< 1	< 1	< 1	< 1
1,1,1,2-Tetrachloroethane	• 1	`	• 1	٠,

EAI ID#: 228404

Client: Nobis Group

Sample ID:	Trip Blank	NB-2	NB-3	GZA-1
Lab Sample ID:	228404.01	228404.02	228404.03	228404.04
Matrix:	aqueous	aqueous	aqueous	aqueous
Date Sampled:	6/29/21	6/30/21	6/29/21	6/29/21
Date Received:	7/1/21	7/1/21	7/1/21	7/1/21
			ug/L	ug/L
Units:	ug/L	ug/L		
Date of Analysis:	7/1/21	7/1/21	7/1/21	7/1/21
Analyst:	DGM	DGM	DGM	DGM
Method:	8260C	8260C	8260C	8260C
Dilution Factor:	1	1	1	1
Ethylbenzene	< 1	< 1	< 1	< 1
mp-Xylene	< 1	< 1	< 1	< 1
o-Xylene	< 1	< 1	< 1	< 1
Styrene	< 1	< 1	< 1	< 1
Bromoform	< 2	< 2	< 2	< 2
IsoPropylbenzene	< 1	< 1	< 1	< 1
Bromobenzene	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	< 1	< 1	< 1	< 1
1,2,3-Trichloropropane	< 0.5	< 0.5	< 0.5	< 0.5
n-Propylbenzene	< 1	< 1	< 1	< 1
2-Chlorotoluene	< 1	< 1	< 1	< 1
4-Chlorotoluene	< 1	< 1	< 1	< 1
1,3,5-Trimethylbenzene	< 1	< 1	< 1	< 1
tert-Butylbenzene	< 1	< 1	< 1	< 1
1,2,4-Trimethylbenzene	< 1	< 1	< 1	< 1 < 1
sec-Butylbenzene	< 1	< 1	< 1	< 1
1,3-Dichlorobenzene	< 1	< 1	< 1 < 1	< 1
p-Isopropyltoluene	< 1	< 1	< 1	< 1
1,4-Dichlorobenzene	< 1	< 1	< 1	< 1
1,2-Dichlorobenzene	< 1	< 1	< 1	< 1
n-Butylbenzene	< 1	< 1	< 2	< 2
1,2-Dibromo-3-chloropropane	< 2	< 2	<1	< 1
1,3,5-Trichlorobenzene	< 1	< 1 < 1	< 1	< 1
1,2,4-Trichlorobenzene	< 1	•	< 0.5	< 0.5
Hexachlorobutadiene	< 0.5	< 0.5 < 2	< 2	< 2
Naphthalene	< 2 < 0.5	< 2 < 0.5	< 0.5	< 0.5
1,2,3-Trichlorobenzene 4-Bromofluorobenzene (surr)	< 0.5 90 %R	< 0.5 91 %R	91 %R	90 %R
1,2-Dichlorobenzene-d4 (surr)	90 %R 103 %R	101 %R	103 %R	103 %R
Toluene-d8 (surr)	97 %R	97 %R	97 %R	97 %R
1,2-Dichloroethane-d4 (surr)	97 %R 106 %R	105 %R	106 %R	106 %R

EALID#: 228404

Client: Nobis Group

9	31		
Sample ID:	GZA-2	GZA-3	
Lab Sample ID:	228404.05	228404.06	
Matrix:	aqueous	aqueous	
Date Sampled:	6/29/21	6/29/21	
Date Received:	7/1/21	7/1/21	
Units:	ug/L	ug/L	
Date of Analysis:	7/1/21	7/1/21	
Analyst:	DGM	DGM	
Method:	8260C	8260C	
Dilution Factor:	1	1	
Dichlorodifluoromethane	< 2	< 2	
Chloromethane	< 2	< 2	
Vinyl chloride Bromomethane	< 1 < 2	< 1 < 2	
Chloroethane	< 2	< 2	
Trichlorofluoromethane	< 2	< 2	
Diethyl Ether	< 2	< 2	
Acetone	< 10	< 10	
1,1-Dichloroethene	< 0.5	< 0.5	
tert-Butyl Alcohol (TBA)	< 30 < 1	< 30 < 1	
Methylene chloride Carbon disulfide	< 2	< 2	
Methyl-t-butyl ether(MTBE)	< 1	< 1	
Ethyl-t-butyl ether(ETBE)	< 2	< 2	
Isopropyl ether(DIPE)	< 2	< 2	
tert-amyl methyl ether(TAME)	< 2	< 2	
trans-1,2-Dichloroethene 1,1-Dichloroethane	< 1 < 1	< 1 < 1	
2,2-Dichloropropane	< 1	< 1	
cis-1,2-Dichloroethene	< 1	< 1	
2-Butanone(MEK)	< 10	< 10	
Bromochloromethane	< 1	< 1	
Tetrahydrofuran(THF)	< 10	< 10	
Chloroform 1,1,1-Trichloroethane	< 1 < 1	< 1 < 1	
Carbon tetrachloride	< 1	< 1	
1,1-Dichloropropene	< 1	< 1	
Benzene	< 1	< 1	
1,2-Dichloroethane	< 1	< 1	
Trichloroethene	< 1 < 1	< 1 < 1	
1,2-Dichloropropane Dibromomethane	< 1	<1	
Bromodichloromethane	< 0.5	< 0.5	
1,4-Dioxane	< 50	< 50	
4-Methyl-2-pentanone(MIBK)	< 10	< 10	
cis-1,3-Dichloropropene	< 0.5	< 0.5	
Toluene trans-1,3-Dichloropropene	< 1 < 0.5	< 1 < 0.5	
1,1,2-Trichloroethane	< 0.5 < 1	< 1	
2-Hexanone	< 10	< 10	
Tetrachloroethene	< 1	< 1	
1,3-Dichloropropane	< 1	< 1	
Dibromochloromethane	< 1	< 1	
1,2-Dibromoethane(EDB) Chlorobenzene	< 0.5 < 1	< 0.5 < 1	
1,1,1,2-Tetrachioroethane	<1	<1	
.,.,.,2 / 343,	• •	- 1	

EAIID#: 228404

Client: Nobis Group

Sample ID:	GZA-2	GZA-3	
Lab Sample ID:	228404.05	228404.06	
Matrix:	aqueous	aqueous	
Date Sampled:	6/29/21	6/29/21	
Date Received:	7/1/21	7/1/21	
Units:	ug/L	ug/L	
	•	-	
Date of Analysis:	7/1/21	7/1/21	
Analyst:	DGM	DGM	
Method:	8260C	8260C	
Dilution Factor:	1	1	
Ethylbenzene	< 1	< 1	
mp-Xylene	< 1	< 1	
o-Xylene	< 1	< 1	
Styrene	< 1	< 1	
Bromoform	< 2	< 2	
IsoPropylbenzene	< 1	< 1	
Bromobenzene	< 1	< 1	
1,1,2,2-Tetrachloroethane	< 1	< 1	
1,2,3-Trichloropropane	< 0.5	< 0.5	
n-Propylbenzene	< 1	< 1	
2-Chlorotoluene	< 1	< 1	
4-Chlorotoluene	< 1	< 1	
1,3,5-Trimethylbenzene	< 1	< 1	
tert-Butylbenzene	< 1	< 1	
1,2,4-Trimethylbenzene	< 1 < 1	< 1	
sec-Butylbenzene 1,3-Dichlorobenzene	< 1	<1	
p-Isopropyltoluene	< 1	< 1 < 1	
1,4-Dichlorobenzene	< 1	< 1	
1,2-Dichlorobenzene	< 1	< 1	
n-Butylbenzene	<1	< 1	
1,2-Dibromo-3-chloropropane	< 2	< 2	
1,3,5-Trichlorobenzene	< 1	<1	
1,2,4-Trichlorobenzene	< 1	< 1	
Hexachlorobutadiene	< 0.5	< 0.5	
Naphthalene	< 2	< 2	
1,2,3-Trichlorobenzene	< 0.5	< 0.5	
4-Bromofluorobenzene (surr)	90 %R	90 %R	
1,2-Dichlorobenzene-d4 (surr)	102 %R	102 %R	
Toluene-d8 (surr)	97 %R	97 %R	
1,2-Dichloroethane-d4 (surr)	106 %R	105 %R	

EAI ID#: 228404

Client: Nobis Group

Sample ID:	NB-2	NB-3	GZA-1	GZA-2
Lab Sample ID:	228404.02	228404.03	228404.04	228404.05
Matrix:	aqueous	aqueous	aqueous	aqueous
Date Sampled:	6/30/21	6/29/21	6/29/21	6/29/21
Date Received:	7/1/21	7/1/21	7/1/21	7/1/21
Units:		ug/L	ug/L	ug/L
	ug/L			-
Date of Extraction/Prep:	7/1/21	7/1/21	7/1/21	7/1/21
Date of Analysis:	7/1/21	7/1/21	7/1/21	7/1/21
Analyst:	JMR	JMR	JMR	JMR
Method:	8270D	8270D	8270D	8270D
Dilution Factor:	1	1	1	1
Naphthalene	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	< 0.1	< 0.1	< 0.1	< 0.1
1-Methylnaphthalene	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	< 0.1	< 0.1	0.14	< 0.1
Benzo[a]anthracene	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1
Benzo[b]fluoranthene	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1
Benzo[k]fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1
Benzo[a]pyrene	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1
Indeno[1,2,3-cd]pyrene	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1
Dibenz[a,h]anthracene	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1
Benzo[g,h,i]perylene p-Terphenyl-D14 (surr)	< 0.1 51 %R	< 0.1 48 %R	30 %R	66 %R

EALID#: 228404

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	GZA-3
Lab Sample ID:	228404.06
Matrix:	aqueous
Date Sampled:	6/29/21
Date Received:	7/1/21
Units:	ug/L
Date of Extraction/Prep:	7/1/21
Date of Analysis:	7/1/21
Analyst:	JMR
Method:	8270D
Dilution Factor:	1
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.13 < 0.1 0.28 0.24 0.18 0.12 0.18 < 0.1 0.14 < 0.1 < 0.1 < 0.1
Benzo[g,h,i]perylene p-Terphenyl-D14 (surr)	< 0.1 55 %R

EAIID#: 228404

Client: Nobis Group

Client Designation: Robin Rug | 095560.260

Sample ID:	NB-2	NB-3	GZA-1	GZA-2
Lab Sample ID:	228404.02	228404.03	228404.04	228404.05
Matrix:	aqueous	aqueous	aqueous	aqueous
Date Sampled:	6/30/21	6/29/21	6/29/21	6/29/21
Date Received:	7/1/21	7/1/21	7/1/21	7/1/21
Units:	mg/L	mg/L	mg/L	mg/L
Date of Extraction/Prep:	7/1/21	7/1/21	7/1/21	7/1/21
Date of Analysis:	7/1/21	7/1/21	7/1/21	7/1/21
Analyst:	JLB	JLB	JLB	JLB
Method:	8100mod	8100mod	8100mod	8100mod
Dilution Factor:	1	1	1	1
TPH (C9-C40) p-Terphenyl-D14 (surr)	< 0.4 45 %R	< 0.5 44 %R	< 0.5 29 %R	< 0.4 61 %R

GZA-1: The surrogate p-Terphenyl-D14 exhibited recovery below acceptance limits. The results were confirmed by re-analysis.

EALID#: 228404

Client: Nobis Group

p-Terphenyl-D14 (surr)

Client Designation: Robin Rug | 095560.260

Sample ID: GZA-3

Lab Sample ID: 228404.06 Matrix: aqueous 6/29/21 Date Sampled: 7/1/21 Date Received: Units: mg/L 7/1/21 Date of Extraction/Prep: 7/1/21 Date of Analysis: Analyst: JLB Method: 8100mod Dilution Factor: 1 TPH (C9-C40) < 0.4

49 %R

BOLD FIELDS REQUIRED PLEASE CIRCLE REQUESTED ANALYSIS

				I ILLUG		201			77-	V =	@ 11/4·		H E	Q 0 =	3 I L	<i></i>	2147		J.					0=	nā a	-		
				VC					٧.	C	-	TCLF	'		Oi	(G/	MI	1	-		CRO	ΝĒ	TALS	От				
	Sampling Date/Time *{F Composite,	(SEE BELOW)	COMPOSITE	524.2 524.2 MTBE ONLY (8260) 624 VTICS -1, 4 Dioxane		¥) EDB (2)	11 12	MAEPH	PCB 608 PCB 8082	664 TPH 1664	ABN METALS HERB) JOS	BR CI F SO4 NO, NO, NO:NO:NO:NO	O. PHOS.	S. CHLORINE T. AIK.	2 TOC DOC	TOTAL SULFIDE	E REACTIVE SULFIDE IGNITABILITY	E. Coli	ENTEROCOCCI HETEROTROPHIC PLATE COUNT	US (LIST BELOW)	LIST BELOW)			88		,
Sample I.D.	Indicate Both Start & Finish Date / Time	MATRIX	GRAB/*	524.2 524.2 MTBE ON 8260⇒ 6 1, 4 DIOXANE	8021	8015 GRO	SABN (AH)	PHBIO	8015 DRO	PEST 608 PEST 8081	OIL & GREASE	TCLP 1311 VOC PEST	800 CB00	NO, CI	TKN NH3 T. PHOS.	PH T. RE	COD PHENOL	TOTAL CYANIDE	REACTIVE CYANIDE FLASHPOINT	TOTAL COLIFORM FECAL COLIFORM	ENTEROCOCCI HETEROTROPHIC	DISSOLVED META	TOTAL METALS (LIST BELOW)			# OF CONTAINERS	N MeOl	OTES VIAL #
Trip Blank	6/29/21 0700	GN	6				M							ļ	<u> </u>											2		
	6/30/21 0800	(Jh	6				V	1																		나		
1	16/29/21 1510				١		$\sqrt{}$																			4		
	6/29/21 1650	CW	6	J																	İ					4		
	10/29/21 1735							1	, –																	4		
62A-3	6/29/21 1615			1				1																		4		
																					·							
MATRIX: A-AIR; S-SOIL; GW-GROUND WATER WW-WASTE WATER		ING W	ATER;	H																								
Preservative: H-HCL; N-HNO ₃ ; S-H ₂ SO ₄ ; N					:					<u> </u>	<u> </u>	<u> </u>		1_	<u></u>			<u></u>				<u></u>				_	<u> </u>	<i>.</i>
PROJECT MANAGER: BOHLV COMPANY: NODIC	in Eamls					Q\A(C R	EPOR	TING					OPTI OR				n Ai 4hr*	INDOI	Tim 18hr*	E	ME	TALS:	8 RCRA	13 i	P	Fe, Mn	PB, Cu
Appeared 1 V 1/1/V 1/1 V 1	1 A/1 X/ W					A	A E	3 C	:								_		Days			Отн	ER ME1	TALS:		-		
CITY: CMCOCO	STATE: NA	ZIP: _(3	301		J	MA I	YCP ≹		1	EL	ECTRO	DNIC	Орц	ONS		5	Day	•	l Day		SAN	1PLES	FIELD FI	TERED?	Ď	YES	□No
PHONE: 1003-224-	4182	Ехт.: _			[EMP	الم	<u> </u>	°C			PDF	Equi	EXCEL	1			11	Day	·		Noti	ES: (IE:	SPECIAL DETEC	TION LIMI	ts, Billi	ig Info, I	F DIFFERENT)
CITY: CANCOCO PHONE: VOOS-224- E-MAIL: VOONUS O SITE NAME: RODIN RU PROJECT #: 695560, 6	-nobis-gi	<u> </u>	P	COM		ICE?	YES	N	0		0	OTHER .	LŲUI				*Pre	-appr	oval R	lequir	ed	G	21	H-1 A t due	Item	ud	(p)	 1
PROJECT #: 6955100. 6	200				-	'			— }		1					•						P	Al	t due	to t	70/1	oldi	7
STATE: NH MA ME	VT OTHER: R				,	LER(S): _ _ \	· \	12	NO	<u>~</u>	71	· In	1 1	N. L.C	•	<u> </u>) /-A										
REGULATORY PROGRAM: NPDES: RGP	POTW STORMWATER OR					.)(./ ∠INQU				W	DATE:	11	1 /d	() Time:	UM		ECEIVED	By:	·	2		R		GB	00	jec	TV	L5
GWP, OIL FUND, BROWNF					_																	SITE	Histor	rv: <u>Text</u>	rll	M	11	
QUOTE #:	P0 #:				RE	LINQE	IISHE	D B	/ :		DATE:			TIME:		RE	ECEIVED	Ву:						CONTAMINATIO				
_					REI	LINQL	JISHE	D B	/:		DATE:			TIME:		RE	ECEIVED	By:						INGS:				

July 9, 2021

Bettina Eames Nobis Engineering - NH 18 Chenell Drive Concord, NH 03301

Project Location: Bristol, RI

Client Job Number:

Project Number: 095560.00

Laboratory Work Order Number: 21G0029

Jessica Hoffman

Enclosed are results of analyses for samples received by the laboratory on July 1, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
Sample Preparation Information	13
QC Data	14
Air Toxics by EPA Compendium Methods	14
B285631	14
Flag/Qualifier Summary	19
Internal standard Area & RT Summary	20
Continuing Calibration Check	22
Certifications	24
Chain of Custody/Sample Receipt	26

Nobis Engineering - NH 18 Chenell Drive Concord, NH 03301 ATTN: Bettina Eames

REPORT DATE: 7/9/2021

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 095560.00

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21G0029

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Bristol, RI

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
SG-1	21G0029-01	Sub Slab		EPA TO-15	
SG-2	21G0029-02	Sub Slab		EPA TO-15	
SG-4	21G0029-03	Sub Slab		EPA TO-15	
SG-5	21G0029-04	Sub Slab		EPA TO-15	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA TO-15

Qualifications:

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Vinvl Acetate

21G0029-01[SG-1], 21G0029-02[SG-2], 21G0029-03[SG-4], 21G0029-04[SG-5], B285631-BLK1, B285631-BS1, B285631-DUP1, S061346-CCV1, B285631-BS1, B285651-BS1, B28561-BS1, B28561-BS1, B28561-BS1, B28561-BS1, B28561-BS1, B28561-BS1, B28561-BS1,

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

estimated. Analyte & Samples(s) Qualified:

1,2,4-Trichlorobenzene

21G0029-01[SG-1], 21G0029-02[SG-2], 21G0029-03[SG-4], 21G0029-04[SG-5], B285631-BLK1, B285631-BS1, B285631-DUP1, S061346-CCV1, B285631-BS1, B285610-BS1, B285610-BS1, B285610-BS1, B285610-BS1, B285610-BS1, B285610-BS1, B285610-BS1, B285610-BS1, B28561

Z-01

Compound fails the method requirement of 70-130% recovery for the LCS. Is classified by the lab as a difficult compound and passes the in house limits of 50-150%.

Analyte & Samples(s) Qualified:

1,2,4-Trichlorobenzene

Naphthalene

21G0029 - 01[SG-1], 21G0029 - 02[SG-2], 21G0029 - 03[SG-4], 21G0029 - 04[SG-5], B285631 - BLK1, B285631 - BS1, B285631 - DUP1 - BS1, BS285631 - BS1, BS28563

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

na Watslengton

ANALYTICAL RESULTS

Project Location: Bristol, RI Date Received: 7/1/2021 Field Sample #: SG-1 Sample ID: 21G0029-01 Sample Matrix: Sub Slab Sampled: 6/30/2021 14:16 Sample Description/Location: Sub Description/Location: Canister ID: 2057 Canister Size: 6 liter Flow Controller ID: 4067 Sample Type: 30 min Work Order: 21G0029
Initial Vacuum(in Hg): -30
Final Vacuum(in Hg): -7
Receipt Vacuum(in Hg): -5.8
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling:

		I	EPA TO-15						
	pp	bv		ug/n	m3		Date/Ti	me	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzo	ed	Analyst
Acetone	4.9	4.0		12	9.5	2	7/8/21 1	9:38	BRF
Benzene	0.30	0.10		0.95	0.32	2	7/8/21 1	9:38	BRF
Benzyl chloride	ND	0.10		ND	0.52	2	7/8/21 1	9:38	BRF
Bromodichloromethane	ND	0.10		ND	0.67	2	7/8/21 1	9:38	BRF
Bromoform	ND	0.10		ND	1.0	2	7/8/21 1	9:38	BRF
Bromomethane	ND	0.10		ND	0.39	2	7/8/21 1	9:38	BRF
1,3-Butadiene	ND	0.10		ND	0.22	2	7/8/21 1	9:38	BRF
2-Butanone (MEK)	ND	4.0		ND	12	2	7/8/21 1	9:38	BRF
Carbon Disulfide	ND	1.0		ND	3.1	2	7/8/21 1	9:38	BRF
Carbon Tetrachloride	ND	0.10		ND	0.63	2	7/8/21 1	9:38	BRF
Chlorobenzene	ND	0.10		ND	0.46	2	7/8/21 1	9:38	BRF
Chloroethane	ND	0.10		ND	0.26	2	7/8/21 1	9:38	BRF
Chloroform	0.15	0.10		0.74	0.49	2	7/8/21 1	9:38	BRF
Chloromethane	ND	0.20		ND	0.41	2	7/8/21 1	9:38	BRF
Cyclohexane	ND	0.10		ND	0.34	2	7/8/21 1	9:38	BRF
Dibromochloromethane	ND	0.10		ND	0.85	2	7/8/21 1	9:38	BRF
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	7/8/21 1	9:38	BRF
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	7/8/21 1	9:38	BRF
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	7/8/21 1	9:38	BRF
1,4-Dichlorobenzene	1.6	0.10		9.9	0.60	2	7/8/21 1	9:38	BRF
Dichlorodifluoromethane (Freon 12)	ND	0.10		ND	0.49	2	7/8/21 1	9:38	BRF
1,1-Dichloroethane	ND	0.10		ND	0.40	2	7/8/21 1	9:38	BRF
1,2-Dichloroethane	ND	0.10		ND	0.40	2	7/8/21 1	9:38	BRF
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 1	9:38	BRF
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 1	9:38	BRF
trans-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 1	9:38	BRF
1,2-Dichloropropane	ND	0.10		ND	0.46	2	7/8/21 1	9:38	BRF
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	7/8/21 1	9:38	BRF
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	7/8/21 1	9:38	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10		ND	0.70	2	7/8/21 1	9:38	BRF
1,4-Dioxane	ND	1.0		ND	3.6	2	7/8/21 1	9:38	BRF
Ethanol	11	4.0		20	7.5	2	7/8/21 1	9:38	BRF
Ethyl Acetate	ND	1.0		ND	3.6	2	7/8/21 1		BRF
Ethylbenzene	0.20	0.10		0.89	0.43	2	7/8/21 1	9:38	BRF
4-Ethyltoluene	ND	0.10		ND	0.49	2	7/8/21 1	9:38	BRF
Heptane	ND	0.10		ND	0.41	2	7/8/21 1		BRF
Hexachlorobutadiene	ND	0.10		ND	1.1	2	7/8/21 1		BRF
				_		=			-

ANALYTICAL RESULTS

Project Location: Bristol, RI Date Received: 7/1/2021 Field Sample #: SG-1 Sample ID: 21G0029-01 Sample Matrix: Sub Slab Sampled: 6/30/2021 14:16 Sample Description/Location: Sub Description/Location: Canister ID: 2057 Canister Size: 6 liter Flow Controller ID: 4067 Sample Type: 30 min Work Order: 21G0029
Initial Vacuum(in Hg): -30
Final Vacuum(in Hg): -7
Receipt Vacuum(in Hg): -5.8
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling:

			EPA TO-15					
	ppl	bv		ug/r	m3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Hexane	ND	4.0		ND	14	2	7/8/21 19:38	BRF
2-Hexanone (MBK)	ND	0.20		ND	0.82	2	7/8/21 19:38	BRF
Sopropanol	ND	4.0		ND	9.8	2	7/8/21 19:38	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.10		ND	0.36	2	7/8/21 19:38	BRF
Methylene Chloride	ND	1.0		ND	3.5	2	7/8/21 19:38	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.10		ND	0.41	2	7/8/21 19:38	BRF
Naphthalene	ND	0.10	Z-01	ND	0.52	2	7/8/21 19:38	BRF
Propene	ND	4.0		ND	6.9	2	7/8/21 19:38	BRF
Styrene	ND	0.10		ND	0.43	2	7/8/21 19:38	BRF
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	7/8/21 19:38	BRF
Tetrachloroethylene	1.4	0.10		9.6	0.68	2	7/8/21 19:38	BRF
Tetrahydrofuran	ND	1.0		ND	2.9	2	7/8/21 19:38	BRF
Toluene	1.3	0.10		4.8	0.38	2	7/8/21 19:38	BRF
1,2,4-Trichlorobenzene	ND	0.10	Z-01, V-34	ND	0.74	2	7/8/21 19:38	BRF
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	7/8/21 19:38	BRF
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	7/8/21 19:38	BRF
Trichloroethylene	ND	0.10		ND	0.54	2	7/8/21 19:38	BRF
Trichlorofluoromethane (Freon 11)	2.4	0.40		13	2.2	2	7/8/21 19:38	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.40		ND	3.1	2	7/8/21 19:38	BRF
1,2,4-Trimethylbenzene	0.57	0.10		2.8	0.49	2	7/8/21 19:38	BRF
,3,5-Trimethylbenzene	ND	0.10		ND	0.49	2	7/8/21 19:38	BRF
Vinyl Acetate	ND	2.0	V-05	ND	7.0	2	7/8/21 19:38	BRF
Vinyl Chloride	ND	0.10		ND	0.26	2	7/8/21 19:38	BRF
n&p-Xylene	0.37	0.20		1.6	0.87	2	7/8/21 19:38	BRF
o-Xylene	0.18	0.10		0.78	0.43	2	7/8/21 19:38	BRF
Surrogates	% Recov	ery		% REC	C Limits			
4-Bromofluorobenzene (1)		91.0		70-	-130		7/8/21 19:38	

ANALYTICAL RESULTS

EPA TO-15

Project Location: Bristol, RI Date Received: 7/1/2021 Field Sample #: SG-2 Sample ID: 21G0029-02 Sample Matrix: Sub Slab Sampled: 6/30/2021 14:57

Heptane

Hexachlorobutadiene

Sample Description/Location: Sub Description/Location: Canister ID: 1641 Canister Size: 6 liter Flow Controller ID: 4076 Sample Type: 30 min Work Order: 21G0029
Initial Vacuum(in Hg): -28
Final Vacuum(in Hg): -4
Receipt Vacuum(in Hg): -4.6
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling:

	ppl	bv		ug/r	n3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Acetone	4.8	4.0		12	9.5	2	7/8/21 20:30	BRF
Benzene	ND	0.10		ND	0.32	2	7/8/21 20:30	BRF
Benzyl chloride	ND	0.10		ND	0.52	2	7/8/21 20:30	BRF
Bromodichloromethane	ND	0.10		ND	0.67	2	7/8/21 20:30	BRF
Bromoform	ND	0.10		ND	1.0	2	7/8/21 20:30	BRF
Bromomethane	ND	0.10		ND	0.39	2	7/8/21 20:30	BRF
1,3-Butadiene	ND	0.10		ND	0.22	2	7/8/21 20:30	BRF
2-Butanone (MEK)	ND	4.0		ND	12	2	7/8/21 20:30	BRF
Carbon Disulfide	ND	1.0		ND	3.1	2	7/8/21 20:30	BRF
Carbon Tetrachloride	ND	0.10		ND	0.63	2	7/8/21 20:30	BRF
Chlorobenzene	ND	0.10		ND	0.46	2	7/8/21 20:30	BRF
Chloroethane	ND	0.10		ND	0.26	2	7/8/21 20:30	BRF
Chloroform	0.38	0.10		1.8	0.49	2	7/8/21 20:30	BRF
Chloromethane	ND	0.20		ND	0.41	2	7/8/21 20:30	BRF
Cyclohexane	ND	0.10		ND	0.34	2	7/8/21 20:30	BRF
Dibromochloromethane	ND	0.10		ND	0.85	2	7/8/21 20:30	BRF
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	7/8/21 20:30	BRF
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	7/8/21 20:30	BRF
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	7/8/21 20:30	BRF
1,4-Dichlorobenzene	0.44	0.10		2.7	0.60	2	7/8/21 20:30	BRF
Dichlorodifluoromethane (Freon 12)	ND	0.10		ND	0.49	2	7/8/21 20:30	BRF
1,1-Dichloroethane	ND	0.10		ND	0.40	2	7/8/21 20:30	BRF
1,2-Dichloroethane	ND	0.10		ND	0.40	2	7/8/21 20:30	BRF
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 20:30	BRF
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 20:30	BRF
trans-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 20:30	BRF
1,2-Dichloropropane	ND	0.10		ND	0.46	2	7/8/21 20:30	BRF
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	7/8/21 20:30	BRF
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	7/8/21 20:30	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10		ND	0.70	2	7/8/21 20:30	BRF
1,4-Dioxane	ND	1.0		ND	3.6	2	7/8/21 20:30	BRF
Ethanol	33	4.0		62	7.5	2	7/8/21 20:30	BRF
Ethyl Acetate	ND	1.0		ND	3.6	2	7/8/21 20:30	BRF
Ethylbenzene	0.14	0.10		0.59	0.43	2	7/8/21 20:30	BRF
4-Ethyltoluene	ND	0.10		ND	0.49	2	7/8/21 20:30	BRF

ND

ND

0.10

0.10

ND

ND

0.41

1.1

BRF

BRF

7/8/21 20:30

7/8/21 20:30

ANALYTICAL RESULTS

Project Location: Bristol, RI Date Received: 7/1/2021 Field Sample #: SG-2 Sample ID: 21G0029-02 Sample Matrix: Sub Slab Sampled: 6/30/2021 14:57 Sample Description/Location: Sub Description/Location: Canister ID: 1641 Canister Size: 6 liter Flow Controller ID: 4076 Sample Type: 30 min Work Order: 21G0029
Initial Vacuum(in Hg): -28
Final Vacuum(in Hg): -4
Receipt Vacuum(in Hg): -4.6
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling:

			EPA TO-15					
	ppl	bv		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Hexane	ND	4.0		ND	14	2	7/8/21 20:30	BRF
2-Hexanone (MBK)	ND	0.20		ND	0.82	2	7/8/21 20:30	BRF
Isopropanol	ND	4.0		ND	9.8	2	7/8/21 20:30	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.10		ND	0.36	2	7/8/21 20:30	BRF
Methylene Chloride	ND	1.0		ND	3.5	2	7/8/21 20:30	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.10		ND	0.41	2	7/8/21 20:30	BRF
Naphthalene	ND	0.10	Z-01	ND	0.52	2	7/8/21 20:30	BRF
Propene	ND	4.0		ND	6.9	2	7/8/21 20:30	BRF
Styrene	0.10	0.10		0.43	0.43	2	7/8/21 20:30	BRF
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	7/8/21 20:30	BRF
Tetrachloroethylene	2.6	0.10		18	0.68	2	7/8/21 20:30	BRF
Tetrahydrofuran	ND	1.0		ND	2.9	2	7/8/21 20:30	BRF
Toluene	0.42	0.10		1.6	0.38	2	7/8/21 20:30	BRF
1,2,4-Trichlorobenzene	ND	0.10	V-34, Z-01	ND	0.74	2	7/8/21 20:30	BRF
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	7/8/21 20:30	BRF
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	7/8/21 20:30	BRF
Trichloroethylene	0.23	0.10		1.2	0.54	2	7/8/21 20:30	BRF
Trichlorofluoromethane (Freon 11)	ND	0.40		ND	2.2	2	7/8/21 20:30	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.40		ND	3.1	2	7/8/21 20:30	BRF
1,2,4-Trimethylbenzene	ND	0.10		ND	0.49	2	7/8/21 20:30	BRF
1,3,5-Trimethylbenzene	ND	0.10		ND	0.49	2	7/8/21 20:30	BRF
Vinyl Acetate	ND	2.0	V-05	ND	7.0	2	7/8/21 20:30	BRF
Vinyl Chloride	ND	0.10		ND	0.26	2	7/8/21 20:30	BRF
m&p-Xylene	0.39	0.20		1.7	0.87	2	7/8/21 20:30	BRF
o-Xylene	0.20	0.10		0.86	0.43	2	7/8/21 20:30	BRF
Surrogates	% Recov	ery		% REC	C Limits			
4-Bromofluorobenzene (1)		89.6		70-	-130		7/8/21 20:30	

ANALYTICAL RESULTS

Project Location: Bristol, RI Date Received: 7/1/2021 Field Sample #: SG-4 Sample ID: 21G0029-03 Sample Matrix: Sub Slab Sampled: 6/30/2021 15:27

Hexachlorobutadiene

Sample Description/Location: Sub Description/Location: Canister ID: 2205 Canister Size: 6 liter Flow Controller ID: 4311 Sample Type: 30 min Work Order: 21G0029
Initial Vacuum(in Hg): -29
Final Vacuum(in Hg): -4
Receipt Vacuum(in Hg): -4.5
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling:

		I	EPA TO-15					
	ppl	bv		ug/r	m3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Acetone	5.4	4.0		13	9.5	2	7/8/21 21:49	BRF
Benzene	ND	0.10		ND	0.32	2	7/8/21 21:49	BRF
Benzyl chloride	ND	0.10		ND	0.52	2	7/8/21 21:49	BRF
Bromodichloromethane	ND	0.10		ND	0.67	2	7/8/21 21:49	BRF
Bromoform	ND	0.10		ND	1.0	2	7/8/21 21:49	BRF
Bromomethane	ND	0.10		ND	0.39	2	7/8/21 21:49	BRF
1,3-Butadiene	ND	0.10		ND	0.22	2	7/8/21 21:49	BRF
2-Butanone (MEK)	ND	4.0		ND	12	2	7/8/21 21:49	BRF
Carbon Disulfide	ND	1.0		ND	3.1	2	7/8/21 21:49	BRF
Carbon Tetrachloride	ND	0.10		ND	0.63	2	7/8/21 21:49	BRF
Chlorobenzene	ND	0.10		ND	0.46	2	7/8/21 21:49	BRF
Chloroethane	ND	0.10		ND	0.26	2	7/8/21 21:49	BRF
Chloroform	ND	0.10		ND	0.49	2	7/8/21 21:49	BRF
Chloromethane	ND	0.20		ND	0.41	2	7/8/21 21:49	BRF
Cyclohexane	ND	0.10		ND	0.34	2	7/8/21 21:49	BRF
Dibromochloromethane	ND	0.10		ND	0.85	2	7/8/21 21:49	BRF
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	7/8/21 21:49	BRF
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	7/8/21 21:49	BRF
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	7/8/21 21:49	BRF
1,4-Dichlorobenzene	0.19	0.10		1.1	0.60	2	7/8/21 21:49	BRF
Dichlorodifluoromethane (Freon 12)	ND	0.10		ND	0.49	2	7/8/21 21:49	BRF
1,1-Dichloroethane	ND	0.10		ND	0.40	2	7/8/21 21:49	BRF
1,2-Dichloroethane	ND	0.10		ND	0.40	2	7/8/21 21:49	BRF
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 21:49	BRF
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 21:49	BRF
trans-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 21:49	BRF
1,2-Dichloropropane	ND	0.10		ND	0.46	2	7/8/21 21:49	BRF
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	7/8/21 21:49	BRF
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	7/8/21 21:49	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10		ND	0.70	2	7/8/21 21:49	BRF
1,4-Dioxane	ND	1.0		ND	3.6	2	7/8/21 21:49	BRF
Ethanol	23	4.0		44	7.5	2	7/8/21 21:49	BRF
Ethyl Acetate	ND	1.0		ND	3.6	2	7/8/21 21:49	BRF
Ethylbenzene	ND	0.10		ND	0.43	2	7/8/21 21:49	BRF
4-Ethyltoluene	ND	0.10		ND	0.49	2	7/8/21 21:49	BRF
Heptane	ND	0.10		ND	0.41	2	7/8/21 21:49	BRF

ND

0.10

ND

1.1

BRF

7/8/21 21:49

ANALYTICAL RESULTS

Project Location: Bristol, RI Date Received: 7/1/2021 Field Sample #: SG-4 Sample ID: 21G0029-03 Sample Matrix: Sub Slab Sampled: 6/30/2021 15:27 Sample Description/Location: Sub Description/Location: Canister ID: 2205 Canister Size: 6 liter Flow Controller ID: 4311 Sample Type: 30 min Work Order: 21G0029
Initial Vacuum(in Hg): -29
Final Vacuum(in Hg): -4
Receipt Vacuum(in Hg): -4.5
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling:

			EPA TO-15					
	ppl	bv		ug/r	m3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Hexane	ND	4.0		ND	14	2	7/8/21 21:49	BRF
2-Hexanone (MBK)	ND	0.20		ND	0.82	2	7/8/21 21:49	BRF
Isopropanol	ND	4.0		ND	9.8	2	7/8/21 21:49	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.10		ND	0.36	2	7/8/21 21:49	BRF
Methylene Chloride	ND	1.0		ND	3.5	2	7/8/21 21:49	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.10		ND	0.41	2	7/8/21 21:49	BRF
Naphthalene	ND	0.10	Z-01	ND	0.52	2	7/8/21 21:49	BRF
Propene	ND	4.0		ND	6.9	2	7/8/21 21:49	BRF
Styrene	ND	0.10		ND	0.43	2	7/8/21 21:49	BRF
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	7/8/21 21:49	BRF
Tetrachloroethylene	38	0.10		260	0.68	2	7/8/21 21:49	BRF
Tetrahydrofuran	ND	1.0		ND	2.9	2	7/8/21 21:49	BRF
Toluene	0.25	0.10		0.93	0.38	2	7/8/21 21:49	BRF
1,2,4-Trichlorobenzene	ND	0.10	V-34, Z-01	ND	0.74	2	7/8/21 21:49	BRF
1,1,1-Trichloroethane	0.42	0.10		2.3	0.55	2	7/8/21 21:49	BRF
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	7/8/21 21:49	BRF
Trichloroethylene	3.6	0.10		19	0.54	2	7/8/21 21:49	BRF
Trichlorofluoromethane (Freon 11)	77	0.40		430	2.2	2	7/8/21 21:49	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.40		ND	3.1	2	7/8/21 21:49	BRF
1,2,4-Trimethylbenzene	ND	0.10		ND	0.49	2	7/8/21 21:49	BRF
1,3,5-Trimethylbenzene	ND	0.10		ND	0.49	2	7/8/21 21:49	BRF
Vinyl Acetate	ND	2.0	V-05	ND	7.0	2	7/8/21 21:49	BRF
Vinyl Chloride	ND	0.10		ND	0.26	2	7/8/21 21:49	BRF
m&p-Xylene	0.26	0.20		1.1	0.87	2	7/8/21 21:49	BRF
o-Xylene	0.14	0.10		0.62	0.43	2	7/8/21 21:49	BRF
Surrogates	% Recov	ery		% REC	C Limits			
4-Bromofluorobenzene (1)		86.2		70-	130		7/8/21 21:49	

ANALYTICAL RESULTS

Project Location: Bristol, RI Date Received: 7/1/2021 Field Sample #: SG-5 Sample ID: 21G0029-04 Sample Matrix: Sub Slab Sampled: 6/30/2021 15:58 Sample Description/Location: Sub Description/Location: Canister ID: 2010 Canister Size: 6 liter Flow Controller ID: 4213 Sample Type: 30 min Work Order: 21G0029 Initial Vacuum(in Hg): -28 Final Vacuum(in Hg): -5 Receipt Vacuum(in Hg): -6.7 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling:

		I	EPA TO-15					
	ppl	bv		ug/n	n3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Acetone	12	4.0		28	9.5	2	7/8/21 22:40	BRF
Benzene	0.19	0.10		0.61	0.32	2	7/8/21 22:40	BRF
Benzyl chloride	ND	0.10		ND	0.52	2	7/8/21 22:40	BRF
Bromodichloromethane	ND	0.10		ND	0.67	2	7/8/21 22:40	BRF
Bromoform	ND	0.10		ND	1.0	2	7/8/21 22:40	BRF
Bromomethane	ND	0.10		ND	0.39	2	7/8/21 22:40	BRF
1,3-Butadiene	ND	0.10		ND	0.22	2	7/8/21 22:40	BRF
2-Butanone (MEK)	ND	4.0		ND	12	2	7/8/21 22:40	BRF
Carbon Disulfide	ND	1.0		ND	3.1	2	7/8/21 22:40	BRF
Carbon Tetrachloride	ND	0.10		ND	0.63	2	7/8/21 22:40	BRF
Chlorobenzene	ND	0.10		ND	0.46	2	7/8/21 22:40	BRF
Chloroethane	ND	0.10		ND	0.26	2	7/8/21 22:40	BRF
Chloroform	0.17	0.10		0.81	0.49	2	7/8/21 22:40	BRF
Chloromethane	ND	0.20		ND	0.41	2	7/8/21 22:40	BRF
Cyclohexane	ND	0.10		ND	0.34	2	7/8/21 22:40	BRF
Dibromochloromethane	ND	0.10		ND	0.85	2	7/8/21 22:40	BRF
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	7/8/21 22:40	BRF
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	7/8/21 22:40	BRF
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	7/8/21 22:40	BRF
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2	7/8/21 22:40	BRF
Dichlorodifluoromethane (Freon 12)	ND	0.10		ND	0.49	2	7/8/21 22:40	BRF
1,1-Dichloroethane	ND	0.10		ND	0.40	2	7/8/21 22:40	BRF
1,2-Dichloroethane	ND	0.10		ND	0.40	2	7/8/21 22:40	BRF
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 22:40	BRF
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 22:40	BRF
trans-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	7/8/21 22:40	BRF
1,2-Dichloropropane	ND	0.10		ND	0.46	2	7/8/21 22:40	BRF
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	7/8/21 22:40	BRF
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	7/8/21 22:40	BRF
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10		ND	0.70	2	7/8/21 22:40	BRF
1,4-Dioxane	ND	1.0		ND	3.6	2	7/8/21 22:40	BRF
Ethanol	ND	4.0		ND	7.5	2	7/8/21 22:40	BRF
Ethyl Acetate	ND	1.0		ND	3.6	2	7/8/21 22:40	BRF
Ethylbenzene	0.12	0.10		0.52	0.43	2	7/8/21 22:40	BRF
4-Ethyltoluene	ND	0.10		ND	0.49	2	7/8/21 22:40	BRF
Heptane	ND	0.10		ND	0.41	2	7/8/21 22:40	BRF
Hexachlorobutadiene	ND	0.10		ND	1.1	2	7/8/21 22:40	BRF
						-	-	

ANALYTICAL RESULTS

Project Location: Bristol, RI Date Received: 7/1/2021 Field Sample #: SG-5 Sample ID: 21G0029-04 Sample Matrix: Sub Slab Sampled: 6/30/2021 15:58 Sample Description/Location: Sub Description/Location: Canister ID: 2010 Canister Size: 6 liter Flow Controller ID: 4213 Sample Type: 30 min Work Order: 21G0029 Initial Vacuum(in Hg): -28 Final Vacuum(in Hg): -5 Receipt Vacuum(in Hg): -6.7 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling:

			EPA TO-15					
	pp	bv		ug/r	m3		Date/Time	
Analyte	Results	RL	Flag/Qual	Results	RL	Dilution	Analyzed	Analyst
Hexane	ND	4.0		ND	14	2	7/8/21 22:40	BRF
2-Hexanone (MBK)	ND	0.20		ND	0.82	2	7/8/21 22:40	BRF
Isopropanol	ND	4.0		ND	9.8	2	7/8/21 22:40	BRF
Methyl tert-Butyl Ether (MTBE)	ND	0.10		ND	0.36	2	7/8/21 22:40	BRF
Methylene Chloride	ND	1.0		ND	3.5	2	7/8/21 22:40	BRF
4-Methyl-2-pentanone (MIBK)	ND	0.10		ND	0.41	2	7/8/21 22:40	BRF
Naphthalene	ND	0.10	Z-01	ND	0.52	2	7/8/21 22:40	BRF
Propene	ND	4.0		ND	6.9	2	7/8/21 22:40	BRF
Styrene	0.12	0.10		0.53	0.43	2	7/8/21 22:40	BRF
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	7/8/21 22:40	BRF
Tetrachloroethylene	1.7	0.10		11	0.68	2	7/8/21 22:40	BRF
Tetrahydrofuran	ND	1.0		ND	2.9	2	7/8/21 22:40	BRF
Toluene	0.62	0.10		2.3	0.38	2	7/8/21 22:40	BRF
1,2,4-Trichlorobenzene	ND	0.10	V-34, Z-01	ND	0.74	2	7/8/21 22:40	BRF
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2	7/8/21 22:40	BRF
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	7/8/21 22:40	BRF
Trichloroethylene	ND	0.10		ND	0.54	2	7/8/21 22:40	BRF
Trichlorofluoromethane (Freon 11)	ND	0.40		ND	2.2	2	7/8/21 22:40	BRF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.40		ND	3.1	2	7/8/21 22:40	BRF
1,2,4-Trimethylbenzene	ND	0.10		ND	0.49	2	7/8/21 22:40	BRF
1,3,5-Trimethylbenzene	ND	0.10		ND	0.49	2	7/8/21 22:40	BRF
Vinyl Acetate	ND	2.0	V-05	ND	7.0	2	7/8/21 22:40	BRF
Vinyl Chloride	ND	0.10		ND	0.26	2	7/8/21 22:40	BRF
m&p-Xylene	0.30	0.20		1.3	0.87	2	7/8/21 22:40	BRF
o-Xylene	0.13	0.10		0.57	0.43	2	7/8/21 22:40	BRF
Surrogates	% Recov	ery		% REC	C Limits			
4-Bromofluorobenzene (1)		91.8		70-	-130		7/8/21 22:40	

Sample Extraction Data

Prep Method: TO-15 Prep Analytical Method: EP		Pressure	Pre	Pre-Dil Initial	Pre-Dil Final	Default Injection	Actual Injection	
Lab Number [Field ID]	Batch	Dilution	Dilution	mL	mL	mL	mL	Date
21G0029-01 [SG-1]	B285631	1.5	1	N/A	1000	200	150	07/08/21
21G0029-02 [SG-2]	B285631	1.5	1	N/A	1000	200	150	07/08/21
21G0029-03 [SG-4]	B285631	1.5	1	N/A	1000	200	150	07/08/21
21G0029-04 [SG-5]	B285631	1.5	1	N/A	1000	200	150	07/08/21

Methylene Chloride

Naphthalene

Propene

Styrene

4-Methyl-2-pentanone (MIBK)

ND

ND

ND

ND

ND

0.20

0.020

0.020

0.80

0.020

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppb		ug/m3	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Flac/Oucl
Analyte	Results	RL	Results RL	ppbv	Result	%KEC	Limits	KPD	Limit	Flag/Qual
Batch B285631 - TO-15 Prep										
Blank (B285631-BLK1)				Prepared &	Analyzed: 07	/08/21				
Acetone	ND	0.80								
Benzene	ND	0.020								
Benzyl chloride	ND	0.020								
Bromodichloromethane	ND	0.020								
Bromoform	ND	0.020								
Bromomethane	ND	0.020								
,3-Butadiene	ND	0.020								
2-Butanone (MEK)	ND	0.80								
Carbon Disulfide	ND	0.20								
Carbon Tetrachloride	ND	0.020								
Chlorobenzene	ND	0.020								
Chloroethane	ND	0.020								
Chloroform	ND	0.020								
Chloromethane	ND	0.040								
Cyclohexane	ND	0.020								
Dibromochloromethane	ND	0.020								
,2-Dibromoethane (EDB)	ND	0.020								
,2-Dichlorobenzene	ND	0.020								
,3-Dichlorobenzene	ND	0.020								
,4-Dichlorobenzene	ND	0.020								
Dichlorodifluoromethane (Freon 12)	ND	0.020								
1,1-Dichloroethane	ND	0.020								
1,2-Dichloroethane	ND	0.020								
,1-Dichloroethylene	ND	0.020								
eis-1,2-Dichloroethylene	ND	0.020								
rans-1,2-Dichloroethylene	ND	0.020								
1,2-Dichloropropane	ND	0.020								
eis-1,3-Dichloropropene	ND	0.020								
rans-1,3-Dichloropropene	ND	0.020								
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.020								
Freon 114)										
,4-Dioxane	ND	0.20								
Ethanol	ND	0.80								
Ethyl Acetate	ND	0.20								
Ethylbenzene	ND	0.020								
-Ethyltoluene	ND	0.020								
Heptane	ND	0.020								
Hexachlorobutadiene	ND	0.020								
Iexane	ND	0.80								
-Hexanone (MBK)	ND	0.020								
sopropanol	ND	0.80								
Methyl tert-Butyl Ether (MTBE)	ND	0.020								

Z-01

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppbv Results	ug/m3 RL Results	Spike Level RL ppbv	Source Result %R	%REC EC Limits	RPD	RPD Limit	Flag/Qua
Batch B285631 - TO-15 Prep								
Blank (B285631-BLK1)			Prepared & A	Analyzed: 07/08/21				
,1,2,2-Tetrachloroethane	ND 0.)20						
Tetrachloroethylene	ND 0.	020						
[etrahydrofuran	ND 0	20						
Foluene	ND 0.)20						
,2,4-Trichlorobenzene	ND 0.)20						V-34, Z-
,1,1-Trichloroethane	ND 0.	020						
,1,2-Trichloroethane	ND 0.)20						
[richloroethylene	ND 0.)20						
Frichlorofluoromethane (Freon 11)	ND 0.	080						
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND 0.	080						
,2,4-Trimethylbenzene	ND 0.)20						
,3,5-Trimethylbenzene	ND 0.	020						
Vinyl Acetate	ND 0	40						V
/inyl Chloride	ND 0.	020						
n&p-Xylene	ND 0.)40						
o-Xylene	ND 0.	020						
Surrogate: 4-Bromofluorobenzene (1)	7.27		8.00	90.9	70-130			
.CS (B285631-BS1)			Prepared & A	Analyzed: 07/08/21				
Acetone	4.76		5.00	95.1	70-130			
Benzene	4.64		5.00	92.8	70-130			
Benzyl chloride	5.25		5.00	105	70-130			
Bromodichloromethane	5.05		5.00	101	70-130			
Bromoform	4.95		5.00	99.1	70-130			
Bromomethane	3.96		5.00	79.2	70-130			
,3-Butadiene	3.86		5.00	77.1	70-130			
P-Butanone (MEK)	4.68		5.00	93.6	70-130			
Carbon Disulfide	4.58		5.00	91.5	70-130			
Carbon Tetrachloride	4.68		5.00	93.5	70-130			
Chlorobenzene	4.45		5.00	89.0	70-130			
Chloroethane	4.12		5.00	82.4	70-130			
Chloroform	4.30		5.00	86.0				
Chloromethane	4.43		5.00	88.5				
Cyclohexane	4.38		5.00	87.7				
Dibromochloromethane	4.75		5.00	94.9				
,2-Dibromoethane (EDB)	4.75		5.00	95.0				
,2-Dichlorobenzene	4.91		5.00	98.2				
,3-Dichlorobenzene	5.05		5.00	101				
,4-Dichlorobenzene	4.86		5.00	97.2				
Dichlorodifluoromethane (Freon 12)	4.07		5.00	81.4				
,1-Dichloroethane	4.33		5.00	86.7				
,2-Dichloroethane	4.38		5.00	87.6				
,1-Dichloroethylene	4.67		5.00	93.5				
ris-1,2-Dichloroethylene	4.26		5.00	85.2				
rans-1,2-Dichloroethylene	4.21		5.00	84.2				
,2-Dichloropropane	4.78		5.00	95.7				

 ${\it Surrogate: 4-Bromofluorobenzene~(1)}$

7.69

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	ppbv		ug/m3		Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual

LCS (B285631-BS1)		Prepared & Analyz	zed: 07/08/21		
cis-1,3-Dichloropropene	4.44	5.00	88.8	70-130	
trans-1,3-Dichloropropene	4.88	5.00	97.6	70-130	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	3.85	5.00	77.1	70-130	
1,4-Dioxane	4.88	5.00	97.6	70-130	
Ethanol	5.22	5.00	104	70-130	
Ethyl Acetate	3.98	5.00	79.7	70-130	
Ethylbenzene	4.48	5.00	89.6	70-130	
4-Ethyltoluene	4.51	5.00	90.2	70-130	
Heptane	4.93	5.00	98.6	70-130	
Hexachlorobutadiene	4.46	5.00	89.2	70-130	
Hexane	4.61	5.00	92.2	70-130	
2-Hexanone (MBK)	5.81	5.00	116	70-130	
Isopropanol	4.07	5.00	81.5	70-130	
Methyl tert-Butyl Ether (MTBE)	3.77	5.00	75.4	70-130	
Methylene Chloride	5.17	5.00	103	70-130	
4-Methyl-2-pentanone (MIBK)	5.18	5.00	104	70-130	
Naphthalene	3.04	5.00	60.7 *	70-130	Z-01
Propene	4.06	5.00	81.2	70-130	
Styrene	4.52	5.00	90.4	70-130	
1,1,2,2-Tetrachloroethane	5.08	5.00	102	70-130	
Tetrachloroethylene	4.43	5.00	88.6	70-130	
Tetrahydrofuran	4.13	5.00	82.5	70-130	
Toluene	4.44	5.00	88.7	70-130	
1,2,4-Trichlorobenzene	3.37	5.00	67.4 *	70-130	Z-01, V-34
1,1,1-Trichloroethane	4.62	5.00	92.5	70-130	
1,1,2-Trichloroethane	4.80	5.00	95.9	70-130	
Trichloroethylene	4.82	5.00	96.4	70-130	
Trichlorofluoromethane (Freon 11)	4.12	5.00	82.4	70-130	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	4.39	5.00	87.8	70-130	
1,2,4-Trimethylbenzene	4.54	5.00	90.8	70-130	
1,3,5-Trimethylbenzene	4.69	5.00	93.8	70-130	
Vinyl Acetate	4.54	5.00	90.7	70-130	V-05
Vinyl Chloride	4.19	5.00	83.9	70-130	
m&p-Xylene	9.74	10.0	97.4	70-130	
o-Xylene	4.76	5.00	95.2	70-130	

8.00

96.2

70-130

RPD

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Spike Level

Source

%REC

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

ug/m3

ppbv

Analyte	ppb Results	RL	ug/ Results	RL	Spike Level Source ppbv Result	%REC	%REC Limits	RPD	RPD Limit	Flag/Qual
Batch B285631 - TO-15 Prep	results	KL	resuits	KL	рроч					
Ouplicate (B285631-DUP1)		Sour	ce: 21G0029-	02	Prepared & Analyzed: 0	7/08/21				
Acetone	4.9	4.0	12	9.5	4.8			0.0412	25	
Benzene	ND	0.10	ND	0.32	ND				25	
Benzyl chloride	ND	0.10	ND	0.52	ND				25	
romodichloromethane	ND	0.10	ND	0.67	ND				25	
romoform	ND	0.10	ND	1.0	ND				25	
romomethane	ND	0.10	ND	0.39	ND				25	
,3-Butadiene	ND	0.10	ND	0.22	ND				25	
Butanone (MEK)	ND	4.0	ND	12	ND				25	
arbon Disulfide	ND	1.0	ND	3.1	ND				25	
arbon Tetrachloride	ND	0.10	ND	0.63	ND				25	
hlorobenzene	ND	0.10	ND	0.46	ND				25	
hloroethane	ND	0.10	ND	0.26	ND				25	
hloroform	0.36	0.10	1.7	0.49	0.38			5.43	25	
hloromethane	ND	0.20	ND	0.41	ND				25	
yclohexane	ND	0.10	ND	0.34	ND				25	
ibromochloromethane	ND	0.10	ND	0.85	ND				25	
2-Dibromoethane (EDB)	ND	0.10	ND	0.77	ND				25	
2-Dichlorobenzene	ND	0.10	ND	0.60	ND				25	
3-Dichlorobenzene	ND	0.10	ND	0.60	ND				25	
4-Dichlorobenzene	0.43	0.10	2.6	0.60	0.44			3.69	25	
chlorodifluoromethane (Freon 12)	ND	0.10	ND	0.49	ND			3.09	25	
1-Dichloroethane	ND	0.10	ND	0.40	ND				25	
2-Dichloroethane	ND	0.10	ND	0.40	ND				25	
1-Dichloroethylene	ND	0.10	ND	0.40	ND				25	
s-1,2-Dichloroethylene	ND	0.10	ND	0.40	ND				25	
ans-1,2-Dichloroethylene	ND ND	0.10	ND	0.40	ND ND				25	
·										
2-Dichloropropane	ND	0.10	ND	0.46	ND				25	
s-1,3-Dichloropropene	ND	0.10	ND	0.45	ND				25	
ans-1,3-Dichloropropene 2-Dichloro-1,1,2,2-tetrafluoroethane freon 114)	ND ND	0.10 0.10	ND ND	0.45 0.70	ND ND				25 25	
4-Dioxane	ND	1.0	ND	3.6	ND				25	
hanol	33	4.0	62	7.5	33			0.472	25	
hyl Acetate	ND	1.0	ND	3.6	ND			0.1/2	25	
hylbenzene	0.13	0.10	0.55	0.43	0.14			7.63	25	
Ethyltoluene	ND	0.10	ND	0.49	ND			,.05	25	
eptane	ND ND	0.10	ND ND	0.49	ND				25	
exachlorobutadiene	ND ND	0.10	ND ND	1.1	ND				25	
exacinorodutaciene	0.40	4.0	1.4	1.1	0.40			1.50	25	
Hexanone (MBK)		0.10	ND	0.41	ND			1.50	25	
propanol	ND ND	4.0	ND ND	9.8	ND ND				25	
opropanoi ethyl tert-Butyl Ether (MTBE)	ND ND									
• • • • •	ND ND	0.10	ND ND	0.36	ND ND				25	
ethylene Chloride	ND	1.0	ND	3.5	ND				25	
Methyl-2-pentanone (MIBK)	ND	0.10	ND	0.41	ND				25	-
aphthalene	ND	0.10	ND	0.52	ND				25	Z-0
ropene	ND	4.0	ND	6.9	ND				25	
tyrene	0.11	0.10	0.45	0.43	0.10			5.83	25	age 17 (

 $Surrogate: 4 ext{-}Bromofluorobenzene \ (1)$

6.95

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	pp	bv	ug/	m3	Spike Level	Source		%REC			
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual
Batch B285631 - TO-15 Prep											
Duplicate (B285631-DUP1)		Sour	rce: 21G0029-	02	Prepared & A	Analyzed: 07	/08/21				
1,1,2,2-Tetrachloroethane	ND	0.10	ND	0.69		ND				25	
Tetrachloroethylene	2.6	0.10	18	0.68		2.6			0.304	25	
Tetrahydrofuran	ND	1.0	ND	2.9		ND				25	
Toluene	0.44	0.10	1.7	0.38		0.42			4.16	25	
1,2,4-Trichlorobenzene	ND	0.10	ND	0.74		ND				25	V-34, Z-01
1,1,1-Trichloroethane	ND	0.10	ND	0.55		ND				25	
1,1,2-Trichloroethane	ND	0.10	ND	0.55		ND				25	
Trichloroethylene	0.19	0.10	1.0	0.54		0.23			15.2	25	
Trichlorofluoromethane (Freon 11)	0.39	0.40	2.2	2.2		0.38			1.04	25	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.40	ND	3.1		ND				25	
1,2,4-Trimethylbenzene	ND	0.10	ND	0.49		ND				25	
1,3,5-Trimethylbenzene	ND	0.10	ND	0.49		ND				25	
Vinyl Acetate	ND	2.0	ND	7.0		ND				25	V-05
Vinyl Chloride	ND	0.10	ND	0.26		ND				25	
m&p-Xylene	0.39	0.20	1.7	0.87		0.39			0.00	25	
o-Xylene	0.19	0.10	0.83	0.43		0.20			3.08	25	

8.00

86.9

70-130

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.
Z-01	Compound fails the method requirement of 70-130% recovery for the LCS. Is classified by the lab as a difficult compound and passes the in house limits of 50-150%.

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
Initial Cal Check (S052381-ICV1)		Lab File ID: J2025821.D Analyzed: 09/14/20 23:22								
Bromochloromethane (1)	159501	2.873	155833	2.873	102	60 - 140	0.0000	+/-0.50		
1,4-Difluorobenzene (1)	756714	3.475	745760	3.475	101	60 - 140	0.0000	+/-0.50		
Chlorobenzene-d5 (1)	686740	5.06	671608	5.057	102	60 - 140	0.0030	+/-0.50		

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q		
Calibration Check (S061346-CCV1)			Lab File ID: J21A1	89004.D		Analyzed: 07/08/21 11:41					
Bromochloromethane (1)	157356	2.87	155833	2.873	101	60 - 140	-0.0030	+/-0.50			
1,4-Difluorobenzene (1)	638767	3.472	745760	3.475	86	60 - 140	-0.0030	+/-0.50			
Chlorobenzene-d5 (1)	572744	5.057	671608	5.057	85	60 - 140	0.0000	+/-0.50			
LCS (B285631-BS1)			Lab File ID: J21A1	89005.D	•	Analyzed: 07/0	8/21 12:08				
Bromochloromethane (1)	154718	2.867	157356	2.87	98	60 - 140	-0.0030	+/-0.50			
1,4-Difluorobenzene (1)	629101	3.472	638767	3.472	98	60 - 140	0.0000	+/-0.50			
Chlorobenzene-d5 (1)	564227	5.057	572744	5.057	99	60 - 140	0.0000	+/-0.50			
Blank (B285631-BLK1)			Lab File ID: J21A1	89008.D		Analyzed: 07/0	8/21 13:37				
Bromochloromethane (1)	153553	2.853	157356	2.87	98	60 - 140	-0.0170	+/-0.50			
1,4-Difluorobenzene (1)	568518	3.465	638767	3.472	89	60 - 140	-0.0070	+/-0.50			
Chlorobenzene-d5 (1)	521545	5.053	572744	5.057	91	60 - 140	-0.0040	+/-0.50			
SG-1 (21G0029-01)			Lab File ID: J21A1	89019.D	•	Analyzed: 07/0	8/21 19:38				
Bromochloromethane (1)	156119	2.86	157356	2.87	99	60 - 140	-0.0100	+/-0.50			
1,4-Difluorobenzene (1)	569826	3.465	638767	3.472	89	60 - 140	-0.0070	+/-0.50			
Chlorobenzene-d5 (1)	520091	5.053	572744	5.057	91	60 - 140	-0.0040	+/-0.50			
SG-2 (21G0029-02)			Lab File ID: J21A1	89021.D	•	Analyzed: 07/08/21 20:30					
Bromochloromethane (1)	151655	2.86	157356	2.87	96	60 - 140	-0.0100	+/-0.50			
1,4-Difluorobenzene (1)	554837	3.468	638767	3.472	87	60 - 140	-0.0040	+/-0.50			
Chlorobenzene-d5 (1)	524986	5.054	572744	5.057	92	60 - 140	-0.0030	+/-0.50			
Duplicate (B285631-DUP1)			Lab File ID: J21A1	89022.D		Analyzed: 07/0	8/21 20:57				
Bromochloromethane (1)	150490	2.86	157356	2.87	96	60 - 140	-0.0100	+/-0.50			
1,4-Difluorobenzene (1)	555730	3.468	638767	3.472	87	60 - 140	-0.0040	+/-0.50			
Chlorobenzene-d5 (1)	530318	5.054	572744	5.057	93	60 - 140	-0.0030	+/-0.50			
SG-4 (21G0029-03)	Lab File ID: J21A189024.D						8/21 21:49		-		
Bromochloromethane (1)	143197	2.86	157356	2.87	91	60 - 140	-0.0100	+/-0.50			
1,4-Difluorobenzene (1)	550533	3.475	638767	3.472	86	60 - 140	0.0030	+/-0.50	1		
Chlorobenzene-d5 (1)	539904	5.057	572744	5.057	94	60 - 140	0.0000	+/-0.50			

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
SG-5 (21G0029-04)		Lab File ID: J21A189026.D Analyzed: 07/08/21 22:40							
Bromochloromethane (1)	146505	2.86	157356	2.87	93	60 - 140	-0.0100	+/-0.50	
1,4-Difluorobenzene (1)	519978	3.465	638767	3.472	81	60 - 140	-0.0070	+/-0.50	
Chlorobenzene-d5 (1)	479500	5.054	572744	5.057	84	60 - 140	-0.0030	+/-0.50	

CONTINUING CALIBRATION CHECK EPA TO-15

S061346-CCV1

		CONC	. (ppbv)	RE	SPONSE FACTOR	L	% DIFF / DRIFT		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)	
Acetone	A	5.00	4.86	0.9103154	0.8850047		-2.8	30	
Benzene	A	5.00	4.78	0.6606025	0.6318197		-4.4	30	
Benzyl chloride	A	5.00	4.94	0.5965762	0.5894319		-1.2	30	
Bromodichloromethane	A	5.00	5.16	0.4537953	0.4678914		3.1	30	
Bromoform	A	5.00	4.98	0.6600998	0.6568519		-0.5	30	
Bromomethane	A	5.00	3.96	1.001177	0.7927807		-20.8	30	
1,3-Butadiene	A	5.00	4.14	0.6246902	0.5173594		-17.2	30	
2-Butanone (MEK)	A	5.00	4.58	1.30749	1.197997		-8.4	30	
Carbon Disulfide	A	5.00	4.65	2.466469	2.291731		-7.1	30	
Carbon Tetrachloride	A	5.00	4.77	0.5064752	0.4835616		-4.5	30	
Chlorobenzene	A	5.00	4.53	0.7751296	0.7019848		-9.4	30	
Chloroethane	A	5.00	4.05	0.5001442	0.4055517		-18.9	30	
Chloroform	A	5.00	4.33	2.018779	1.748219		-13.4	30	
Chloromethane	A	5.00	4.45	0.6141491	0.5465518		-11.0	30	
Cyclohexane	A	5.00	4.45	0.2849344	0.2536061		-11.0	30	
Dibromochloromethane	A	5.00	4.81	0.6429615	0.6185409		-3.8	30	
1,2-Dibromoethane (EDB)	A	5.00	4.91	0.4841019	0.4754375		-1.8	30	
1,2-Dichlorobenzene	A	5.00	4.75	0.6846313	0.6505552		-5.0	30	
1,3-Dichlorobenzene	A	5.00	4.99	0.7215992	0.7200117		-0.2	30	
1,4-Dichlorobenzene	A	5.00	4.81	0.7134896	0.6866453		-3.8	30	
Dichlorodifluoromethane (Freon 12)	A	5.00	4.11	2.507091	2.06234		-17.7	30	
1,1-Dichloroethane	A	5.00	4.31	1.545303	1.333354		-13.7	30	
1,2-Dichloroethane	A	5.00	4.39	1.058805	0.9295407		-12.2	30	
1,1-Dichloroethylene	A	5.00	4.59	1.160287	1.065569		-8.2	30	
cis-1,2-Dichloroethylene	A	5.00	4.18	1.114268	0.9326927		-16.3	30	
trans-1,2-Dichloroethylene	A	5.00	4.31	1.201908	1.035146		-13.9	30	
1,2-Dichloropropane	A	5.00	4.83	0.2231134	0.2155903		-3.4	30	
cis-1,3-Dichloropropene	A	5.00	4.48	0.3628898	0.3254896		-10.3	30	
trans-1,3-Dichloropropene	A	5.00	4.68	0.3055463	0.2857505		-6.5	30	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 1	A	5.00	4.12	2.650055	2.185475		-17.5	30	
1,4-Dioxane	A	5.00	4.59	0.139387	0.1278714		-8.3	30	
Ethanol	A	5.00	4.16	0.1702165	0.1415898		-16.8	30	
Ethyl Acetate	A	5.00	5.04	0.2280188	0.2298584		0.8	30	
Ethylbenzene	A	5.00	4.62	1.161395	1.073599		-7.6	30	
4-Ethyltoluene	A	5.00	4.58	1.262817	1.157501		-8.3	30	
Heptane	A	5.00	5.01	0.1688454	0.1692536		0.2	30	
Hexachlorobutadiene	A	5.00	4.59	0.6918294	0.6350314		-8.2	30	
Hexane	L	5.00	4.53	0.6531603	0.5889016		-9.4	30	

CONTINUING CALIBRATION CHECK EPA TO-15

S061346-CCV1

		CONC. (ppbv)		RE	SPONSE FACTOR	% DIFF / DRIFT		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
2-Hexanone (MBK)	A	5.00	5.80	0.280065	0.3247831		16.0	30
Isopropanol	A	5.00	5.12	1.001981	1.026442		2.4	30
Methyl tert-Butyl Ether (MTBE)	A	5.00	3.89	2.512535	1.952871		-22.3	30
Methylene Chloride	A	5.00	5.07	0.6621826	0.6719439		1.5	30
4-Methyl-2-pentanone (MIBK)	A	5.00	5.24	0.1531114	0.1603289		4.7	30
Naphthalene	A	5.00	3.90	1.086932	0.8469012		-22.1	30
Propene	A	5.00	4.30	0.4641749	0.3992781		-14.0	30
Styrene	A	5.00	4.54	0.7056488	0.6404174		-9.2	30
1,1,2,2-Tetrachloroethane	A	5.00	5.07	0.638583	0.6475493		1.4	30
Tetrachloroethylene	A	5.00	4.58	0.5546794	0.5080748		-8.4	30
Tetrahydrofuran	A	5.00	4.29	0.7143044	0.6124813		-14.3	30
Toluene	A	5.00	4.55	0.9345011	0.8510525		-8.9	30
1,2,4-Trichlorobenzene	A	5.00	3.58	0.4260284	0.3054852		-28.3	30
1,1,1-Trichloroethane	A	5.00	4.92	0.4496133	0.4424098		-1.6	30
1,1,2-Trichloroethane	A	5.00	4.75	0.3281373	0.3119718		-4.9	30
Trichloroethylene	A	5.00	4.98	0.2979469	0.2969421		-0.3	30
Trichlorofluoromethane (Freon 11)	A	5.00	4.16	2.536841	2.10891		-16.9	30
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113	A	5.00	4.34	1.957735	1.701182		-13.1	30
1,2,4-Trimethylbenzene	A	5.00	4.59	1.026744	0.9424916		-8.2	30
1,3,5-Trimethylbenzene	A	5.00	4.85	1.080978	1.048239		-3.0	30
Vinyl Acetate	A	5.00	3.20	1.400965	0.8956201		-36.1	30 ;
Vinyl Chloride	A	5.00	4.28	0.8554634	0.7320471		-14.4	30
m&p-Xylene	A	10.0	9.93	0.9185043	0.9116743		-0.7	30
o-Xylene	A	5.00	4.86	0.899786	0.8744486		-2.8	30

[#] Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

^{*} Values outside of QC limits

CERTIFICATIONS

Certifications

Certified Analyses included in this Report

Analyte

EPA TO-15 in Air

Acetone

Acetone	AIHA,NY,ME,NH
Benzene	AIHA,FL,NJ,NY,ME,NH,VA
Benzyl chloride	AIHA,FL,NJ,NY,ME,NH,VA
Bromodichloromethane	AIHA,NJ,NY,ME,NH,VA
Bromoform	AIHA,NJ,NY,ME,NH,VA
Bromomethane	AIHA,FL,NJ,NY,ME,NH
1,3-Butadiene	AIHA,NJ,NY,ME,NH,VA
2-Butanone (MEK)	AIHA,FL,NJ,NY,ME,NH,VA
Carbon Disulfide	AIHA,NJ,NY,ME,NH,VA
Carbon Tetrachloride	AIHA,FL,NJ,NY,ME,NH,VA
Chlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA
Chloroethane	AIHA,FL,NJ,NY,ME,NH,VA
Chloroform	AIHA,FL,NJ,NY,ME,NH,VA
Chloromethane	AIHA,FL,NJ,NY,ME,NH,VA
Cyclohexane	AIHA,NJ,NY,ME,NH,VA
Dibromochloromethane	AIHA,NY,ME,NH
1,2-Dibromoethane (EDB)	AIHA,NJ,NY,ME,NH
1,2-Dichlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA
1,3-Dichlorobenzene	AIHA,NJ,NY,ME,NH
1,4-Dichlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA
Dichlorodifluoromethane (Freon 12)	AIHA,NY,ME,NH
1,1-Dichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
1,2-Dichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
1,1-Dichloroethylene	AIHA,FL,NJ,NY,ME,NH,VA
cis-1,2-Dichloroethylene	AIHA,FL,NY,ME,NH,VA
trans-1,2-Dichloroethylene	AIHA,NJ,NY,ME,NH,VA
1,2-Dichloropropane	AIHA,FL,NJ,NY,ME,NH,VA
cis-1,3-Dichloropropene	AIHA,FL,NJ,NY,ME,NH,VA
trans-1,3-Dichloropropene	AIHA,NY,ME,NH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	AIHA,NJ,NY,ME,NH,VA
1,4-Dioxane	AIHA,NJ,NY,ME,NH,VA
Ethanol	AIHA
Ethyl Acetate	AIHA
Ethylbenzene 4 Ethyltelyene	AIHA,FL,NJ,NY,ME,NH,VA
4-Ethyltoluene	AIHA,NJ AIHA,NJ,NY,ME,NH,VA
Heptane	
Hexachlorobutadiene	AIHA,NJ,NY,ME,NH,VA
Hexane (ARDV)	AIHA,FL,NJ,NY,ME,NH,VA
2-Hexanone (MBK)	AIHA
Isopropanol	AIHA,NY,ME,NH
Methyl tert-Butyl Ether (MTBE)	AIHA,FL,NJ,NY,ME,NH,VA
Methylene Chloride	AIHA,FL,NJ,NY,ME,NH,VA
4-Methyl-2-pentanone (MIBK)	AIHA,FL,NJ,NY,ME,NH
Naphthalene	NY,ME,NH
Propene	AIHA
Styrene	AIHA,FL,NJ,NY,ME,NH,VA
1,1,2,2-Tetrachloroethane	AIHA,FL,NJ,NY,ME,NH,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

EPA TO-15 in Air	
Tetrachloroethylene	AIHA,FL,NJ,NY,ME,NH,VA
Tetrahydrofuran	AIHA
Toluene	AIHA,FL,NJ,NY,ME,NH,VA
1,2,4-Trichlorobenzene	AIHA,NJ,NY,ME,NH,VA
1,1,1-Trichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
1,1,2-Trichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
Trichloroethylene	AIHA,FL,NJ,NY,ME,NH,VA
Trichlorofluoromethane (Freon 11)	AIHA,NY,ME,NH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	AIHA,NJ,NY,ME,NH,VA
1,2,4-Trimethylbenzene	AIHA,NJ,NY,ME,NH
1,3,5-Trimethylbenzene	AIHA,NJ,NY,ME,NH
Vinyl Acetate	AIHA,FL,NJ,NY,ME,NH,VA
Vinyl Chloride	AIHA,FL,NJ,NY,ME,NH,VA
m&p-Xylene	AIHA,FL,NJ,NY,ME,NH,VA
o-Xylene	AIHA,FL,NJ,NY,ME,NH,VA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2022
CT	Connecticut Department of Publile Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2022
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2022
RI	Rhode Island Department of Health	LAO00112	12/30/2021
NC	North Carolina Div. of Water Quality	652	12/31/2021
NJ	New Jersey DEP	MA007 NELAP	06/30/2022
FL	Florida Department of Health	E871027 NELAP	06/30/2022
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2022
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2021
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2021
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2022
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2021

Page 26 of 27

http://www.contestlabs.com

Doc #378 Rev 1_03242017

CHAIN OF	CUSTODY	RECORD (AIR)	
----------	---------	--------------	--

39 Spruce Street Page

	i	
Page	of	

4(1)	Fax: 413-525-6405 Email: info@contestlabs.con	_		Cellievier		nd Tip	e		ANAL	YSIS R	ast Lo EQUE	ngmea STED	dow, A	MA 01	028	i.
Company Names	Linair, Milo@contestiabs.com	П	7-Day Due Date:	:Stanc	10-Day	ኢስ	Q Varanlar	Į.					" Hg	T		out completely,
Address: NOVIS		******		5151	rovel Res	urred	MILLOUIN	3					7	1		and retain the copy for your
Phone: 603-224-			1-Day		3-Day	Γ	7	<u>82</u>								ecords
Project Name	Robin Rua		2-Day		4-Day		j							-		
Project Location: BASIT				D.rt.	Deliver	/						5		Lab F	 (V) 058650 90 (1597) 05944 (8) 	canisters and collers must be
Project Number: 09550	~~~,~~~		Format:	PDF 🔀	EXCEL	$\overline{\mathbf{x}}$						Initial Pressure	Final	Receipt	returned w	ithin 15 days of
Project Manager: Bettin	a Eamls	****	Other:			•						P	Pre	ļģ		rental fees will apply
Con-Test Quote Name/Number:	order# 2101044	49		ata Pkg Re							ı	Issa	Pressure	Pressure		
Invoice Recipient: ACOUV	173 Payable - No	210	Email To:	bear	nesa	NOK	15-97	gup con				T e	Гe	1SS-		a canister and controller
	owers -		Fax To #:					1	5					Гe		n please refer
Lab Use	Client Use	Collect	ion Data	Duration	Flow	Rate	Matrix	Volume								est's Air Media eement
Con-Test Work Order#	Client Sample ID / Description	Beginning Date/Time	Ending Date/Time	Total Minutes		m³/min L/min	Code	Liters	Ĥ						Summa Can	Flow
Q	SG-1	w/30/21	18/30/21	Sampled		,		∐ m³	'		_			(2)	10	Controller ID
09	56-2	1345	1416 6136121 1457	30	0.26	$\overline{\cdot}$		9	/		_	-30	╅┈─┤	<u> </u>	2057	4067
- C3	56-4	6/30/21	6/36/21	30	0.21			9			_	-28			1641	407 W
<u> </u>	SG-5	0130121 152 X	1527 6130/31 1558	30	0.31			9			_	-29	 		3905	4311
	30-7	1525	1558	30_	oal	(MIN)	<u>SS</u>	9				-28	-5	` ور	3010	4213
]		ļ											
			<u> </u>		<u> </u>											
					ļ											
comments:																
				Ple	ase use ti	he follo	wing cod	des to indica	ite pos	sible s	ample			<u>-</u>		
1				н	concentr - High: M	ation w Medi	vithin the um: L - L	· Conc Code .ow; C - Cle	colun	ın aboy	e:				<u>Matrix C</u>	odes:
elinguished by (signature)	Date/Time:	A RESIDE			W managasanamatanamatan		(equiken	**	un, 0	- Olikii	UWII				SG = SOI	
MW Voules	- 16/30/21 2030	N.A				13.9(.)	DETA-SECULATION OF THE PERSON	P Required							AMB = A	OOR AIR MBIENT
eceived by: (signature)	Date/T/me:		L		MC MC	P Certif		rm Required	utt	l L v		_	_		SS = SUB D = DUP	SLAB
Jangow -	9ate/Time:					**		P Required	Ш	Щ е		n-t	ESI		BL = BLA	
etinguished by: (signature)		ě			RC	P Certif		rm Required	YIII!	11. 4	MALATI	AL LABO	PATOR	nr.	O = Othe	л ·
eceived by: (signature)	Date/Time:			****	[**										
	7/1 1605	Grine:				··-		Other			and the second		VATION OF STREET			
elinquished by: (signature)		Project Ent	itv		I					N.	ASSESSED NO.	entro tento y datesto	A-LAP	, LLC	Accredite	
			Governmen	nt 🗀	Municipa	ıl it v		MWRA		/RTA	Oth				I — -	CB ONLY
eceived by: (signature)	Date/Time:		Federal	\Box	21 J	,		School	۷ لــا	AIN	片	Chror AIHA	_			Soxhlet
			City	\Box	Brownfie	ıld		MRTA			1	ипА-	LAP,L	T.C.		Non Soxhlet

I Have Not Confirmed Sample Container **Numbers With Lab Staff Before** Relinquishing Over Samples_

Doc# 278 Rev 6 2017

Air Media Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client	$\propto l$	CO(
Recei	ived By	· 7	ベエ	Date	71.16	<u></u>	Time	1605	
How were	the samples		In Cooler	_	On ice		No Ice		<u>.</u>
	ived?		In Box		Ambient		Melted Ice	>	
		Temperature		By Gun #		Actual Temp	-		_
	mpliance? 2		ALA.	By Blank #		_Actual Temp			
	Custody Sea		_ NA	_	Were San	nples Tampere	ed with?	A.	-
	COC Relinqu				Does Chair	n Agree With S	Samples?		_
Are th	nere any loos	se caps/valve	es on any sa	amples?	F				***
Is COC in i	nk/ Legible?		_			-			
Did COC Ir	oclude all	Client	- -	Analysis	7	Sampler	Name	7	
	formation?	Project	7	ID's		Collection D		`	-
		d out and leg	ihle?	T	1	_ Conection D	ales/Tilles		-
Are there R		E	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\/\bo.\(\rac{1}{2}\)	as notified?				
		within holding	utimo?	T VVIIO Wa	is notined?			*	
Jumpies al	Proper Med		1 11110		Individually Ce	etified Canal	τ-		
	•	rip Blanks?		•	Is there enoug		<u> </u>	-	
	7.1.0 (11070)	rip Biariko.	J	•	is there enoug	ii voiuiile !		*	
Conta	iners:	#	Size	Regulator	Duration		Acces	sories:	
*****************	a Cans	5	(o_L	5	30 min	Nut/Ferrule	5	IC Train	
Tedla	r Bags				307307	Tubing		10 11011	
TO-17	Tubes					T-Connector		Shipping Ch	ardes
Rad	liello					Syringe			
Pufs/T	O-11s		*			Tedlar			
Can #'s					Reg#s				
2057			***************************************		406				
11041					SICOR				
3325					4311		******		
3010			· · · · · · · · · · · · · · · · · · ·		4913				
Unusec	Mari a				Pufs/T	- 10-18-			
2144		4029	*******		FUISIT	J-17 S			
CM 7-7		4034							
· · · · · · · · · · · · · · · · · · ·	***								
						······································			
Comments	:		*						
									ł
									1
								Page '	27 of 27

July 13, 2021

Bettina Eames Nobis Engineering - NH 18 Chenell Drive Concord, NH 03301

Project Location: 125 Thames St, Bristol, RI

Client Job Number:

Project Number: 095560.260

Laboratory Work Order Number: 21G0028

Jessica Hoffman

Enclosed are results of analyses for samples received by the laboratory on July 1, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
21G0028-01	5
21G0028-02	6
21G0028-03	7
21G0028-04	8
21G0028-05	9
21G0028-06	10
21G0028-07	11
21G0028-08	12
21G0028-09	13
21G0028-10	14
21G0028-11	15
21G0028-12	16
21G0028-13	17
Sample Preparation Information	18
QC Data	19
Polychlorinated Biphenyls with 3540 Soxhlet Extraction	19
B285514	19
Dual Column RPD Report	20
Flag/Qualifier Summary	26
Certifications	27
Chain of Custody/Sample Receipt	28

Nobis Engineering - NH 18 Chenell Drive Concord, NH 03301 ATTN: Bettina Eames

REPORT DATE: 7/13/2021

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 095560.260

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21G0028

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 125 Thames St, Bristol, RI

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
WS-1	21G0028-01	Wipe		SW-846 8082A	
WS-2	21G0028-02	Wipe		SW-846 8082A	
WS-3	21G0028-03	Wipe		SW-846 8082A	
WS-4	21G0028-04	Wipe		SW-846 8082A	
CW-1	21G0028-05	Wipe		SW-846 8082A	
CW-2	21G0028-06	Wipe		SW-846 8082A	
CW-3	21G0028-07	Wipe		SW-846 8082A	
CW-4	21G0028-08	Wipe		SW-846 8082A	
CW-5	21G0028-09	Wipe		SW-846 8082A	
CW-6	21G0028-10	Wipe		SW-846 8082A	
CW-7	21G0028-11	Wipe		SW-846 8082A	
CW-8	21G0028-12	Wipe		SW-846 8082A	
CW-9	21G0028-13	Wipe		SW-846 8082A	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8082A

Qualifications:

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound. Analyte & Samples(s) Qualified:

21G0028-01[WS-1], 21G0028-02[WS-2], 21G0028-03[WS-3], 21G0028-04[WS-4], 21G0028-05[CW-1], 21G0028-06[CW-2], 21G0028-07[CW-3], 21G0028-08[CW-4], 21G0028-06[CW-2], 21G0028-07[CW-3], 21G0028-08[CW-4], 21G0028-06[CW-2], 21G0028-07[CW-3], 21G0028-08[CW-4], 21G0028-0821G0028-09[CW-5], 21G0028-10[CW-6], 21G0028-11[CW-7], 21G0028-12[CW-8], 21G0028-13[CW-9], B285514-BLK1, B285514-BS1, B285514-BSD1, B285514-

21G0028-01[WS-1], 21G0028-02[WS-2], 21G0028-03[WS-3], 21G0028-04[WS-4], 21G0028-05[CW-1], 21G0028-06[CW-2], 21G0028-07[CW-3], 21G0028-08[CW-4], 21G0028-06[CW-2], 21G0028-07[CW-3], 21G0028-08[CW-4], 21G0028-06[CW-2], 21G0028-07[CW-3], 21G0028-08[CW-4], 21G0028-0821G0028-09[CW-5], 21G0028-10[CW-6], 21G0028-11[CW-7], 21G0028-12[CW-8], 21G0028-13[CW-9], B285514-BLK1, B285514-BS1, B285514-BSD1, B285514-B

21G0028-01[WS-1], 21G0028-02[WS-2], 21G0028-03[WS-3], 21G0028-04[WS-4], 21G0028-05[CW-1], 21G0028-06[CW-2], 21G0028-07[CW-3], 21G0028-08[CW-4], 21G0028-06[CW-2], 21G0028-07[CW-3], 21G0028-08[CW-4], 21G0028-06[CW-2], 21G0028-07[CW-3], 21G0028-08[CW-4], 21G0028-0821G0028-09[CW-5], 21G0028-10[CW-6], 21G0028-11[CW-7], 21G0028-12[CW-8], 21G0028-13[CW-9], B285514-BLK1, B285514-BS1, B285514-BSD1, B285514-

Aroclor-1260 [2C]

21G0028-01[WS-1], 21G0028-02[WS-2], 21G0028-03[WS-3], 21G0028-04[WS-4], 21G0028-05[CW-1], 21G0028-06[CW-2], 21G0028-07[CW-3], 21G0028-08[CW-4], 21G0028-06[CW-2], 21G0028-07[CW-3], 21G0028-08[CW-4], 21G0028-0821G0028-09[CW-5], 21G0028-10[CW-6], 21G0028-11[CW-7], 21G0028-12[CW-8], 21G0028-13[CW-9], B285514-BLK1, B285514-BSD1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Technical Representative

na Watslengton

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021

Field Sample #: WS-1

Sampled: 6/28/2021 13:00

Sample ID: 21G0028-01
Sample Matrix: Wipe

Polychlorinated Bi	phenyls with 3540 S	oxhlet Extraction

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 8:25	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:25	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:25	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:25	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:25	SFM
Aroclor-1254 [1]	0.25	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:25	SFM
Aroclor-1260 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 8:25	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:25	SFM
Aroclor-1268 [2]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:25	SFM
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
Decachlorobiphenyl [1]		71.8	30-150					7/13/21 8:25	
Decachlorobiphenyl [2]		67.9	30-150					7/13/21 8:25	
Tetrachloro-m-xylene [1]		68.0	30-150					7/13/21 8:25	
Tetrachloro-m-xylene [2]		68.0	30-150					7/13/21 8:25	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021
Field Sample #: WS-2

Sampled: 6/28/2021 12:55

Sample ID: 21G0028-02
Sample Matrix: Wipe

Polychlorinated	Dinhanvla with	2540 Carrblat	Extuastion

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 8:43	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:43	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:43	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:43	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:43	SFM
Aroclor-1254 [2]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:43	SFM
Aroclor-1260 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 8:43	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:43	SFM
Aroclor-1268 [2]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 8:43	SFM
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
Decachlorobiphenyl [1]		77.5	30-150					7/13/21 8:43	
Decachlorobiphenyl [2]		74.1	30-150					7/13/21 8:43	
Tetrachloro-m-xylene [1]		72.3	30-150					7/13/21 8:43	
Tetrachloro-m-xylene [2]		72.1	30-150					7/13/21 8:43	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021

Field Sample #: WS-3

Sampled: 6/28/2021 13:10

Sample ID: 21G0028-03
Sample Matrix: Wipe

Polychlorinated Bi	phenyls with 3540 S	Soxhlet Extraction

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 9:00	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:00	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:00	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:00	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:00	SFM
Aroclor-1254 [2]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:00	SFM
Aroclor-1260 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 9:00	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:00	SFM
Aroclor-1268 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:00	SFM
Surrogates		% Recovery	Recovery Limits	S	Flag/Qual				
Decachlorobiphenyl [1]		83.9	30-150					7/13/21 9:00	
Decachlorobiphenyl [2]		80.1	30-150					7/13/21 9:00	
Tetrachloro-m-xylene [1]		82.5	30-150					7/13/21 9:00	
Tetrachloro-m-xylene [2]		82.2	30-150					7/13/21 9:00	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021
Field Sample #: WS-4

Sampled: 6/28/2021 13:20

Sample ID: 21G0028-04
Sample Matrix: Wipe

Polychlorinated Bi	phenyls with 3540 S	Soxhlet Extraction

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 9:18	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:18	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:18	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:18	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:18	SFM
Aroclor-1254 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:18	SFM
Aroclor-1260 [2]	0.20	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 9:18	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:18	SFM
Aroclor-1268 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:18	SFM
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
Decachlorobiphenyl [1]		68.7	30-150					7/13/21 9:18	
Decachlorobiphenyl [2]		65.3	30-150					7/13/21 9:18	
Tetrachloro-m-xylene [1]		69.3	30-150					7/13/21 9:18	
Tetrachloro-m-xylene [2]		69.4	30-150					7/13/21 9:18	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021

Field Sample #: CW-1

Sampled: 6/28/2021 14:00

Sample ID: 21G0028-05
Sample Matrix: Wipe

Polychlorinated Bi	phenyls with 3540 S	oxhlet Extraction

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 9:36	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:36	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:36	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:36	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:36	SFM
Aroclor-1254 [2]	0.32	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:36	SFM
Aroclor-1260 [2]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 9:36	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:36	SFM
Aroclor-1268 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:36	SFM
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
Decachlorobiphenyl [1]		89.0	30-150					7/13/21 9:36	
Decachlorobiphenyl [2]		91.9	30-150					7/13/21 9:36	
Tetrachloro-m-xylene [1]		85.1	30-150					7/13/21 9:36	
Tetrachloro-m-xylene [2]		84.2	30-150					7/13/21 9:36	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021

Field Sample #: CW-2

Sampled: 6/28/2021 15:00

Sample ID: 21G0028-06
Sample Matrix: Wipe

Polychlorinated Bi	phenyls with 3540 S	Soxhlet Extraction

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 9:53	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:53	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:53	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:53	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:53	SFM
Aroclor-1254 [2]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:53	SFM
Aroclor-1260 [2]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 9:53	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:53	SFM
Aroclor-1268 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 9:53	SFM
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
Decachlorobiphenyl [1]		87.6	30-150					7/13/21 9:53	
Decachlorobiphenyl [2]		83.5	30-150					7/13/21 9:53	
Tetrachloro-m-xylene [1]		85.7	30-150					7/13/21 9:53	
Tetrachloro-m-xylene [2]		84.6	30-150					7/13/21 9:53	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021

Field Sample #: CW-3

Sampled: 6/28/2021 14:05

Sample ID: 21G0028-07
Sample Matrix: Wipe

Polychlorinated Bi	phenyls with 3540 S	oxhlet Extraction

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 10:11	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:11	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:11	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:11	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:11	SFM
Aroclor-1254 [2]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:11	SFM
Aroclor-1260 [2]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 10:11	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:11	SFM
Aroclor-1268 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:11	SFM
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
Decachlorobiphenyl [1]		88.5	30-150					7/13/21 10:11	
Decachlorobiphenyl [2]		84.3	30-150					7/13/21 10:11	
Tetrachloro-m-xylene [1]		78.3	30-150					7/13/21 10:11	
Tetrachloro-m-xylene [2]		79.0	30-150					7/13/21 10:11	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021

Field Sample #: CW-4

Sampled: 6/28/2021 15:10

Sample ID: 21G0028-08
Sample Matrix: Wipe

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 10:29	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:29	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:29	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:29	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:29	SFM
Aroclor-1254 [2]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:29	SFM
Aroclor-1260 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 10:29	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:29	SFM
Aroclor-1268 [2]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:29	SFM
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
Decachlorobiphenyl [1]		70.0	30-150					7/13/21 10:29	
Decachlorobiphenyl [2]		66.8	30-150					7/13/21 10:29	
Tetrachloro-m-xylene [1]		75.4	30-150					7/13/21 10:29	
Tetrachloro-m-xylene [2]		75.3	30-150					7/13/21 10:29	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021

Field Sample #: CW-5

Sampled: 6/28/2021 14:35

Sample ID: 21G0028-09
Sample Matrix: Wipe

Polychlorinated Bi	phenyls with 3540 S	oxhlet Extraction

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 10:46	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:46	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:46	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:46	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:46	SFM
Aroclor-1254 [2]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:46	SFM
Aroclor-1260 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 10:46	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:46	SFM
Aroclor-1268 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 10:46	SFM
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				-
Decachlorobiphenyl [1]		92.6	30-150					7/13/21 10:46	
Decachlorobiphenyl [2]		85.4	30-150					7/13/21 10:46	
Tetrachloro-m-xylene [1]		78.9	30-150					7/13/21 10:46	
Tetrachloro-m-xylene [2]		79.3	30-150					7/13/21 10:46	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021

Field Sample #: CW-6

Sampled: 6/28/2021 14:30

Sample ID: 21G0028-10
Sample Matrix: Wipe

Polychlorinated :	Rinhenvls	with 3540	Soxblet E	xtraction

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 11:04	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:04	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:04	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:04	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:04	SFM
Aroclor-1254 [2]	0.27	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:04	SFM
Aroclor-1260 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 11:04	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:04	SFM
Aroclor-1268 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:04	SFM
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
Decachlorobiphenyl [1]		102	30-150					7/13/21 11:04	
Decachlorobiphenyl [2]		97.2	30-150					7/13/21 11:04	
Tetrachloro-m-xylene [1]		94.3	30-150					7/13/21 11:04	
Tetrachloro-m-xylene [2]		94.0	30-150					7/13/21 11:04	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021

Field Sample #: CW-7

Sampled: 6/28/2021 15:20

Sample ID: 21G0028-11
Sample Matrix: Wipe

Polychlorinated B	iphenvls with 3540	Soxhlet Extraction

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 11:22	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:22	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:22	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:22	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:22	SFM
Aroclor-1254 [2]	0.47	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:22	SFM
Aroclor-1260 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 11:22	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:22	SFM
Aroclor-1268 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:22	SFM
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
Decachlorobiphenyl [1]		96.1	30-150					7/13/21 11:22	
Decachlorobiphenyl [2]		86.7	30-150					7/13/21 11:22	
Tetrachloro-m-xylene [1]		85.2	30-150					7/13/21 11:22	
Tetrachloro-m-xylene [2]		85.8	30-150					7/13/21 11:22	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021
Field Sample #: CW-8

Sampled: 6/28/2021 15:30

Sample ID: 21G0028-12
Sample Matrix: Wipe

Polychlorinated	Dinhanvla with	2540 Carrblat	Extuastion

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 11:39	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:39	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:39	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:39	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:39	SFM
Aroclor-1254 [2]	0.40	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:39	SFM
Aroclor-1260 [2]	0.35	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 11:39	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:39	SFM
Aroclor-1268 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:39	SFM
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
Decachlorobiphenyl [1]		75.0	30-150					7/13/21 11:39	
Decachlorobiphenyl [2]		71.6	30-150					7/13/21 11:39	
Tetrachloro-m-xylene [1]		75.8	30-150					7/13/21 11:39	
Tetrachloro-m-xylene [2]		76.3	30-150					7/13/21 11:39	

Project Location: 125 Thames St, Bristol, RI Sample Description: Work Order: 21G0028

Date Received: 7/1/2021

Field Sample #: CW-9

Sampled: 6/28/2021 15:05

Sample ID: 21G0028-13
Sample Matrix: Wipe

Polychlorinated	Dinhanvla with	2540 Carrblat	Extuastion

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 11:57	SFM
Aroclor-1221 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:57	SFM
Aroclor-1232 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:57	SFM
Aroclor-1242 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:57	SFM
Aroclor-1248 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:57	SFM
Aroclor-1254 [2]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:57	SFM
Aroclor-1260 [1]	ND	0.20	μg/Wipe	1	R-05	SW-846 8082A	7/8/21	7/13/21 11:57	SFM
Aroclor-1262 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:57	SFM
Aroclor-1268 [1]	ND	0.20	μg/Wipe	1		SW-846 8082A	7/8/21	7/13/21 11:57	SFM
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				
Decachlorobiphenyl [1]		89.0	30-150					7/13/21 11:57	
Decachlorobiphenyl [2]		83.1	30-150					7/13/21 11:57	
Tetrachloro-m-xylene [1]		91.0	30-150					7/13/21 11:57	
Tetrachloro-m-xylene [2]		90.9	30-150					7/13/21 11:57	

Sample Extraction Data

Prep Method: SW-846 3540C Analytical Method: SW-846 8082A

Lab Number [Field ID]	Batch	Initial [Wipe]	Final [mL]	Date
21G0028-01 [WS-1]	B285514	1.00	10.0	07/08/21
21G0028-02 [WS-2]	B285514	1.00	10.0	07/08/21
21G0028-03 [WS-3]	B285514	1.00	10.0	07/08/21
21G0028-04 [WS-4]	B285514	1.00	10.0	07/08/21
21G0028-05 [CW-1]	B285514	1.00	10.0	07/08/21
21G0028-06 [CW-2]	B285514	1.00	10.0	07/08/21
21G0028-07 [CW-3]	B285514	1.00	10.0	07/08/21
21G0028-08 [CW-4]	B285514	1.00	10.0	07/08/21
21G0028-09 [CW-5]	B285514	1.00	10.0	07/08/21
21G0028-10 [CW-6]	B285514	1.00	10.0	07/08/21
21G0028-11 [CW-7]	B285514	1.00	10.0	07/08/21
21G0028-12 [CW-8]	B285514	1.00	10.0	07/08/21
21G0028-13 [CW-9]	B285514	1.00	10.0	07/08/21

QUALITY CONTROL

Polychlorinated Biphenyls with 3540 Soxhlet Extraction - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B285514 - SW-846 3540C										
Blank (B285514-BLK1)				Prepared: 07	//08/21 Anal	yzed: 07/13/2	21			
Aroclor-1016	ND	0.20	$\mu g/Wipe$							R-05
Aroclor-1016 [2C]	ND	0.20	μg/Wipe							R-05
Aroclor-1221	ND	0.20	μg/Wipe							
Aroclor-1221 [2C]	ND	0.20	μg/Wipe							
Aroclor-1232	ND	0.20	μg/Wipe							
Aroclor-1232 [2C]	ND	0.20	μg/Wipe							
Aroclor-1242	ND	0.20	μg/Wipe							
aroclor-1242 [2C]	ND	0.20	μg/Wipe							
Aroclor-1248	ND	0.20	μg/Wipe							
Aroclor-1248 [2C]	ND	0.20	μg/Wipe							
Aroclor-1254	ND	0.20	$\mu g/Wipe$							
Aroclor-1254 [2C]	ND	0.20	μg/Wipe							
Aroclor-1260	ND	0.20	μg/Wipe							R-05
Aroclor-1260 [2C]	ND	0.20	μg/Wipe							R-05
croclor-1262	ND	0.20	μg/Wipe							
aroclor-1262 [2C]	ND	0.20	μg/Wipe							
roclor-1268	ND	0.20	μg/Wipe							
roclor-1268 [2C]	ND	0.20	μg/Wipe							
urrogate: Decachlorobiphenyl	1.60		μg/Wipe	2.00		80.2	30-150			
urrogate: Decachlorobiphenyl [2C]	1.53		μg/Wipe	2.00		76.4	30-150			
urrogate: Tetrachloro-m-xylene	1.54		μg/Wipe	2.00		76.9	30-150			
urrogate: Tetrachloro-m-xylene [2C]	1.53		μg/Wipe	2.00		76.7	30-150			
CS (B285514-BS1)				Prepared: 07	7/08/21 Anal	yzed: 07/13/2	21			
croclor-1016	0.49	0.20	μg/Wipe	0.500		97.3	40-140			R-05
roclor-1016 [2C]	0.48	0.20	μg/Wipe	0.500		96.9	40-140			R-05
aroclor-1260	0.48	0.20	μg/Wipe	0.500		96.7	40-140			R-05
roclor-1260 [2C]	0.44	0.20	μg/Wipe	0.500		87.5	40-140			R-05
urrogate: Decachlorobiphenyl	1.93		μg/Wipe	2.00		96.4	30-150			
urrogate: Decachlorobiphenyl [2C]	1.84		μg/Wipe	2.00		92.0	30-150			
urrogate: Tetrachloro-m-xylene	1.73		μg/Wipe	2.00		86.7	30-150			
urrogate: Tetrachloro-m-xylene [2C]	1.72		μg/Wipe	2.00		86.1	30-150			
CS Dup (B285514-BSD1)				Prepared: 07	//08/21 Anal	yzed: 07/13/2	21			
croclor-1016	0.35	0.20	μg/Wipe	0.500		69.1	40-140	33.9	* 30	R-05
roclor-1016 [2C]	0.35	0.20	μg/Wipe	0.500		70.2	40-140	31.9		R-05
Aroclor-1260	0.32	0.20	μg/Wipe	0.500		64.5	40-140	40.0	* 30	R-05
aroclor-1260 [2C]	0.28	0.20	μg/Wipe	0.500		56.8	40-140	42.5		R-05
urrogate: Decachlorobiphenyl	1.20		μg/Wipe	2.00		59.8	30-150			
surrogate: Decachlorobiphenyl [2C]	1.15		μg/Wipe	2.00		57.7	30-150			
Surrogate: Tetrachloro-m-xylene	1.23		μg/Wipe	2.00		61.5	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.24		μg/Wipe	2.00		61.9	30-150			

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

WS-1	

SW-846 8082A

2

0.000

La	b Sample ID: 210	G0028-01		Da	ate(s) Analy	zed: 07/13/2021	07/1	3/2021
Ins	strument ID (1):			In	strument ID	(2):		
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm)
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD	
				FROM	TO			
	Aroclor-1254	1	0.000	0.000	0.000	0.25		

0.000

0.000

0.21

17.4

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

CW-1		

SW-846 8082A

0.000

Lab Sample ID: 21G0028-05		D	Date(s) Analyzed: 07/13/2021		07/13/2021			
Instrument ID (1):				In	strument ID	(2):		
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm)
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD	
	7.10 (E11E	002	111	FROM	ТО	CONCENTIVATION	701111111111111111111111111111111111111	
	Aroclor-1254	1	0.000	0.000	0.000	0.25		

0.000

0.000

0.32

24.6

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

CW-7		

SW-846 8082A

Lab Sample ID: 21G0028-11		D	Date(s) Analyzed: 07/13/2021		07/13/2021			
Instrument ID (1):				Instrument ID (2):		(2):		
G	C Column (1):	ID:	(m	ım) G	C Column (2	2):	ID:	(mm
	ANALYTE	COL	RT	RT W	NDOW	CONCENTRATION	%RPD	
	7 (1 7 / L 1 1 L		111	FROM	ТО	OONOENTIVATION	701111111	
	Aroclor-1254	1	0.000	0.000	0.000	0.45		

0.000

0.000

0.47

4.4

0.000

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

01110	
CW-8	

SW-846 8082A

Lab Sample ID: 210		1G0028-12		D	ate(s) Analy	zed: 07/13/2021	07/13/2021	
In	strument ID (1):			In	strument ID	(2):		
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm
	ANALYTE	COL	RT	RT W	INDOW	CONCENTRATION	%RPD]
	ANALITE	COL	111	FROM	то	CONCENTRATION	70TTED	
	Aroclor-1260	1	0.000	0.000	0.000	0.30]
		2	0.000	0.000	0.000	0.35	15.4	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS		

SW-846 8082A

Lab Sample ID:	B285514-BS1		Date(s) Analyzed:	07/13/2021	07/13/	/2021
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
7,10,12172	OOL	111	FROM	TO	OONOLIVITUUTOIV	70111 D
Aroclor-1016	1	0.000	0.000	0.000	0.49	
	2	0.000	0.000	0.000	0.48	2.1
Aroclor-1260	1	0.000	0.000	0.000	0.48	
	2	0.000	0.000	0.000	0.44	8.7

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	Dup	

SW-846 8082A

Lab Sample ID:	B285514-BSD1		Date(s) Analyzed:	07/13/2021	07/13	/2021
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION %RI				
7,10,12172	002	111	FROM	TO	OONOLIVITUUTION	70111 13			
Aroclor-1016	1	0.000	0.000	0.000	0.35				
	2	0.000	0.000	0.000	0.35	0.0			
Aroclor-1260	1	0.000	0.000	0.000	0.32				
	2	0.000	0.000	0.000	0.28	13.3			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

No certified Analyses included in this Report

 $Con-Test, a\ Pace\ Environmental\ Laboratory, operates\ under\ the\ following\ certifications\ and\ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2022
CT	Connecticut Department of Publilc Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2022
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2022
RI	Rhode Island Department of Health	LAO00112	12/30/2021
NC	North Carolina Div. of Water Quality	652	12/31/2021
NJ	New Jersey DEP	MA007 NELAP	06/30/2022
FL	Florida Department of Health	E871027 NELAP	06/30/2022
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2022
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2021
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2021
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2022
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2021

Page Analytical's	CHAIN-OF-CUSTODY Analytical Request Document									LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here											
Pace Analytical*	Chain-c	of-Custody	/ is a LEGAL [is a LEGAL DOCUMENT - Complete all relevent fields								2160028									
Company: NODIS			Billing Info	Billing Information: Accounts Payable								ALL SHADED AREAS are for LAB USE ONLY									
Address: Chevell D	nul	Nobis							4	Conta	iner Preserva	tive Type **		Lab Project Manager:							
Report To: Betting (CIVADS	\	Email To:	IMP	SiDin	obis-a	WUD	MA).	** P ₁	reserva						odium hydroxide, (5) zinc acetate,					
Сору То:			Site Collec	tio <u>n I</u> nfo/A	ddress:	CL), , , ,		(C) a			xide, (D) TSP, (U				pic acid, (B) ammonium sulfate, -					
Customer Project Name/Number:	······································		State:	County/Ci	ty: Ti	me Zone Co	ollected:			1		Analyse:	S		Lab Profile	e/Line: mple Receipt Checklist:					
Robin Rug C	95560	(کونلا ،	RIVI	3112	1 Joh]PT[]M	T[]CT	Î X ET		سلد.						y Seals Present/Intact Y N 🕦					
Phone: 603-224-4182-	Site/Facility ID	#:				ce Monitor X No	ing?			Soxhle					Custod Collec	y Signatures Present Y N (A) tor Signature Present N NA s Intact N N NA					
Collected By (print):	Purchase Orde	er#:			DW PWS	ID #: tion Code:				18					Correc	t Bottles W N NA Lient Volume W N NA					
Sarah Powers Callected By (signature):	Quote #: Turnaround D	ate Reguir	red:	/*************************************		ely Packed	on ice:			10					Sample	s Received on Ice (Y) NA Headspace Acceptable Y N (A)					
Sarah Pouce	Stand			brua	l .	[]No				06					USDA R	egulated Soils Y N (A) s in Holding Time N NA					
Sample Disposal:	Rush:				Field Filte	red (if appl		acusarves carcovorc		30					Residu	al Chlorine Present Y N 🔼					
Dispose as appropriate [] Return [] Archive:	[] 2 Day	-	[] Next Day [] 4 Day	-	[] Yes	[X] No				EPA			0.00			pH Acceptable Y N NA					
[] Hold:	1	 	arges Apply)		Analysis:					100						le Present Y N (NA)					
 Matrix Codes (Insert in Matrix bo Product (P), Soil/Solid (SL), Oil (Ol 		-								ا ا					LAB US	cetate Strips:					
Customer Sample ID	Matrix *	Comp / Grab	Compos	ite Start)	-	osite End	Res	# of Ctns		PCBS					tabel	mple # / comments: s were wet and fell off					
W5-1	WP	G	Date V -28-J	Time 1300	Date	Time	1	1 4		7					150/E	spors anable to . Gracine out					
W5-2	WP	6	1 200	1255				 		1					ーピュー	CW-7, and CW-8					
WS-3	WP	12		1310	1			1							- 3	2 13 WW CW-C					
WS-4	WP	6		i 320		<u> </u>		İ	1,000						Li						
CW-1	WP	6		1460				1		1					- 5						
CW-2	WP	(2		1500	F			1		/					10						
CW-3	WP	6		1405				l		1					2						
CW -4	WP	6		1510	E			1		Z					4 78						
CW-5	WP	(2		1435	1					Z					9						
CM-10	WP	6	d	1430				<u> </u>						N. San	AD						
Customer Remarks / Special Condit			Type of Ico	e Used:	(Wet)	Blue D	ry N	one		SHC	RT HOLD	S PRESENT (<	72 hours):	Y 🐼 1	A/A	Lab Sample Temperature Info:					
Without 8075 m	SOXHU	+	Packing M	aterial Use	ed:					Lab	Tracking	#: 9	676	22/		Temp Blank Received: Y N NA Therm ID#:					
Extraction Med	ed									-	-1		ului	U U "†		Cooler 1 Temp Upon Receipt:oC					
\neg			Radchem	sample(s)	screened (<	<500 cpm);	ΥN	I NA			ples rece FEDEX	eived via: UPS Cli	ent Cou	rier Pac	e Courier	Cooler 1 Therm Corr. Factor: oC Cooler 1 Corrected Temp: oC					
nquished by/Company: (Signatu	ıre)	Dat	te/Time:		Received	by/Compan	y: (Signa	ture)	***************************************		Date/Tir	ne:	<u> </u>	MITITIABO	SE ONLY	Comments:					
p rquished by/Company: (Signatu	b_	lo	130/21	2030	1		Bi	ur.		71	12	1605	Table i			1 4.5					
ngushed by/Company: (Signatu			le/T/me:		Received I	by/Compag	(Signa	ture)			Date/Tir		Acctnu			Trip Blank Received: Y N NA					
a west Vill		7/1	bi	1125									Templa Prelogi			HCL MeOH TSP Other					
onguished by/Company: (Signatu	ure)	1/	te/Time:	11 1	Received l	by/Compan	y: (Signa	ture)	·····	***************************************	Date/Tir	ne:	PM:			Non Conformance(s): Page:					
JACK CIL	1-	41	121	1405									PB:			YES / NO of: 2					

Pace Analytical*	CHAIN-	·OF-CU	STODY	Analyti	cal Req	uest Do	cume	nt	LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here									
Company:	Chain-c	of-Custody	is a LEGAL Billing Info	· reachtion		.			2160058									
NOWS			Åc	Accounts Payable								ALL S	AB USE ONLY					
Address: 18 Chonell Do	W.			Noble							Conta	iner Preserva	tive Type *	*	Lab Projec	t Manager:		
Report To:	Bettina CAMES Email To amesa															odium hydroxide, (5) zinc		
Сору То:			Site Collec	tion Info/A	Address:	\ <_						xide, (D) TSP, (L	J) Unpreserve	r	, (A) ascorbic acid, (B) ammonium sulfate,			
Customer Project Name/Number:			State:	County/Ci	ity: Ti	me Zone Co		. /				Analyse	s		Lab Profile Lab Sa	/Line: mple Receipt Chec	klist:	
ROBIN RUCY Phone: 603-224-4182	U955W). %r@0	URLI	anst	<u> </u>] PT [] M ¹ ce Monitor		XIFI		1						y Seals Present/I		
Email:	Site/ Facility ID	1111			[] Yes	(X)No				Soxhla					Collec	y Signatures Pres tor Signature Pre	sent 🐧 N NĀ	
Collected By (print):	Purchase Orde Quote #:	er#:			DW PWS					1	12.888				Correc	s Intact t Bottles ient Volume	ON NA ON NA ON NA	
SAM POWEVS Coffected By (signature):	Turnaround Da	ate Requir	·ed:		DW Locat	ely Packed	on Ice:			6808					Sample	s Received on Ice Headspace Accepta	(Y) N NA	
Marithurs	Stando	vd t	vma	brus	[X Yes	[] No				000					USDA R	egulated Soils s in Holding Time	Y N MA	
Sample Disposal: Dispose as appropriate Return	Rusn:	ma Day	I I Nevt D	214	Ir IVoc	red (if appl				1 4					Residu Cl Str	al Chlorine Prese	nt Yn (7)	
Archive:	[] 2 Day [] 3 Day	[] 4 Day	[] 5 Day	Analysis:	()				1						pH Acceptable	YN 🐼	
* Matrix Codes (Insert in Matrix bo	1	Apearte en	a.Pca vibbili)		1		W).								Sulfid	e Present cetate Strips:	Y N (NA)	
Product (P), Soil/Solid (SL), Oil (Ol										ئے ا					LAB US	E ONLY:		
Customer Sample ID	Matrix *	Comp / Grab	Compos	ted (or lite Start)	Compo	osite End	Res Cl	# of Ctns		DC PS					Lab Sa	mple # / Comments	Maria	
CW-7	WP	6	Date	Time	Date	Time	_	i		5			+++		- 11			
CW-8	WP	(2	6-58-91	1530	1	1	ļ			1							***************************************	
CW-9	WP	(2)	+ 🖫	1505			-	1							13			
						1				1								
**************************************							ļ			<u> </u>								
41-2						_	<u> </u>			ļ					442			
APPANANCE ACCESSAGE OF THE CONTRACT OF THE CON				***************************************		<u> </u>	ļ	-		-								
						-				 								
Customer Remarks / Special Condit	ions / Possible I	l Hazards:	Type of Ic	e Used:	Wet/	.I. Blue Di	ry No	ne		SHC	RT HOLE	S PRESENT (<	72 hours):	V 70	N/A	Lab Sample Tempera	ture Info:	
method 8082 wi	soxhlet	•	Packing N	laterial Use	d.						Tracking	u.				Temp Blank Recei	ved: Y N NA	
Extraction rua	od											Registration and a second	676	000			S on Receipt: oC	
			Radchem	sample(s) s	creened (<	500 cpm):	ΥN	NA		Sam	ples rece FEDEX	ived via: UPS Cli	ent Cou	irier 🖊	ce Courier	Cooler 1 Therm Co Cooler 1 Corrected	orr. Factor: oC d Temp: oC	
quished by/Company: (Signatu	re)	Dat	e/Time:		Received b	y/Company	y: (Signati	ure)			Date/Tir		- Commonstance	MTJL LAB (Comments:	(>	
Piquished by/Company: (Signatu	Management of the Contract of		30/21	2630		W V	000		ŕ	>//	121	Vote	Table			· ·	165	
Signature of the state of the s		1/	e/Time:	1125	Received b	oy/Compa	(Signati	ure)			Date/Tir		Acctnu Templ Prelog	ate:		Trip Blank Received HCL MeOH	d: Y NA NA	
Conquisited by/Gompany: (Signatu		7/1	./21 :e//ime:	105	Received b	y/Company	y: (Signati	ure)	,		Date/Tir	ne:	PM:			Non Conformance(s YES / NO): Page: 3	