21 December 2020 Mr. Joseph T. Martella II, Senior Engineer Site Remediation Program Office of Waste Management RI Department of Environmental Management 235 Promenade Street Providence, RI 02908 RE: Quarterly O&M Status Report No. 53 Alvarez High School, 333 Adelaide Avenue, Providence, Rhode Island Case No. 2005-029 EA Project No. 15066.08 Dear Mr. Martella: On behalf of the City of Providence School Department (City), EA Engineering, Science, and Technology, Inc., PBC (EA) is providing this Quarterly Operations and Maintenance (O&M) Status Report in accordance with Provision 6(f) of the Order of Approval and amendments (Amended OA) for the referenced Alvarez High School site (the Site, formerly Adelaide Avenue High School). This O&M Report summarizes recently completed Site activities related to compliance subslab vapor and indoor air sampling for the period from September 2020 through November 2020. If you have any questions or require additional information, please contact me at (401) 736-3440, Ext. 1809. Sincerely, EA ENGINEERING, SCIENCE, AND TECHNOLOGY, INC., PBC Frank B. Postma, LSP, LEP, PG Project Manager cc: H. Peters, Prov. Dept. of Public Schools B. Nickerson, Prov. Redevelopment Agency R. Dorr, Neighborhood Resident Rep. Scott Slater A. Buco, Prov. Dept. of Public Property Knight Memorial Library Repository Principal Biah, Alvarez High School ### Quarterly O&M Status Report No. 53 ## Summarizing Subslab Depressurization and Indoor Air Monitoring and Sampling Activities Alvarez High School Site (Formerly Adelaide Avenue High School) Providence, Rhode Island Prepared for City of Providence School Department 797 Westminster Street Providence, Rhode Island 02903 *Prepared by:* EA Engineering, Science, and Technology, Inc., PBC 301 Metro Center Blvd., Suite 102 Warwick, Rhode Island 02886 (401) 736-3440 #### **TABLE OF CONTENTS** | 1. | INTRO | ODUCTION AND BACKGROUND | 1 | |------|----------|--|-----| | 2. | | MARY OF SSD SYSTEM AND INDOOR METHANE MONITORING STORMANCE | | | | 1 LICI V | ORWINCE | | | | 2.1 | SSD SYSTEM AND RELATED MONITORING | 2 | | | | 2.1.1 Vacuum pressure and vapor-phase constituents | 2 | | | | 2.1.2 Rooftop Extraction Fans | 2 | | | | 2.1.3 Engineered Cap | 3 | | | | INDOOR METHANE MONITORING SYSTEM | | | | 2.3 | AMBIENT OUTDOOR AND INDOOR AIR SAMPLING | 4 | | | 2.4 | SUBSLAB VAPOR SAMPLING AND EVALUATION OF POTENTIA | | | | | REBOUND EFFECT | | | | 2.5 | S SUMMARY OF ROOFTOP VOC EMISSIONS | 6 | | 3. | CONC | CLUSIONS | 8 | | 4. | FUTU | JRE ACTIVITIES AND NEXT QUARTERLY SUMMARY REPORT | 9 | | FIGU | JRES | | | | FIGU | RE 1: | SITE LOCATION MAP | | | FIGU | RE 2: | INDOOR AIR SAMPLING AND METHANE MONITORING | | | | | SYSTEM DIAGRAM | | | FIGU | RE 3: | AS-BUILT SUBSLAB MONITORING AND SAMPLING PLAN | | | FIGU | RE 4: | PARCEL C SHOTPUT & DISCUS THROWING FIELD | | | APPI | ENDICE | ES | | | APPE | ENDIX A | A: O&M FIELD FORMS | | | APPE | ENDIX E | B: INDOOR AND AMBIENT OUTDOOR AIR ANALYTICAL SUMM | ARY | | APPE | ENDIX C | C: SUBSLAB VAPOR ANALYTICAL SUMMARY | | | APPE | ENDIX D | D: ROOFTOP EMISSION ANALYTICAL SUMMARY | | | APPE | ENDIX E | E: INDOOR AIR, AMBIENT OUTDOOR AIR, AND SUBSLAB VAPO |)R | | | | LABORATORY ANALYTICAL REPORTS | | | APPE | ENDIX F | F: LABORATORY DETECTION LIMITS CORRESPONDENCE | | | APPE | ENDIX C | G: METHANE SENSOR CALIBRATION REPORT | | Page 1 of 9 December 2020 #### 1. INTRODUCTION AND BACKGROUND On behalf of the City of Providence School Department (the City), EA Engineering, Science, and Technology, Inc., PBC (EA) has prepared this Quarterly Operations and Maintenance (O&M) Status Report No. 53 for the Parcel B area of the former Gorham Manufacturing site in Providence, Rhode Island, formerly referred to as Adelaide Avenue High School and now referred to as Alvarez High School (the Site). A Site Location Map is provided as Figure 1. This report has been prepared to satisfy provision 6(f) of the Rhode Island Department of Environmental Management (RIDEM) Order of Approval (OA) issued in June 2006, as amended in February 2007, July 2007, and July 2009. For the purposes of this report, the original and the amended OA will collectively be referred to as the Amended OA. The Amended OA specifies the details of the approved remedy for the Site including, but not limited to, the installation of a subslab depressurization (SSD) system, installation of a continuous indoor air methane monitoring system, and implementation of an associated periodic monitoring and sampling program. In August 2007, the RIDEM-approved remedy for the Site was completed and a Remedial Action Closure Report (RACR) was submitted to RIDEM. In July 2009, the periodic indoor air and subslab vapor sampling schedule was reduced to quarterly sampling from previously required monthly sampling. This report summarizes the O&M, monitoring, and sampling activities completed at the Site for the three-month period from September 2020 through November 2020 (Quarterly Reporting Period No. 53). Please refer to Quarterly O&M Status Reports No. 1 through No. 52 for information regarding monitoring and sampling at the Site during the previous quarters. The RACR and previously submitted monthly correspondence contain details regarding the results of the monitoring and sampling program for the period prior to Reporting Period No. 1. Page 2 of 9 December 2020 ## 2. SUMMARY OF SSD SYSTEM AND INDOOR METHANE MONITORING SYSTEM PERFORMANCE #### 2.1 SSD SYSTEM AND RELATED MONITORING The following SSD system performance parameters were inspected and/or monitored at the frequencies indicated below in accordance with the Amended OA and through discussions with RIDEM to evaluate system performance: - Monthly sub-slab monitoring of vacuum pressure and vapor-phase constituents (9 September 2020, 29 October 2020, and 6 November 2020) at 11 monitoring locations, as illustrated on the As-Built Subslab Monitoring and Sampling Plan provided as Figure 3. - Monthly inspections and monitoring (air velocity and vacuum) of the three rooftop fans to verify proper operation and effluent concentrations. - Monthly inspections of the electronic monitoring system associated with each of three SSD system extraction fans and the methane sensor system (automatic alarm notification via audible signal and phone notification). - Monthly inspections of the RIDEM approved engineered cap. - Quarterly sampling (29 October 2020) of eight indoor air locations, one ambient outdoor air location, and six subslab points. - Calibration of eight methane detectors and inspection of the methane sensor system by a certified technician (11 November 2020). Copies of O&M field forms summarizing SSD System monitoring data collected during this reporting period are provided in Appendix A. #### 2.1.1 Vacuum pressure and vapor-phase constituents Vacuum measurements taken at each interior and perimeter subslab monitoring/sampling locations ranged from -0.01 to -0.09 in. of water column. Negative measurements confirm that a negative pressure was maintained beneath the building slab due to continuous fan operation. All rooftop fans were observed to be operating correctly during this reporting period; pressure and air velocity recorded at all rooftop fans were within normal ranges. #### 2.1.2 Rooftop Extraction Fans In 2018 and 2019 a certified electrician replaced and calibrated the pressure sensors on each fan, installed an additional alarm panel which is triggered when a change in pressure is detected in the rooftop exhaust fans, and connected the new alarm panel to the existing autodialer system. The exhaust fan alarm system was also connected to the existing back-up battery packs in the Page 3 of 9 December 2020 control panel, which have sufficient capacity to operate for multiple days in the event of an electrical outage or power disruption to the system. The upgrades have been effective and no autodialer malfunctions or false alarm notifications have occurred since 31 December 2019. Negative fan vacuums, fan speeds, and the negative subslab pressures observed at the site were within normal ranges and the system is operating properly. #### 2.1.3 Engineered Cap The engineered cap appeared in good condition with the exception of several areas where minor erosion was observed. Depth of landscape erosion at the back door has been slowly increasing since spring 2017. The previously noted 6-inch hole under a roof leader downspout at the back of the building, and another eroded area approximately 3-4 inches (in.) deep observed near the back door to the school remain present. A new area of erosion near the back entrance to the kitchen storage room/loading ramp was observed in May 2019. EA met with city staff in 2018 to correct the deficiencies as soon as possible. EA has been informed that the Providence Public School Department will be correcting deficiencies. Additionally, tree and bush removal on the southern and eastern sides of the building was observed in September 2019. Although the landscaping work has not impacted the integrity of the engineered cap, these areas should be continually monitored to ensure tree and bush removal does not trigger new erosion problems. In April 2020, the City installed two 10-foot (ft) by 20-ft by 4-in thick concrete throwing pads in the southwestern corner of Parcel C on the grassed recreation field between Dr. Jorge Alvarez High School and Mashapaug Pond. The pads were constructed in accordance with the Temporary Parcel C Cap Disturbance Notification letter submitted to RIDEM on 31 March 2020. EA inspected the engineered cap and concrete pads on 13 May 2020 found no indication of disturbance of the bottom 6 in. of clean fill, the geotextile fabric, or the contaminated soil media below the fabric. The final pad dimensions meet the RIDEM requirements as stated in the Environmental Land Use Restriction and Soil Management Plan recorded for Parcel C. EA submitted
the Parcel C Cap Disturbance Completion letter to RIDEM on 2 June 2020. A copy of the Completion Letter is included as Appendix G of Quarterly Report 51 (March 2020 – May 2020). A site plan depicting the location of the shotput and discus throwing pads is included as Figure 4. The concrete pads remain in place as part of the engineered cap and concrete pad inspections have been incorporated into the routine monitoring events. A section of chain-link fence offset from the southeastern corner of the shotput pad was recently installed as a safety precaution. Ground disturbing activities appeared to be limited to five fence posts and no signs of cap degradation or erosion due to installation activities were observed. The concrete pads appeared to be in good condition and no cracks or chips were observed. Shotput and discuss landing zones also appeared in good condition and no erosion damages to the cap were present. Any future landscaping work at Alvarez High School (Parcel B), and/or the shot-put and discus throwing field (Parcel C) must adhere to the Soil Management Plan and the Amended OA to ensure the engineered cap is not damaged and the protective cover soil layer is maintained. EA Page 4 of 9 December 2020 will continue to inspect the pads on a monthly basis and report findings and routine maintenance in the Quarterly O&M Status Reports moving forward. #### 2.2 INDOOR METHANE MONITORING SYSTEM Indoor methane concentrations were continuously monitored by an indoor methane monitoring system equipped with automatic alarm notification via audible signal and phone notification within the school at eight RIDEM-approved locations (refer to the Indoor Air Sampling and Methane Monitoring System Diagram provided as Figure 2) during this reporting period. The methane monitoring system was inspected during each monitoring event and the filters were replaced on 29 October 2020. The next filter replacement is scheduled for January 2020. On 11 November 2020, a field technician from DOD Technologies, Inc. performed the 5-year factory calibration and inspection of the eight methane sensors in place at the Site. The technician indicated that all sensors passed the calibration test and were in good working condition. A copy of the methane sensor calibration report is included in Appendix G. On 30 June 2020 a new autodialer cell phone was purchased to replace the original autodialer cell phone. The original phone was programed to a 3G network and would not be capable of operating on the 5G network that the TracPhone carrier service was switching to. A 5G phone was purchased, installed and tested with the autodialer system to ensure the autodialer remained functional. The annual autodialer cell phone contract will be renewed for another year of service in June 2021 before current service expires. #### 2.3 AMBIENT OUTDOOR AND INDOOR AIR SAMPLING One ambient outdoor air sample and the eight indoor air samples were collected at the site at RIDEM-approved sampling locations during the quarterly sampling event on 29 October 2020. The samples collected in October 2020 were submitted to Con-Test Analytical Laboratory (Con-Test) for analysis of VOCs via Method TO-15 Selective Ion Monitoring (SIM). Each summa canister used during this monitoring period was individually certified to ensure that all containers were devoid of residual contamination. The typical summa canister certification process occurs in batches. However, individual certification was requested by RIDEM for this and future sampling events after residual contamination affected the 1 August 2014 sampling results. Sample results were compared to the State of Connecticut's Draft Proposed Indoor Residential Targeted Air Concentrations (CT RTACs) and the RIDEM approved threshold level in accordance with the Amended OA. Sampling locations for the indoor air samples are illustrated on Figure 3. The 29 October 2020 ambient outdoor air sample was collected upwind (southeast) of the school. A data summary table is provided as Appendix B and a copy of the laboratory data report associated with this sampling event is provided in Appendix E. One analyte was identified in indoor air above the CT RTACs and RIDEM threshold levels during the 29 October 2020 quarterly sampling event. Chloroform was detected in the Kitchen Storage Room at a concentration of 0.57 µg/m3, which exceeds the RIDEM amended threshold Page 5 of 9 December 2020 value of 0.5 μ g/m3. Chloroform is a common ingredient in, or can form as a byproduct of, cleaning products and some insecticides. It is also a common laboratory contaminant. Insecticides and cleaning chemicals have historically been used at the school. The detections during the 29 October 2020 sampling event are consistent with historical chloroform detections in the Kitchen Storage Room (historical values between non-detect levels and 3.8 μ g/m3) and are not believed to be not attributable to soil vapor intrusion. One analyte, carbon tetrachloride, was identified in ambient outdoor air at the CT RTACs and RIDEM threshold level of $0.5~\mu g/m3$ during the 29 October 2020 quarterly sampling event. Carbon tetrachloride is a documented background ambient compound in the area. The compound has consistently been detected in ambient outdoor air during every sampling event completed at the Site at concentrations ranging between $0.3~and~0.58~\mu g/m^3$. No other analytes were identified in indoor air samples above the CT RTACs and RIDEM threshold levels during the October 2020 sampling event. The laboratory method detection limits (MDLs) for several VOCs reported via TO-15 analysis were greater than the respective CT RTACs/RIDEM threshold levels even though analysis was performed using the method with the lowest available detection levels (SIM procedure). The elevated MDLs occurred primarily with analytes that are not the constituents of concern (COCs) for the project. Additionally, many of these analytes have never been detected in indoor air at concentrations greater than the applicable standards. Therefore, the slightly elevated MDLs for some analytes were not considered significant and do not disqualify the dataset. Refer to Appendix F for an MDL verification letter from Con-Test verifying that where MDLs are not able to be met, the detection limit was the lowest currently achievable. ## 2.4 SUBSLAB VAPOR SAMPLING AND EVALUATION OF POTENTIAL VOC REBOUND EFFECT A total of 11 RIDEM-approved subslab sampling locations are installed at the Site. Six subslab samples were collected on the rotating schedule in accordance with the Amended OA and analyzed for VOCs via US EPA Method TO-15 SIM. Four exterior subslab vapor samples and two interior subslab vapor samples were routinely collected on 29 October 2020. The subslab analytical results are presented in Appendix C and a copy of the laboratory data report associated with this sampling event is included in Appendix E. The locations for sub-slab sampling are illustrated on Figure 3. The subslab data has been evaluated for potential rebound. No evidence of increasing VOCs (i.e., VOC rebound) beneath the school has been observed. Slight fluctuations in concentrations were noted during this reporting period though these variations were within historical ranges and do not constitute an increasing trend. Page 6 of 9 December 2020 #### 2.5 SUMMARY OF ROOFTOP VOC EMISSIONS Previous rooftop effluent sampling rounds conducted in March 2007 (immediately after SSD system startup), June 2007, June 2008, September 2009, and annually in July thereafter (2010 – 2020) indicated compliance with all Air Pollution Control Permit Applicability Thresholds. Additionally, in October 2014 RIDEM conducted roofline and downwind outdoor air sampling to determine if rooftop fan exhaust was possibly infiltrating the building or impacting downwind air. The roofline and downwind sample concentrations were approximately the same as the upwind sample concentration and significantly lower than those concentrations observed in the rooftop fan exhaust, indicating that exhausted vapors from the rooftop fans were well dispersed and are not causing significant impacts downwind or inside the building. The Amended OA requires that rooftop VOC sampling be completed on an annual basis. Concentrations of VOCs in rooftop fan vents continue to be evaluated based on the regulatory thresholds and their effect to background air at the school and the nearby residential neighborhood. Rooftop fan sampling was conducted on 23 July 2020. No exceedances of the RIDEM Air Pollution Control Permit Applicability Thresholds for hourly, daily, or annual emissions were observed. A summary of historical rooftop fan emission data is summarized in Table 1 below. **Table 1 Annual Rooftop Fan Emissions** | Annual Monitoring Date | Total Emissions ^a
(lbs/year) | |------------------------|--| | - | RIDEM Threshold: 50,000 ^b | | 20 July 2012 | 3.30 | | 9 July 2013 | 2.33 | | 1 August 2014 | 2.49 | | 22 October2014 | 1.83 | | 21 July 2015 | 2.01 | | 20 July2016 | 2.34 | | 26 July 2017 | 1.41 | | 27 July 2018 | 0.652 | | 29 July 2019 | 2.15 | | 23 July 2020 | 0.829 | ^a Sum of all three rooftop fan emissions; emissions based on measured flow speed and EPA Method TO15-SIM air sample analysis ^b RIDEM Air Pollution Control Regulation No. 9 [Amended April 2004] All emissions are below the RIDEM Air Pollution Control Regulations. Fluctuations in emissions were observed in the 27 July 2018 and 23 July 2020 samples. One possible explanation for this variability may be fluctuating depths to the groundwater table in the vicinity of the school; as the depth to groundwater increases, soil gas emissions to the extraction system are anticipated to decrease due to reduced pressure from the capillary fringe. Full analytical results of rooftop fan sampling are summarized in Appendix D and Quarterly Monitoring RIDEM = Rhode Island Department of
Environmental Management lbs/year = pounds of gas per year December 2020 Reports No. 1 – No. 52. The next annual rooftop effluent VOC sampling event is scheduled for July 2021. #### 3. CONCLUSIONS The following conclusions are made based upon the completed inspections, monitoring, and sampling performed during this reporting period: - The consistent negative pressure maintained below the floor slab indicates that soil vapor intrusion into Alvarez High School is not occurring. - The continuous operation of the SSD System and confirmation of continuous sub-slab vacuum beneath the school illustrates ongoing, effective operation of the SSD System. - A field technician from DOD Technologies, Inc. inspected and calibrated the eight methane sensors in place at the Site. The technician indicated that all sensors passed the calibration test and were in good working condition. - Deficiencies noted in the engineered cap near the kitchen storage room, the back (northern) entrance to the school, and the roof leader downspout at the northwestern corner of the school need to be corrected. - Shotput and discus throwing pads were successfully installed in the recreational field west of Alvarez High School on Parcel C in May 2020. A section of chain-link fence near the southeastern corner of the shotput pad was recently installed as a safety precaution. Ground disturbing activities appeared to be limited to five fence posts and no signs of cap degradation or erosion due to installation activities were observed. The concrete pads and throwing areas appeared to be in good condition and no cap degradation was observed. - The subslab data was evaluated for potential rebound in accordance with the Amended OA. No evidence of increasing VOCs (i.e., VOC rebound) beneath the school has been observed. Fluctuations in concentrations were noted during this reporting period; these variations do not constitute an increasing trend. - The use of certified clean summa canisters, as requested by RIDEM, yielded confidence in the samples collected in October 2020. EA will continue to use certified clean canisters in the upcoming sampling events. #### 4. FUTURE ACTIVITIES AND NEXT QUARTERLY SUMMARY REPORT The following activities will be completed in accordance with the Amended OA during the next quarterly status reporting period from December 2020 to February 2021: - Continuous monitoring of the operational status of the three rooftop extraction fans; - Monthly site inspections and monitoring using a calibrated photoionization detector with part-per-billion sensitivity and a Landtec multi-gas meter; - Collection of air samples from eight indoor locations, one ambient outdoor location, and six subslab monitoring points in January 2021; - The newly installed concrete throwing pads on Parcel C will be inspected during the routine monthly subslab inspections and reported in future Quarterly O&M reports; - Any future landscaping projects and erosion repairs by the City must be conducted in accordance with the site specific Soil Management Plan and the Amended OA to prevent damage to the engineered cap. These activities will be summarized in the next status report (Quarterly Status Report No. 54), expected to be submitted by the end of March 2021. # APPENDIX A O&M Field Forms #### Alvarez High School - SSD & Interior Methane Monitoring System O&M | Date of O&M: | 9/9/2020 | _ | Performed by: | ВС | | |--|-----------------------|-----------|--------------------------|--------------|-----------------------------------| | PID/Methane Calibration? | yes | (yes/no) | PID Calibration Result: | 10.00 | <u>-</u> | | Date of last Methane Sensor Filter
Replacement: | 7/23/2020 | _ | Replaced this O&M Visit? | No | (yes/no) | | General Status of SSD System: | Functioning properly | | | | | | General Status of Methane | | | | | | | Monitoring System: | Functioning properly | | | | | | Eng. Cap/Fence Inspection | | | | | | | Performed/Notes: | Good condition, minor | erosion i | n typical locations | (take photog | graphs of any deficiencies noted) | | | | | VOC
Monitoring | Meth | ane Moni | toring | | Air/Va | por San | nple Collect | ion | | Comments/Notes (Ambient weather | |----------------------------------|--------------------------------|--------------------------|-------------------|---------------------------|----------|----------|-----------------|------------------|---------------|-----------------------------|-------------|---------------------------|--| | Monitoring/ Sampling
Location | Sub-slab or
gauge
vacuum | Air
Velocity
(fpm) | PID (ppb) | Indoor
Sensor
(ppm) | (% Gas) | (% LEL)* | Summa
Can ID | Controller
ID | Start
Time | Start Vac
(inches
Hg) | End
Time | End Vac
(inches
Hg) | conditions, status of
HVAC, possible
monitoring/sampling
interferences, etc | | Gymnasium | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Cafeteria | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Kitchen Storage Room | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Elevator Hallway | NA | NA | 51 | 0 | 0 | 0 | | | | | | | Cleaning being
conducted in hallway | | Room 145 | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Room 152 | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Room 118 | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Room 110 | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | MP-1 | -0.02 | NA | 82 | NA | 0 | 0 | | | | | | | Spiked at 1.1 ppm then fell/stabilized at 82 ppb | | MP-2 | -0.06 | NA | 0 | NA | 0 | 0 | | | | | | | , , , , , , , , , , , , , , , , , , , | | MP-3 | -0.02 | NA | 171 | NA | 0 | 0 | | | | | | | | | MP-4 | -0.03 | NA | 0 | NA | 0 | 0 | | | | | | | | | MP-5 | -0.02 | NA | 404 | NA | 0 | 0 | | | | | | | | | MP-6 | -0.01 | NA | 277 | NA | 0 | 0 | | | | | | | | | MP-7 | -0.01 | NA | 613 | NA | 0 | 0 | | | | | | | | | MP-8 | -0.09 | NA | 302 | NA | 0 | 0 | | | | | | | | | IMP-1 | -0.02 | NA | 0 | NA | 0 | 0 | | | | | | | | | IMP-2 | -0.02 | NA | 464 | NA | 0 | 0 | | | | | | | | | IMP-3 | -0.01 | NA | 97 | NA | 0 | 0 | | | | | | | | | Roof-Top Fan 1 | -1.6 | 2173 | 2 | NA | 0 | 0 | | | | | | | | | Roof-Top Fan 2 | -1.8 | 2363 | 3 | NA | 0 | 0 | | | | | | | | | Roof-Top Fan 3 | -2 | 1871 | 344 | NA | 0 | 0 | | | | | | | | | Ambient Outdoor Air | NA | NA | 0 | NA | 0 | 0 | | | | | | | | NA: not applicable. NM: not monitored on this date. NS: not sampled on this date. st RIDEM Action Level for methane %LEL beneath the building is 10% and within the building is 1%. If these methane levels are exceeded, immediately notify EA Project Manager to initiate response protocol. #### Alvarez High School - SSD & Interior Methane Monitoring System O&M | Date of O&M: | 10/29/2020 | _ | Performed by: | GJ/ND | | |--|----------------------|----------|--------------------------|-------|---| | PID/Methane Calibration? | yes | (yes/no) | PID Calibration Result: | 10.00 | _ | | Date of last Methane Sensor Filter
Replacement: | | _ | Replaced this O&M Visit? | Yes | _(yes/no) | | General Status of SSD System: | Functioning properly | | | | | | General Status of Methane | | | | | | | Monitoring System: | Functioning properly | | | | | | Eng. Cap/Fence Inspection | | hangos | | | (taka photographs of any deficiencies not | | | | | VOC
Monitoring | Metha | ane Moni | toring | | Air/Va | por San | nple Collect | ion | | Comments/Notes
(Ambient weather | |----------------------------------|--------------------------------|--------------------------|-------------------|--------------------------------------|----------|----------|-----------------|------------------|---------------|-----------------------------|-------------|---------------------------|--| | Monitoring/ Sampling
Location | Sub-slab or
gauge
vacuum | Air
Velocity
(fpm) | PID (ppb) | Indoor
Sensor
(ppm) (% Gas) (% | | (% LEL)* | Summa
Can ID | Controller
ID | Start
Time | Start Vac
(inches
Hg) | End
Time | End Vac
(inches
Hg) | conditions, status of
HVAC, possible
monitoring/sampling
interferences, etc | | Gymnasium | NA | NA | 9 | 0 | 0 | 0 | 1982 | 4314 | 716 | -30 | 748 | -3.5 | | | Cafeteria | NA | NA | 26 | 0 | 0 | 0 | 1130 | 4285 | 730 | -27.5 | 804 | 0 | | | Kitchen Storage Room | NA | NA | 58 | 0 | 0 | 0 | 1122 | 4209 | 732 | -30 | 808 | -3 | | | Elevator Hallway | NA | NA | 16 | 0 | 0 | 0 | 2139 | 4194 | 714 | -28 | 747 | 0 | | | Room 145 | NA | NA | 45 | 0 | 0 | 0 | 1878 | 4094 | 751 | -28.5 | 823 | 0 | | | Room 152 | NA | NA | 35 | 0 | 0 | 0 | 2032 | 4102 | 753 | -28.5 | 824 | -3 | | | Room 118 | NA | NA | 35 | 0 | 0 | 0 | 2145 | 4171 | 801 | -29 | 834 | -3.5 | | | Room 110 | NA | NA | 29 | 0 | 0 | 0 | 2483 | 4206 | 804 | -25 | 835 | 0 | | | MP-1 | -0.01 | NA | 1248 | NA | 0 | 0 | NS | NS | NS | NS | NS | NS | PID not functioning properly | | MP-2 | -0.04 | NA | 1156 | NA | 0 | 0 | 1291 | 4196 | 933 | -28.5 | 1004 | -4 | PID not functioning properly | | MP-3 | -0.06 | NA | 992 | NA | 0 | 0 | NS | NS | NS | NS | NS | NS | PID not functioning properly | | MP-4 | -0.01 | NA | 1202 | NA | 0 | 0 | NS | NS | NS | NS | NS | NS | PID not functioning properly | | MP-5 | -0.03 | NA | 1304 | NA | 0 | 0 | 2170 | 4292 | 920 | -30 | 955 | -5 | PID not functioning properly | | MP-6 | -0.01 | NA | 968 | NA | 0 | 0 | NS | NS | NS | NS | NS | NS | PID not functioning properly | | MP-7 | -0.01 | NA | 1000 | NA | 0 | 0 | 1973 | 4073 | 914 | -29.5 | 947 | -3.5 | PID not functioning properly | | MP-8 | -0.07 | NA | 1006 | NA | 0 | 0 | 1004 | 4300 | 929 | -30 | 959 | -5 | PID not functioning properly | | IMP-1 | -0.05 | NA | 58 | NA | 0 | 0 | 2144 | 4069 | 727 | -29 | 803 | -3 | PID not functioning properly | | IMP-2 |
-0.01 | NA | 208 | NA | 0 | 0 | NS | NS | NS | NS | NS | NS | properly PID not functioning properly | | IMP-3 | -0.01 | NA | 58 | NA | 0 | 0 | 2074 | 4042 | 746 | -30 | 821 | 0 | PID not functioning properly | | Roof-Top Fan 1 | -3.2 | 1964 | 316 | NA | 0 | 0 | NS | NS | NS | NS | NS | NS | PID not functioning properly | | Roof-Top Fan 2 | -3.3 | 2052 | 260 | NA | 0 | 0 | NS | NS | NS | NS | NS | NS | PID not functioning properly | | Roof-Top Fan 3 | -3.6 | 1565 | 316 | NA | 0 | 0 | NS | NS | NS | NS | NS | NS | PID not functioning properly | | Ambient Outdoor Air | NA | NA | 29 | NA | 0 | 0 | 1464 | 4038 | 903 | -30 | 936 | 0 | | NA: not applicable. NM: not monitored on this date. NS : not sampled on this date. * RIDEM Action Level for methane %LEL beneath the building is 10% and within the building is 1%. If these methane levels are exceeded, immediately notify EA Project Manager to initiate response protocol. #### Alvarez High School - SSD & Interior Methane Monitoring System O&M | Date of O&M: | 11/6/2020 | _ | Performed by: | GJ | | | |--|----------------------|----------|--------------------------|----|----------|--| | PID/Methane Calibration? | yes | (yes/no) | PID Calibration Result: | 10 | <u> </u> | | | Date of last Methane Sensor Filter
Replacement: | | _ | Replaced this O&M Visit? | No | (yes/no) | | | General Status of SSD System: | Functioning properly | | | | | | | General Status of Methane
Monitoring System: | Functioning properly | | | | | | | Eng. Cap/Fence Inspection
Performed/Notes: | | | | | | | | | | | VOC
Monitoring | Meth | ane Moni | toring | | Air/Va | apor San | ple Collect | ion | | Comments/Notes (Ambient weather conditions, status of | |----------------------------------|--------------------------------|--------------------------|-------------------|---------------------------|----------|----------|-----------------|------------------|---------------|-----------------------------|-------------|---------------------------|---| | Monitoring/ Sampling
Location | Sub-slab or
gauge
vacuum | Air
Velocity
(fpm) | PID (ppb) | Indoor
Sensor
(ppm) | (% Gas) | (% LEL)* | Summa
Can ID | Controller
ID | Start
Time | Start Vac
(inches
Hg) | End
Time | End Vac
(inches
Hg) | HVAC, possible monitoring/sampling interferences, etc | | Gymnasium | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Cafeteria | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Kitchen Storage Room | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Elevator Hallway | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Room 145 | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Room 152 | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Room 118 | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | Room 110 | NA | NA | 0 | 0 | 0 | 0 | | | | | | | | | MP-1 | -0.05 | NA | 57 | NA | 0 | 0 | | | | | | | | | MP-2 | -0.01 | NA | 0 | NA | 0 | 0 | | | | | | | | | MP-3 | -0.01 | NA | 0 | NA | 0 | 0 | | | | | | | | | MP-4 | -0.02 | NA | 0 | NA | 0 | 0 | | | | | | | | | MP-5 | -0.04 | NA | 0 | NA | 0 | 0 | | | | | | | initial PID reading 250 ppb, dropped to 0 | | MP-6 | -0.01 | NA | 0 | NA | 0 | 0 | | | | | | | initial PID reading 180
ppb, dropped to 0 | | MP-7 | -0.01 | NA | 0 | NA | 0 | 0 | | | | | | | initial PID reading 250
ppb, dropped to 0 | | MP-8 | -0.07 | NA | 0 | NA | 0 | 0 | | | | | | | ppb, dropped to o | | IMP-1 | -0.05 | NA | 0 | NA | 0 | 0 | | | | | | | | | IMP-2 | -0.02 | NA | 250 | NA | 0 | 0 | | | | | | | | | IMP-3 | -0.01 | NA | 73 | NA | 0 | 0 | | | | | | | | | Roof-Top Fan 1 | -1.5 | 2224 | 0 | NA | 0 | 0 | | | | | | | | | Roof-Top Fan 2 | -3.2 | 2147 | 0 | NA | 0 | 0 | | | | | | | | | Roof-Top Fan 3 | -2.0 | 1738 | 1 ppm | NA | 0 | 0 | | | | | | | PID spiked to over | | Ambient Outdoor Air | NA | NA | 0 | NA | 0 | 0 | | | | | | | тоот рра, теп агорреа | NA: not applicable. NM: not monitored on this date. NS : not sampled on this date. st RIDEM Action Level for methane %LEL beneath the building is 10% and within the building is 1%. If these methane levels are exceeded, immediately notify EA Project Manager to initiate response protocol. ### **APPENDIX B** ## **Indoor and Ambient Outdoor Air Analytical Summary** | Volatile Organic Compounds via TO-15 Concer | T Draft Proposed Indoor
Residential Target Air
entrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | Room 1 | 49 | Room 234 | Ambient Outdoor
(AOA-1) | r | |---|--|---|--|---------------------------------------|-----------|------|-----------|------|--|------|----------|------|----------|--------------------------|------|----------|--------|------|----------|----------------------------|-------| | | | Sample Date | | Qual | Qual | | Qual |
Qual | | Qual | Qu | ıl | | | Acetone | 180.0 | 8-Feb-08 27-Mar-08 ² 25-Apr-08 29-May-08 27-Jun-08 31-Jul-08 38-Aug-08 30-Sep-08 27-Oct-08 25-Nov-08 18-Dec-08 21-Jan-09 25-Feb-09 26-Mar-09 29-Apr-09 22-Jul-09 9-Oct-09 15-Jan-10 21-Apr-10 16-Jul-10 15-Oct-10 30-Nov-10 26-Jan-11 26-Jan-11** 27-Apr-11 26-Jul-11 28-Oct-11 23-Jan-12 13-Apr-12 2-Jul-12 resample 20-Jun-12 1-Nov-12 1-Feb-13 29-Apr-13 9-Jul-13 9-Jul-13 RIDEM 18-Oct-13 9-Jul-13 12-Apr-14 24-Apr-14 1-Aug-14 12-Sept-14 resample 22-Oct-14 20-Jan-15 30-Mar-15 resample 22-Apr-15 21-Jul-15 23-Sept-15 resample 22-Apr-16 30-Mar-15 resample 22-Apr-17 10-Jan-16 20-Apr-16 ³ 20-Jul-16 21-Oct-16 31-Jan-17 17-Apr-17 26-Jul-17 12-Oct-17 10-Jan-18 11-Apr-18 27-Jul-18 24-Oct-18 16-Jan-19 12-Apr-19 29-Jul-19 29-Jul-19 29-Jul-19 29-Jul-19 29-Jul-19 29-Jul-19 29-Jul-19 21-Jan-20 22-Apr-20 23-Jul-20 | 20.20 576.00 61.70 19.50 87.90 32.20 33.10 39.40 56.20 21.30 39.30 5.30 2.40 34.40 4.75 2.37 19.50 11.90 26.70 28.20 32.70 NS 28.50 NS 6.82 51.80 17.00 15.00 11.00 NS 19.00 26.00 25.00 NS 34.00 8.90 19.00 35.000 NS 34.00 NS 17.00 37.00 NS 16.00 37.00 NS 16.00 37.00 NS 16.00 37.00 NS 17.00 37.00 NS 18.00 38.00 NS 18.00 38.00 NS 19.00 39.00 NS 19.00 30.00 NS 19.00 30.00 NS 10.00 10. | U U U U U U U U U U U U U U U U U U U | | Qual | • | UUUU | 4.75 89.90 15.10 16.20 27.70 16.80 25.80 11.20 24.10 14.00 21.50 3.60 NS 11.30 8.24 11.70 11.00 6.70 23.20 16.10 11.50 NS 14.90 NS 14.90 NS 14.70 82.20 9.90 18.00 11.00 NS 21.00 16.00 14.00 21.00 24.00 NS 18.00 17.00 37.000 NS 18.00 NS 18.00 NS 18.00 NS 18.00 NS 11.00 1 | U U | | Qual | | Ò | Qual | | | Qual | | | U U U | Page 1 of 48 Date Modified: 12/10/2020 | | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | 2 | Cafeteria | Gymnasium | Gymnasium F | | | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | Room 1 | 149 | Room 234 | Ambient Outdoor
(AOA-1) | | |---|---|---|---|-------------------------|------|-----------|--|---------------------------------------
--|--|---|-----|--------------|---|--|-------------|--------|------|----------|----------------------------|--| | Columbia 1989 C. 1980 | | | Sample Date | | Qual | | <u> </u> | Qual | | Qual | | ıal | | ` | Qual | | | | | <u> </u> | ual | | | Compounds via TO-15 | Concentrations/ Interim RIDEM-Approved Action Level | 8-Feb-08 27-Mar-08 25-Apr-08 29-May-08 27-Junl-08 31-Junl-08 328-Aug-08 30-Sep-08 25-Net-08 25-Net-08 21-Jan-09 25-Feb-09 26-Mar-09 29-Junl-09 15-Jan-10 21-Apr-10 16-Jot-10 30-Nov-10 26-Jan-11 26-Jul-11 28-Oet-11 23-Jan-12 21-Jul-12 resample 20-Jun-12 1-Feb-13 29-Apr-13 39-Jul-13 RIDEM 18-Oet-13 9-Jul-14 12-Sept-15 21-Jul-15 23-Sept-15 resample 22-Oet-14 20-Jan-14 12-Sept-15 21-Jul-15 23-Sept-15 resample 22-Oet-14 20-Jan-15 30-Mar-15 21-Jul-15 23-Sept-15 resample 22-Oet-16 31-Jan-17 17-Apr-17 12-Oet-16 31-Jan-17 17-Apr-17 10-Jan-18 11-Apr-18 27-Jul-18 24-Oct-18 16-Jan-19 29-Jul-19 20-Jul-19 | 1.080 | Qual | 1.080 | 1 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 2.200 2.200 2.200 2.200 2.200 2.200 1.08 | טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט | 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 2.200 2.200 2.200 2.200 2.200 NS 1.080
1.080 1.0 | טט טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט | 1.080 | | Qual 1.080 | 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 2.200 2.200 2.200 2.200 2.200 2.200 1.080 | טט טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט | Qua 1.080 | | Qual | Qu | (AOA-1) al | סמ ממממממממממ מ ממ ממ מממממממ מ ממממממממ | Page 2 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | Sample Date | Kitchen Storage
Room | Qual | Cafeteria Qu | Gymnasium
at Qua | Elevator
Hallway | Room 118 | Room 110 | Media Center (Rm 145) | Room 152 | Room 149
Qual | Room 234 | Ambient Outdoor
(AOA-1) Qual | |---|---|--|--|---------------------------------------|---|--|---|--|---|---|--|------------------|----------|--| | | | 27-Mar-08 25-Apr-08 29-May-08 27-Jun-08 31-Jul-08 31-Jul-08 38-Aug-08 30-Sep-08 27-Oct-08 25-Nov-08 18-Dec-08 21-Jan-09 25-Feb-09 26-Mar-09 29-Apr-09 22-Jul-09 9-Oct-09 15-Jan-10 21-Apr-10 16-Jul-10 15-Oct-10 30-Nov-10 26-Jan-11 | 1.420 1.360 0.370 0.631 0.568 1.190 1.600 2.100 1.600 1.600 1.600 2.330 0.594 0.626 1.130 1.670 1.020 0.319 0.319 NS 2.920 | U U U U U U U U U U U
U U U U U U U U | 1.350 1.300 0.430 0.603 0.477 1.110 1.600 U 0.358 0.546 0.954 1.510 1.320 0.319 U 0.319 U 0.514 2.890 | 1.600 U 1.600 U 1.600 U 1.600 U 1.600 U 1.740 0.332 0.642 0.903 1.340 1.080 0.319 U | 1.420 1.400 0.400 0.644 0.451 0.953 1.600 U 1.88 1.650 0.332 0.574 0.878 1.460 1.380 0.319 U NS 3.290 | 1.600 U 1.600 U 1.600 U 1.600 U 1.600 U 1.540 0.303 0.852 0.919 1.420 1.270 0.319 U | 1.600 1.600 1.600 1.600 1.600 1.600 1.600 2.210 0.358 1.560 1.050 1.450 1.210 0.319 | 1.600 U 0.316 1.460 1.460 1.070 1.540 1.230 0.485 | 1.680 1.120 0.310 0.582 0.390 1.020 1.600 1.900 1.600 U 1.880 0.335 1.080 0.996 1.550 1.240 0.319 U NS 3.660 | 2.940 | 2.850 | 0.372 0.413 0.230 0.726 0.405 1.280 1.600 1.600 U.600 U.600 U.600 U.1.600 U.1. | | Benzene | 3.3 | 26-Jan-11** 27-Apr-11 26-Jul-11 28-Oct-11 23-Jan-12 13-Apr-12 2-Jul-12 resample 20-Jun-12 1-Feb-13 29-Apr-13 9-Jul-13 RIDEM 18-Oct-13 9-Jan-14 24-Apr-14 1-Aug-14 12-Sept-14 resample 22-Oct-14 20-Jan-15 | NS 0.319 0.559 0.640 1.300 0.680 NS 0.490 1.300 0.470 0.960 0.440 NS 0.240 1.400 0.300 0.570 NS 0.560 0.450 | U | 3.600 0.319 U 0.664 0.500 1.200 0.670 NS 0.540 1.000 0.410 0.920 0.420 NS 1.000 1.700 0.240 0.360 NS 0.340 0.440 | 3.800 0.319 0.319 0.380 1.200 0.590 NS 0.410 0.770 0.400 0.900 0.400 NS 0.880 0.910 0.300 0.350 NS 0.270 0.440 | NS 0.319 0.326 0.390 1.200 0.600 NS 0.510 1.200 0.420 0.930 0.450 NS 0.660 0.860 0.230 0.820 NS 0.350 0.430 | NS 0.319 U 0.319 0.410 1.200 0.580 NS 0.520 0.990 0.410 0.760 0.450 0.537 1.100 0.730 0.240 0.740 NS 0.550 0.550 0.500 | NS 0.319 0.319 0.450 1.200 0.650 NS 0.440 1.500 0.710 0.420 NS 0.830 0.810 0.210 0.600 NS 0.250 0.500 | 3.800 J 0.319 U 0.329 0.460 1.200 0.580 NS 0.460 1.700 0.500 0.940 0.450 NS 0.800 0.960 0.240 0.790 0.410 0.450 0.580 | NS 0.319 U 0.319 U 0.430 1.300 0.520 0.290 0.540 1.300 0.430 0.430 0.840 0.440 NS 1.000 0.820 0.300 0.550 NS 0.610 0.480 | 2.940 | 2.850 | NS 0.319 U 0.319 U 0.300 1.200 0.220 0.140 0.740 0.470 0.410 0.300 0.520 0.597 1.000 0.750 0.210 0.590 NS 0.420 0.510 | | | | 30-Mar-15 resample 22-Apr-15 21-Jul-15 23-Sept-15 resample 29-Oct-15 4-Dec-15 resample 27-Jan-16 20-Apr-16 30-Jul-16 21-Oct-16 31-Jan-17 17-Apr-17 4 26-Jul-17 10-Jan-18 11-Apr-18 27-Jul-18 24-Oct-18 16-Jan-19 | NS 0.950 0.580 NS 0.130 NS 0.130 NS 0.87 0.59 0.23 0.82 0.86 0.31 0.43 0.19 0.58 0.78 3.3 0.9 0.87 | | NS 1.200 0.500 A NS 0.250 0.220 0.8 0.33 0.25 0.92 0.52 0.26 0.39 0.23 0.74 0.63 0.41 0.37 0.64 | NS 0.920 0.510 NS 0.580 NS 1 0.34 0.22 0.30 0.52 0.24 0.37 0.37 0.68 0.57 0.23 0.39 0.61 | NS 0.950 0.470 NS 0.180 ' NS 0.76 0.4 0.16 0.93 0.54 0.21 0.46 0.23 0.71 0.61 | NS 1.100 0.530 NS 0.140 NS 0.140 NS 0.72 0.39 0.34 0.45 0.54 0.21 0.5 0.21 0.48 0.47 0.28 0.38 0.67 | NS 0.750 0.570 NS 0.160 NS 0.160 NS 0.8 0.38 0.28 0.5 0.55 0.23 0.51 0.27 0.53 0.56 1 0.44 0.72 | NS 0.930 0.480 0.360 0.220 NS 0.88 0.33 0.11 0.29 0.52 0.23 0.48 0.23 0.85 0.50 0.32 0.34 0.7 | 0.490 0.830 0.480 NS 0.160 NS 0.86 0.33 0.19 0.55 0.56 0.23 0.51 0.23 0.58 0.58 0.32 0.31 0.62 | | | NS 0.880 0.350 NS 0.110 NS 0.110 NS 0.72 0.4 0.18 3.3 0.51 0.24 0.2 0.15 0.37 0.47 ^D 0.27 0.29 0.55 | | | | 12-Apr-19 29-Jul-19 29-Oct-19 1-Nov-19 21-Jan-20 22-Apr-20 23-Jul-20 29-Oct-20 | 0.54
0.30
NS
0.35
0.96
0.17
0.20 | | 0.4
0.21
0.3
NS
0.60
0.16
0.18 | 0.39
0.17
0.26
NS
0.57
0.15
0.18
0.74 | 0.45
0.19
0.31
NS
0.60
0.16
0.17 | 0.41
0.2
0.31
NS
0.65
0.16
0.18
0.82 | 0.43
0.26
0.32
NS
0.61
0.16
0.28 | 0.37
0.22
0.34
NS
0.75
0.17
0.21
0.88 | 0.42
0.2
NS
0.26
0.47
0.16
0.18
0.98 | | | 0.47
0.22
0.27
NS
0.15
0.15 | Page 3 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | Room 14 | | Room 234 | | ient Outdoor
(AOA-1) | | |---|---|-------------|---|------|---|---
---|---|---|---|---|---|--------------|---|---------------------------------------|-------------|---------|------|----------|----|-------------------------|---| | | | - | 0.120 | | | | | | 0.120 | | | | | <u> </u> | _ | _ | | Qual | (| | | _ | | Bromodichloromethane | 0.034/0.13 | Sample Date | 0.130 0.134 0.134 0.134 0.134 0.134 0.134 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.131 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.130 | Qual | 0.130 0.134 0.134 0.134 0.134 0.134 0.134 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.130
0.130 0.067 | Vul | 0.130 0.134 0.134 0.134 0.130 0.130 0.130 0.134 0.133 0.130 0.130 0.130 0.130 0.130 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.130 | סמו מממממממממ מממממממממ מממממממממממממממ | 0.130 0.134 0.134 0.134 0.130 0.130 0.130 0.134 0.133 0.130 0.130 0.130 0.130 0.130 0.131 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.130 | | 0.130 0.134 0.134 0.134 0.134 0.134 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.130 | | Qual 0.130 | 0.130 0.134 0.134 0.134 0.133 0.231 0.134 0.134 0.130 0.130 0.130 0.130 0.130 0.130 0.131 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.130 0.067 | עטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט | Qua 0.130 | 0.228 | Qual | 0.228 | U | Qua 130 | | | | | 29-Oct-20 | 0.067 | U | 0.067 | U | 0.067 | U | 0.067 | U | 0.07 | U | 0.07 U | 0.067 | U | 0.067 U | | | | 0. | 067 U | | Page 4 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Cente
(Rm 145) | | Room 152 | Room | | Room 23 | | Ambient Outdoor
(AOA-1) | |---|---|---|-------------------------|--------
--|----------|--|--------|---------------------|---------------------------------------|--------------|--------|------------------|-------------------------|--------|--|-------|------|---------|------|----------------------------| | | | | | | | | | | | _ | | | | | | _ | | Qual | | Qual | | | Bromoform | 0.55 | 8-Feb-08 27-Mar-08 25-Apr-08 29-May-08 31-Jul-08 31-Jul-08 30-Sep-08 27-Oct-08 25-Nov-08 18-Dec-08 21-Jan-09 25-Feb-09 26-Mar-09 29-Apr-09 22-Jul-09 9-Oct-09 15-Jan-10 21-Apr-10 16-Jul-10 15-Oct-10 30-Nov-10 26-Jan-11 26-Jan-11 28-Oct-11 23-Jan-12 23-Jan-12 21-Apr-12 1-Rov-12 1-Feb-13 29-Apr-13 9-Jul-13 18-Oct-13 9-Jul-13 18-Oct-13 9-Jul-14 12-Sept-14 resample 22-Oct-14 20-Jan-15 30-Mar-15 resample 22-Apr-15 21-Jul-15 23-Sept-15 resample 22-Oct-14 20-Jan-15 30-Mar-15 resample 22-Oct-16 31-Jan-17 17-Apr-17 42-G-Jul-16 21-Oct-16 31-Jan-17 17-Apr-17 12-Oct-17 10-Jan-18 11-Apr-18 27-Jul-18 24-Oct-19 12-Apr-19 29-Jul-19 29-Oct-19 1-Nov-19 21-Jan-20 | | Qual | Cafeteria 0.210 0.206 0.206 0.206 0.210 0.210 0.210 0.206 0.206 0.410 0.410 0.410 0.410 0.410 0.410 0.206 0.207 0.310 0.351 0.540 0.211 0.211 | Qual U | O.210 O.206 O.207 O.310 O.352 O.352 O.352 O.206 O.207 O.310 O.310 O.310 O.310 O.210 O.211 O.21 | Qual | | סטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט | | | Room 110 Qual | (Rm 145) | | Room 152 Quadratic Quadr | 0.351 | U | | U U | | | | | 23-Jul-20
29-Oct-20 | 0.21
0.21 | U
U | 0.21 U
0.21 U | 0.21
0.21 | U
U | 0.21 U
0.21 U | | | | | 0.21 U
0.21 U | Page 5 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | Sample Date | Kitchen Storag
Room | ge Qual | Cafeteria
Qi | Gymnasium | Qual | Elevator
Hallway | Qual | Room 118 | Dual | Room 110 Qual | Media Center
(Rm 145) | Qual | Room 152 | Roon | ı 149
Qual | Room 234 | Ambient Outdoo
(AOA-1) | or
Qual | |---|---|-------------------------------------|------------------------|---------|--------------------------|--------------------------|--------|---------------------|--------|------------------|-------------|--------------------|--------------------------|--------|--------------------|-------|---------------|----------|---------------------------|------------| | | | 8-Feb-08
27-Mar-08 | 1.470
8.560 | U | 1.470 U
6.540 | 1.470
5.650 | U | 1.470
5.140 | U | 1.470 U
3.950 | U | 1.470 U
4.440 | 1.470
0.360 | U | 1.470 U
5.680 | | | | 1.470
1.470 | U
U | | | | 25-Apr-08
29-May-08 | 2.140
1.470 | п | 1.470 U | | | 1.470
2.240 | U | 1.1 | U
U | 1.470
1.470 U | 1.470
1.470 | U
U | 1.470 U
1.470 U | l l | | | 1.470
1.470 | U
U | | | | 27-Jun-08 | 7.850 | | 2.520 | 3.810 | | 3.890 | | 3.050 | | 2.420 | 2.840 | | 2.340 | | | | 3.080 | | | | | 31-Jul-08
30-Sep-08 | 2.080
2.280 | | 1.720
1.790 | 3.080
3.980 | | 1.650
3.980 | | 2.080
1.470 U | U | 2.160
1.470 U | 1.470
1.470 | U
U | 1.490
1.470 U | | | | 1.470
1.650 | U | | | | 30-Sep-08
27-Oct-08 | 1.500
1.900 | U | 1.500 U
3.200 | 1.500
1.500 | U
U | 1.500
3.600 | U | 2.200
1.500 | U | 1.500 U
2.000 | 1.500
1.500 | U | 6.100
2.300 | | | | 1.500
2.800 | U | | | | 25-Nov-08 | 2.600 | | 1.500 | 1.500 | U |
1.900 | | 1.500 U | U | 1.500 U | 2.900 | | 1.500 U | | | | 1.600 | | | | | 18-Dec-08
21-Jan-09 | 1.500
1.500 | U
U | 1.500 U | | U
U | 1.500
1.500 | U
U | | U
U | 1.500 U
1.500 U | 1.500
1.500 | U
U | 1.500 U
1.500 U | | | | 1.500
1.500 | U
U | | | | 25-Feb-09 | 1.500 | U | 1.500 U | 0.079 | U | NS | ** | 1.500 U | U | 1.500 U | 1.500 | U | 1.500 U | | | | 1.500 | U | | | | 26-Mar-09
29-Apr-09 | 2.410
1.470 | U | 1.560
1.470 | 1.470
1.470 | U
U | 1.470
1.460 | U
U | 1.590
1.470 U | U | 1.470 U
1.470 U | 1.470
1.740 | U
U | 1.470 U
1.470 U | l l | | | 1.470
1.470 | U
U | | | | 22-Jul-09
9-Oct-09 | 1.470
1.470 | U
U | 1.470 U | | | 1.470
1.640 | U | 2.070
1.470 U | U | 21.900
1.470 U | 1.740
1.470 | U | 1.480
1.470 U | | | | 4.360
1.470 | U | | | | 15-Jan-10 | 6.610 | | 1.470 U | 1.470 | U | 1.470 | | 1.470 U | U | 1.470 U | 1.470 | U | 1.470 U | | | | 1.470 | U | | | | 21-Apr-10
16-Jul-10 | 1.850
2.520 | | 1.470
1.900 | 2.770
2.100 | | 1.590
2.210 | | 1.480
3.180 | | 1.470 U
2.800 | 1.470
24.600 | U | 1.470 U
1.870 | | | | 1.470
1.630 | U | | | | 15-Oct-10
30-Nov-10 | 4.300
NS | | 1.470 U | | U
U | 1.470
NS | U | 1.470 U
NS | U | 1.470 U
NS | 1.470
1.470 | U
U | 1.470 U
NS | | | | 0.021
NS | I | | | | 26-Jan-11 | 2.720 | | 3.190 | 2.510 | U | 2.510 | U | 2.520 U | U | 2.500 U | 2.640 | | 2.710 | 2.500 | U | 2.510 | J 2.500 | U | | | | 26-Jan-11**
27-Apr-11 | NS
1.470 | U | 2.300
1.470 | 2.100
2.220 | | NS
1.470 | U | NS
1.470 U | U | NS
1.470 U | 1.600
1.470 | U | NS
1.470 U | | | | NS
1.470 | U | | | | 26-Jul-11
28-Oct-11 | 1.600
3.500 | II | 1.470 U
3.500 U | | U | 1.520
3.500 | U | | U
U | 1.470 U
3.500 U | 1.470
3.500 | U
U | 3.010
3.500 U | | | | 1.470
2.400 | U
U | | | | 23-Jan-12 | 4.100 | U | 4.100 U | 4.100 | U | 4.100 | U | 4.100 U | U | 4.100 U | 4.100 | U | 4.100 U | | | | 4.100 | U | | | | 13-Apr-12
2-Jul-12 resample | 3.500
NS | U | 3.500
NS | 3.500
NS | U | 3.500
NS | U | 3.500 U
NS | U | 3.600
NS | 3.500
NS | U | 3.500 U
3.500 U | | | | 4.700
3.500 | U
U | | | | 20-Jun-12 | 2.600 | II | 2.400 | 3.300 | ** | 2.700 | ** | 2.800 | * * | 2.400 U | 2.400 | U | 2.400 U | | | | 2.400 | U
U | | | | 1-Nov-12
1-Feb-13 | 2.400
2.400 | U | 2.400 U | | U | 2.400
2.400 | U
U | | U
U | 2.400 U
2.400 U | 2.400
2.400 | U
U | 2.400 U
2.400 U | | | | 2.400
2.400 | U | | | | 29-Apr-13
9-Jul-13 | 5.100
2.800 | | 3.500
3.000 | 3.500
2.800 | | 3.800
2.400 | U | 4.800
3.600 | | 3.600
2.400 U | 4.100
5.400 | | 3.300
2.900 | | | | 4.500
3.200 | | | 2-Butanone | 500.0 | 9-Jul-13 RIDEM | NS | | NS | NS | | NS | _ | 2.525 | | NS | NS | | NS | | | | 1.886 | | | | | 18-Oct-13
9-Jan-14 | 4.800
2.400 | U | 4.700
2.400 | 3.500
2.400 | U | 5.800
2.400 | U | 2.800
2.400 | U | 2.800
2.400 U | 6.900
2.400 | U | 3.100
3.200 | | | | 3.200
2.400 | U | | | | 24-Apr-14
1-Aug-14 | 2.400
2.600 | U | 2.400
2.600 | 2.500
3.100 | | 2.400
3.600 | U | 4.500
5.900 | | 2.400 U
2.600 | 2.400
3.700 | U | 2.400 U
2.400 U | l l | | | 2.400
5.100 | U | | | | 12-Sept-14 resample | NS | | NS | NS | | NS | | NS | | NS | 2.600 | | NS | | | | NS | U | | | | 22-Oct-14
20-Jan-15 | 3.500
5.500 | U | 3.500 U
2.400 U | | | 3.500
3.600 | U | 3.600
5.700 | | 3.500 U
2.400 | 3.500
3.900 | U | 3.500 U
2.400 U | l l | | | 3.500
3.600 | U | | | | 30-Mar-15 resample
22-Apr-15 | NS
2.600 | | NS
4.500 | NS
6.600 ^L | | NS
2.400 | U | NS
3.900 | | NS
3.200 | NS
4.600 | | 2.700 U
4.800 | | | | NS
10.000 | | | | | 21-Jul-15 | 3.800
NS | | 1.500 ^A
NS | 2.800
NS | | 2.200
NS | | 2.000
NS | | 1.500 | 1.700
0.610 | | 2.100
NS | | | | 1.200
NS | | | | | 23-Sept-15 resample
29-Oct-15 | 0.430 | | 1.800 | 0.670 | | 1.200 | | 0.550 | | NS
1.100 | 1.400 | | 0.550 | | | | 0.710 | | | | | 4-Dec-15 resample
27-Jan-16 | NS
3.3 | | 0.460
2.4 | NS
4.3 | | NS
2.4 | U | NS
2.4 U | U | NS
2.4 U | NS
2.4 | U | NS
2.4 U | | | | NS
2.4 | U | | | | 20-Apr-16 ³
20-Jul-16 | 2.4
2.8 | U | 2.4 t | | U | 2.4
2.9 | U
U | 2.4
3.8 | U | 2.4
2.8 | 2.4
3.1 | U
U | 2.4 U
2.7 U | | | | 2.4
3.5 | U
U | | | | 21-Oct-16 | 2.4 | U | 2.7 | 2.4 | U | 2.4 | U | 2.5 | | 3.1 | 2.4 | U | 2.4 U | | | | 5 | | | | | 31-Jan-17
17-Apr-17 ⁴ | 2.4
3.5 | U | 2.4 I | | U | 2.4
3.5 | U
U | | U
U | 2.4 U
3.5 U | 2.4
3.500 | U | 2.4 U
3.500 U | l l | | | 2.4
3.5 | U | | | | 26-Jul-17 | 3.6 | | 2.4 | 3.2 | | 2.4 | U | 2.4 | U | 2.4 U | 2.6 | | 2.6 | | | | 3.3 | | | | | 12-Oct-17
10-Jan-18 | 2.4
2.4 | U | 2.4 t | | U | 2.4
2.4 | U
U | | U
U | 2.4 U
2.4 U | 2.4
2.4 | U | 2.4 U
2.4 U | l l | | | 2.4
2.4 | U | | | | 11-Apr-18 | 2.4 | U | 2.4 | 2.4 | U | 2.4 | U | 2.4 | U | 2.4 U | 2.4 | U | 2.4 U | | | | 12 ^D | U | | | | 27-Jul-18
24-Oct-18 | 3.90
2.40 | U | 2.4 U | | U
U | 2.4
2.4 | U | | U
U | 3.5 U
2.4 U | 2.4
2.4 | U | 2.4 U
2.4 U | l l | | | 2.4
2.4 | U | | | | 16-Jan-19 | 2.40 | U | 2.4 | 2.4 | U | 2.4 | U | 2.4 t | U | 2.4 U | 2.4 | U | 2.4 U | I | | | 2.4 | U | | | | 12-Apr-19
29-Jul-19 | 2.40
2.40 | U | 2.4
2.9 | 2.4 | U | 2.4
2.4 | U
U | | U
U | 2.4 U
2.4 U | 2.4
2.4 | U
U | 2.7
2.4 U | | | | 2.4
2.4 | U
U | | | | 29-Oct-19 | NS | | 2.4 | 2.4 | U | 2.4 | U | | U | 2.4 U | 2.4 | U | NS | | | | 2.4 | U | | | | 1-Nov-19
21-Jan-20 | 2.4
2.40 | U | NS
2.40 U | NS
2.40 | U | NS
2.40 | U | NS
2.40 U | U | NS
2.40 U | NS
2.40 | U | 2.4 U
2.40 U | I | | | NS
2.40 | U | | | | 22-Apr-20 | 2.40 | U
U | 2.4 | | U
U | 2.4 | U | | U
U | 2.4 U | 2.4 | U | 2.4 U
2.4 U | I | | | 2.4 | U
U | | | | 23-Jul-20
29-Oct-20 | 2.40
2.40 | U | 2.4 U | | U | 2.4
2.4 | U
U | | U | 2.4 U
2.4 U | 2.4
2.4 | U | 2.4 U
2.4 U | | | | 2.4
2.4 | U | Page 6 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storag
Room | e | | | 6 | | Elevator
Hallway | | D 110 | | D 410 | Media Center
(Rm 145) | | D 472 | | 140 | D 224 | Ambient Oute | | |---|---|-------------------------------------|------------------------|------|----------------|--------|----------------|--------|---------------------|--------|----------------|--------|--------------------|--------------------------|--------|--------------------|-------|------|----------|------------------|--------| | | | Sample Date | Koom | Qual | Cafeteria | Qual | Gymnasium | Qual | Hallway | Qual | Room 118 | Qual | Room 110 Qual | . , | Qual | Room 152 Qua | Room | Qual | Room 234 | ual (AOA-1) | Qual | | | | 8-Feb-08 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | _ | | | 2.740 | U | | | | 27-Mar-08 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 25-Apr-08 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 29-May-08 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 27-Jun-08 | 2.740
2.740 | U | 2.740
2.740 | U
U | 2.740
2.740 | U
U | 2.740
2.740 | U
U | 2.740
2.740 | U
U | 2.740 U
2.740 U | 2.740
2.740 | U
U | 2.740 U
2.740 U | | | | 2.740
2.740 | U
U | | | | 31-Jul-08
28-Aug-08 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 30-Sep-08 | 5.500 | U | 5.500 | U | 5.500 | U | 5.500 | U | 23.300 | | 5.500 U | 5.500 | U | 73.000 | | | | 5.500 | U | | | | 27-Oct-08 | 5.500 | U | 5.500 U | 5.500 | U | 5.500 U | | | | 5.500 | U | | | | 25-Nov-08 | 5.500 | U | 5.500 U | 5.500 | U | 5.500 U | | | | 5.500 | U | | | | 18-Dec-08 | 5.500 | U | 5.500 U | 5.500 | U | 5.500 U | | | | 5.500 | U | | | | 21-Jan-09 | 5.500 | U | 5.500 U | 5.500 | U | 5.500 U | | | | 5.500 | U | | | | 25-Feb-09
26-Mar-09 | 5.500
2.740 | U | 5.500
2.740 | U
U | 6.300
2.740 | U | NS
2.740 | U | 5.500
2.740 | U
U | 5.500 U
2.740 U | 5.500
2.740 | U
U | 5.500 U
2.740 U | | | | 5.500
2.740 | U | | | | 29-Apr-09 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 22-Jul-09 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 9-Oct-09 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 15-Jan-10 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 21-Apr-10 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 16-Jul-10 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 15-Oct-10
30-Nov-10 | 2.740
NS | U | 2.740
2.740 | U | 2.740
2.740 | U
U | 2.740
NS | U | 2.740
NS | U | 2.740 U
NS | 2.740
2.740 | U | 2.740
NS | | | | 2.740
NS | U | | | | 26-Jan-11 | 0.468 | U | 4.660 | U | 4.680 | U | 4.670 | U | 4.680 | U | 4.660 U | 4.660 | U | 4.680 U | 4.660 | U | 4.680 | U 4.660 | U | | | | 26-Jan-11** | NS | | 4.000 | | 4.000 | | NS | | NS | | NS C | 4.000 | | NS C | 4.000 | | 4.000 | NS | | | | | 27-Apr-11 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 26-Jul-11 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 28-Oct-11 | 0.470 | U | 0.470 U | 0.470 | U | 0.470 U | | | | 0.320 | U | | | | 23-Jan-12 | 0.550 | U | 0.550 U | 0.550 | U | 0.550 U | | | | 0.550 | U | | | | 13-Apr-12 | 0.470 | U | 0.470 U | 0.470 | U | 0.470 U
0.470 U | | | | 0.630 | U | | | | 2-Jul-12 resample
20-Jun-12 | NS
0.320 | U |
NS
0.320 U | NS
0.320 | U | 0.470 U
0.320 U | | | | 0.470
0.320 | U | | | | 1-Nov-12 | 0.320 | U | 0.320 U | 0.320 | U | 0.320 U | | | | 0.320 | U | | | | 1-Feb-13 | 0.320 | U | 0.320 U | 0.320 | U | 0.320 U | | | | 0.320 | U | | n-Butylbenzene | 73.0 | 29-Apr-13 | 0.320 | U | 0.320 U | 0.320 | U | 0.320 U | | | | 0.320 | U | | | | 9-Jul-13 | 0.320 | U | 0.320 U | 0.320 | U | 0.320 U | | | | 0.320 | U | | | | 18-Oct-13 | 0.320 | U | 0.320 | U | 0.320 | U | 0.320 | U | 0.410 | ** | 0.320 U | 0.590 | U | 0.420 | | | | 0.340 | | | | | 9-Jan-14
24-Apr-14 | 0.320
0.320 | U | 0.320
0.320 | U | 0.320
0.320 | U
U | 0.320
0.320 | U | 0.320
0.320 | U
U | 0.320 U
0.320 U | 0.320
0.320 | U | 0.320 U
0.320 U | | | | 0.320
0.320 | U | | | | 1-Aug-14 | 0.320 L | U | 0.320 L | II | 0.320 L | U | 0.470 ^L | U | 0.320 | U | 0.320 U | 0.320 | U | 0.320 U | | | | 0.320 | U | | | | 12-Sept-14 resample | NS | | NS S | 0.320 | U | NS S | | | | NS | | | | | 22-Oct-14 | 0.470 | U | 0.470 U | 0.470 | U | 0.470 U | | | | 0.470 | U | | | | 20-Jan-15 | 0.320 | U | 0.320 U | 0.470 | U | 0.320 U | | | | 0.470 | U | | | | 30-Mar-15 resample | NS | l | NS
0.220 A | l | NS | | NS | | NS | | NS | NS | | 0.360 U | | | | NS | | | | | 22-Apr-15 | 0.320 | U | 0.320 A | U | 0.320 | U | 0.320 | U | 0.320 | U
U | 0.320 U
0.32 U | 0.320 | U | 0.320 U
0.32 U | | | | 0.320 | U | | | | 27-Jan-16
20-Apr-16 ³ | 0.32
0.32 | U | 0.32
0.32 | U | 0.32
0.32 | U
U | 0.32
0.32 | U | 0.32
0.32 | U | 0.32 U
0.32 U | 0.32
0.32 | U | 0.32 U
0.32 U | | | | 0.32
0.32 | II U | | | | 20-Jul-16 | 0.38 | U | 0.49 | U | 0.34 | U | 0.39 | U | 0.38 W | U | 0.37 U | 0.42 | U | 0.36 U | | | | 0.47 | U | | | | 21-Oct-16 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | | | 31-Jan-17 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | | | 17-Apr-17 4 | 0.47 | U | 0.47 U | 0.47 | U | 0.47 U | | | | 0.47 | U | | | | 26-Jul-17 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | | | 12-Oct-17 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | | | 10-Jan-18 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | | | 11-Apr-18 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 1.6 ^D | U | | | | 27-Jul-18 | 0.32 | U | 0.32 | U | 0.32 | U | 0.32 | U | 0.47 | U | 0.47 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | | | 24-Oct-18 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | | | 16-Jan-19 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | 1 1 | | 0.32 | U | | | | 12-Apr-19 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | | | 29-Jul-19 | 0.32 | U | 0.32 | U | 0.32 | U
U | 0.32 | U | 0.32 | U
U | 0.32 U
0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | | | 29-Oct-19
1-Nov-19 | NS
0.32 | U | 0.32
NS | U | 0.32
NS | 0 | 0.32
NS | U | 0.32
NS | U | 0.32 U
NS | 0.32
NS | U | NS
0.32 U | | | | 0.32
NS | 0 | | | | 21-Jan-20 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | | | 22-Apr-20 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U II | | | | 23-Jul-20 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | | | 29-Oct-20 | 0.32 | U | 0.32 U | 0.32 | U | 0.32 U | | | | 0.32 | U | | IL. | 1 | | | 1 | | 1 | | | | | | | | | | | | | | | | Page 7 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storag
Room | e | Cofeesia | | Communication | | Elevator
Hallway | | Dage 119 | | D 110 | Media Center
(Rm 145) | | Da., 152 | P | 140 | D 224 | Ambient Outd | | |---|---|-------------------------------------|------------------------|------|--------------------|--------|----------------|--------|---------------------|--------|----------------|--------|--------------------|--------------------------|--------|--------------------|-------|-----------|----------|------------------|--------| | | | Sample Date | Room | Qual | Cafeteria | Qual | Gymnasium | Qual | Hallway | Qual | Room 118 | Qual | Room 110 Qual | ` ′ | Qual | Room 152 Qua | Room | Qual | Room 234 | ual (AOA-1) | Qual | | | | 8-Feb-08 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | · · · · · | | 2.740 | U | | | | 27-Mar-08 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 25-Apr-08 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 29-May-08 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | I | | | 2.740 | U | | | | 27-Jun-08 | 2.740
2.740 | U | 2.740
2.740 | U
U | 2.740
2.740 | U
U | 2.740
2.740 | U
U | 2.740
2.740 | U
U | 2.740 U
2.740 U | 2.740
2.740 | U | 2.740 U
2.740 U | | | | 2.740
2.740 | U
U | | | | 31-Jul-08
28-Aug-08 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 30-Sep-08 | 5.500 | U | 5.500 U | 5.500 | U | 56.600 | | | | 5.500 | U | | | | 27-Oct-08 | 5.500 | U | 5.500 U | 5.500 | U | 5.500 U | | | | 5.500 | U | | | | 25-Nov-08 | 5.500 | U | 5.500 U | 5.500 | U | 5.500 U | | | | 5.500 | U | | | | 18-Dec-08 | 5.500 | U | 5.500 U | 5.500 | U | 5.500 U | | | | 5.500 | U | | | | 21-Jan-09
25-Feb-09 | 5.500
5.500 | U | 5.500
5.500 | U
U | 5.500
5.500 | U
U | 5.500
NS | U | 5.500
5.500 | U
U | 5.500 U
5.500 U | 5.500
5.500 | U | 5.500 U
5.500 U | | | | 5.500
5.500 | U
U | | | | 25-Feb-09
26-Mar-09 | 2.740 | II | 2.740 | U | 2.740 | U | NS
2.740 | U | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 29-Apr-09 | 2.740 | U | 2.740 | U | 2.460 | U | 2.740 | U | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 22-Jul-09 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 9-Oct-09 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 15-Jan-10 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | | | | 2.740 | U | | | | 21-Apr-10 | 2.740 | U | 2.740 | U
U | 2.740 | U | 2.740 | U | 2.740 | U
U | 2.740 U
2.740 U | 2.740 | U | 2.740 U
2.740 U | | | | 2.740 | U
U | | | | 16-Jul-10
15-Oct-10 | 2.740
2.740 | U | 2.740
2.740 | U | 2.740
2.740 | U
U | 2.740
2.740 | U | 2.740
2.740 | U | 2.740 U
2.740 U | 2.740
2.740 | U | 2.740 U
2.740 U | | | | 2.740
2.740 | U | | | | 30-Nov-10 | NS | | 2.740 | U | 2,74 | U | NS | | NS | Ü | NS NS | 2.740 | U | NS C | | | | NS | | | | | 26-Jan-11 | 0.468 | U | 4.660 | U | 4.680 | U | 4.670 | U | 4.680 | U | 4.660 U | 4.660 | U | 4.680 U | 4.660 | U | 4.680 | U 4.660 | U | | | | 26-Jan-11** | NS | | | | | | NS | | NS | | NS | | | NS | | | | NS | | | | | 27-Apr-11 | 2.740 | U | 2.740 U | 2.740 | U | 2.740 U | I | | | 2.740 | U | | | | 26-Jul-11 | 2.740 | U | 2.740 | U | 2.740 | U
U | 2.740 | U | 2.740 | U
U | 2.740 U
0.380 U | 2.740 | U | 2.740 U
0.380 U | | | | 2.740 | U
U | | | | 28-Oct-11
23-Jan-12 | 0.380
0.440 | U | 0.380 U
0.440 U | 0.380
0.440 | U | 0.380 U
0.440 U | | | | 0.250
0.440 | U | | | | 13-Apr-12 | 0.380 | U | 0.380 U | 0.380 | U | 0.380 U | | | | 0.500 | U | | | | 2-Jul-12 resample | NS | NS | | 0.380 U | I | | | 0.380 | U | | | | 20-Jun-12 | 0.250 | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 1-Nov-12 | 0.250 | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | sec-Butylbenzene | 73.0 | 1-Feb-13 | 0.250 | U | 0.250 | U
U | 0.250
0.250 | U
U | 0.250
0.250 | U
U | 0.250
0.250 | U
U | 0.250 U
0.250 U | 0.250 | U
U | 0.250 U
0.250 U | | | | 0.250 | U
U | | sec-Butyloenzene | 75.0 | 29-Apr-13
9-Jul-13 | 0.250
0.250 | U | 0.250
0.250 | U | 0.250 | U | 0.250 | U | 0.250 | U | 0.250 U | 0.250
0.250 | U | 0.250 U | I | | | 0.250
0.250 | U | | | | 18-Oct-13 | 0.250 | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 9-Jan-14 | 0.250 | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 24-Apr-14 | 0.250 | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 1-Aug-14 | 0.250 | U | 0.250 | U | 0.250 | U | 0.380 | U | 0.250 | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 12-Sept-14 resample
22-Oct-14 | NS
0.380 | U | NS
0.380 U | 0.250
0.380 | U | NS
0.380 U | | | | NS
0.380 | U | | | | 20-Jan-15 | 0.250 | U | 0.250 U | 0.380 | U | 0.250 U | | | | 0.380 | U | | | | 30-Mar-15 resample | NS | NS | | 0.290 U | | | | NS | | | | | 22-Apr-15 | 0.250 | U | 0.250 ^A | U | 0.250 | U | 0.250 | U | 0.250 | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 27-Jan-16 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 20-Apr-16 ³
20-Jul-16 | 0.25
0.30 | U | 0.25
0.39 | U | 0.25
0.27 | U | 0.25
0.31 | U | 0.25
0.30 | U
U | 0.25 U
0.29 U | 0.25
0.33 | U | 0.25 U
0.28 U | | | | 0.25
0.37 | U | | | | 21-Oct-16 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 31-Jan-17 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | I | | | 0.25 | U | | | | 17-Apr-17 ⁴ | 0.38 | U | 0.38 U | 0.38 | U | 0.38 U | | | | 0.38 | U | | | | 26-Jul-17 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 12-Oct-17 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 10-Jan-18 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 11-Apr-18 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 1.3 ^D | U | | | | 27-Jul-18 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | 0.38 | U | 0.38 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 24-Oct-18 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 16-Jan-19 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 12-Apr-19
29-Jul-19 | 0.25
0.25 | U | 0.25
0.25 | U
U | 0.25
0.25 | U
U | 0.25
0.25 | U | 0.25
0.25 | U
U | 0.25 U
0.25 U | 0.25
0.25 | U | 0.25
U
0.25 U | | | | 0.25
0.25 | U | | | | 29-Jul-19
29-Oct-19 | 0.25
NS | U | 0.25 U | 0.25 | U | 0.25 U
NS | | | | 0.25 | U | | | | 1-Nov-19 | 0.25 | U | 0.23
NS | | 0.23
NS | | NS | | NS | J | 0.23
NS | NS
NS | | 0.25 U | | | | 0.23
NS | | | | | 21-Jan-20 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 22-Apr-20 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 23-Jul-20 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 29-Oct-20 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | Ц | 1 | I | | | | | | 1 | | 1 | 1 | | I | I . | | | 1 | <u> </u> | | 1 | | Page 8 of 48 Date Modified: 12/10/2020 | Total | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | | Cafeteria | Gymnasium | Elevator
Hallway | Room 118 | Oual | Room 110 | Qual | Media Center
(Rm 145) | Room 152 | Room 1 | | Room 234 | | |--|---|---|------------------------|-------------------------|------|------------|-----------|---------------------|----------|------|----------|------|--------------------------|----------|--------|------|----------|-----------| | Color Colo | | | Sample Date | | Qual | | | | | Qual | 0.470 | Qual | Qual | Qual | | Qual | (| Qual Qual | | Property 1,000 | 2006 1 | 175.6 6.6 1.75 | | | - | | | | | | | | | | | | | | | | | 2.546 6.50 | | | - I | Property | | | - | | | | | | | | | TI | | | | | | | | Second S | | | - | | | | | | | | | | | | | | | | | Biography Color | 2-00-00-00-00-00-00-00-00-00-00-00-00-00 | 1 | 1-20-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | I I | | | | | | | | | | | | 1.00 | 13.4 m | | | - | | | | | | | | | | | | | | | | | 1-cyclid 0.000 | | | 9-Oct-09 | 0.503 | | 0.566 | 0.471 | 0.497 | 0.471 | | 0.497 | | 0.478 | 0.484 | | | | 0.478 | | | | | 15-Jan-10 | 0.585 | | 0.603 | 0.578 | 0.597 | 0.585 | | 0.610 | | 0.616 | 0.610 | | | | 0.635 | | 15 Corp. | | | | 0.490 | | 0.547 | 0.559 | | | U | 0.459 | | 0.530 | | | | | 0.484 | | Selection Same Sa | | | _ | 0.497 | | | | | | | | | 0.484 | 0.484 | | | | 0.541 | | 20-20-11 25-20 16-20 25-20 16-20 25-20 16-20 25-20 16-20 25-20 2 | | | 15-Oct-10 | 0.459 | | 0.427 | 0.509 | 0.434 | 0.440 | | 0.408 | | 0.453 | 0.446 | | | | 0.503 | | Section Sect | | | 30-Nov-10 | NS | | 0.478 | 0.559 | NS | NS | | NS | | 0.484 | NS | | | | NS | | Property 10-72 | | | 26-Jan-11 | 0.558 | | 0.502 | 0.504 | 0.567 | 0.472 | | 0.566 | | 0.481 | 0.558 | 0.481 | | 0.557 | 0.481 | | 20-5-11 | | | 26-Jan-11** | NS | | 0.540 | 0.500 | NS | NS | | NS | | 0.500 | NS | | | | NS | | 2 2 2 2 2 2 2 2 2 2 | | | 27-Apr-11 | 0.371 | | 0.358 | 0.364 | 0.408 | 0.352 | | 0.364 | | 0.358 | 0.358 | | | | 0.434 | | 2 3 10 2 0.450
0.450 0.4 | | | 26-Jul-11 | 0.409 | | 0.442 | 0.409 | 0.428 | 0.402 | | 0.421 | | 0.402 | 0.421 | | | | 0.459 | | 1-layer 1-la | | | 28-Oct-11 | 0.410 | | 0.380 | 0.430 | 0.430 | 0.420 | | 0.410 | | 0.430 | 0.430 | | | | 0.440 | | 2.04a 7.07 compts NS | | | 23-Jan-12 | 0.490 | | 0.490 | 0.480 | 0.480 | 0.470 | | 0.460 | | 0.490 | 0.460 | | | | 0.480 | | | | | ^ | 0.480 | | 0.490 | 0.420 | 0.460 | | | 0.460 | | 0.470 | 0.460 | | | | 0.300 | | 1-No-12 0.710 0.701 0.201 0.400 0. | | | _ | | | | | | | | | | | | | | | | | 145-13 | 23,46,13 | Carbon tetraelhoide 9. 9. hold 1809 | | | | | | | | I I | | | | | | | | | | | | Curbon tetrachloride 9.5 9.46-18 AERISM NS | | | _ | | | | | | | | | | | | | | | | | Company Comp | 9 Jan 1 | Carbon tetrachloride | 0.5 | | | | | | | | | | | | | | | | | | 24-Apr-14 0.430 0.270 0.410 0.450 0.400 0.401 0.401 0.400 | 1-logic 1-lo | 1.58spc.1 compute NS | 12-Cc-14 | 20 Jun 15 | No. Section NS NS NS NS NS NS NS N | 22-April 0.300 0.350 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.200' | 22-Sqs-15 resumple | | | * | | | 0.350 | | | | | | | | | | | | | | 22-Supple 1-Seamspile NS NS NS NS NS NS NS N | | | | | | 0.280 J, A | | | | | | | | | | | | | | 20-0x-15 0.310 0.300 0.320 0.320 0.310 0.290 0.300 0.310 0.310 0.310 0.330 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0 | 4-Doc-15 resumple | 27-Jan-16 0.59 0.58 0.55 0.56 0.71 0.55 0.64 0.59 0.59 0.49 0.58 0.55 0.55 0.55 0.55 0.55 0.55 0.55 | 20-Apr-16 | | | • | | | 0.58 | | | | | | | | | | | | | | 21-Oct-16 | | | 20-Apr-16 3 | 0.95 | | 0.65 | | 0.65 | | | 0.67 | | 0.65 | 0.66 | | | | 0.58 | | 31-Jan-17 | | | 20-Jul-16 | 0.47 | | 0.48 | 0.41 | 0.46 | 0.38 | | 0.42 | | 0.43 | 0.45 | | | | 0.44 | | 17-Apr-17 ⁴ | | | 21-Oct-16 | 0.49 | | 0.49 | 0.54 | 0.43 | 0.48 | | 0.47 | | 0.46 | 0.46 | | | | 0.47 | | 26-Jul-17 | | | 31-Jan-17 | 0.43 | | 0.42 | 0.43 | 0.4 | 0.4 | | 0.43 | | 0.36 | 0.4 | | | | 0.44 | | 12-Oct-17 0.39 0.39 0.41 0.38 0.31 0.37 0.32 0.35 0.35 0.36 0.36 0.36 0.37 0.35 0.36 0.35 0.36 0.35 0.36 0.36 0.36 0.37 0.36 0.35 0.35 0.36 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.35 0.36
0.36 0.38 0.36 0.38 0.38 0.36 0.38 0.38 0.36 0.39 0.38 0.36 0.39 0.38 0.36 0.39 0.38 0.36 0.39 0.38 0.36 0.39 0.38 0.36 0.39 0.38 0.36 0.39 0.41 0. | | | 17-Apr-17 ⁴ | 0.45 | | 0.45 | 0.43 | 0.44 | 0.45 | | 0.51 | | 0.45 | 0.48 | | | | 0.45 | | 12-Oct-17 0.39 0.39 0.41 0.38 0.31 0.37 0.32 0.35 0.35 0.36 0.36 0.36 0.37 0.35 0.36 0.35 0.36 0.35 0.36 0.36 0.36 0.37 0.36 0.35 0.35 0.36 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.35 0.36 0.38 0.36 0.38 0.38 0.36 0.38 0.38 0.36 0.39 0.38 0.36 0.39 0.38 0.36 0.39 0.38 0.36 0.39 0.38 0.36 0.39 0.38 0.36 0.39 0.38 0.36 0.39 0.41 0. | | | 26-Jul-17 | 0.4 | | 0.38 | 0.38 | 0.37 | 0.39 | | 0.38 | | 0.39 | 0.37 | | | | 0.39 | | 10-Jan-18 | 11-Apr-18 | 27-Jul-18 | 24-Oct-18 | | | _ | | | | | | | | | | | | | | | | | 16-Jan-19 | 12-Apr-19 | 29-Jul-19 | 29-Oct-19 NS 0.45 0.46 0.45 0.45 0.45 0.45 NS | | | _ | | | | | | | | | | | | | | | | | 1-Nov-19 0.43 NS NS NS NS NS NS NS 0.43 0.43 0.43 0.42 0.42 0.41 0.41 0.43 0.43 21-Jan-20 0.41 0.39 0.40 0.43 0.43 0.42 0.42 0.41 0.41 0.43 22-Apr-20 0.4 0.40 0.39 0.4 0.4 0.4 0.4 0.36 0.39 0.38 23-Jul-20 0.39 0.40 0.39 0.39 0.42 0.44 0.41 0.4 0.4 | 21-Jan-20 0.41 0.39 0.40 0.43 0.43 0.42 0.42 0.41 0.43 0.43 0.43 0.42 0.41 0.44 0.49 0.38 0.38 0.38 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 | 22-Apr-20 0.4 0.40 0.39 0.4 0.4 0.4 0.36 0.39 0.41 0.41 0.41 0.4 0.41 0.41 0.4 0.41 0 | 23-Jul-20 0.39 0.40 0.39 0.39 0.42 0.44 0.41 0.4 0.41 0.4 0.41 | _ | | | | | | | | | | | | | | | | | 29-Oct-20 0.43 0.45 0.48 0.46 0.49 0.45 0.44 0.43 0.45 0.5 | 29-Oct-20 | 0.43 | | 0.45 | 0.48 | 0.46 | 0.49 | | 0.45 | | 0.44 | 0.43 | | | | 0.5 | Page 9 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Cente
(Rm 145) | er | Room 152 | Room | 149 | Room 23 | 34 | Ambient Outdoor
(AOA-1) | |---|---|---|--|---------------------------------------|---|------|---|---------------------------------------|---|---------------------------------------
--|------|---|--|---------------------------------------|---|------|------|---------|------|---| | | | Sample Date | | Qual | Qua | | Qual | Qu | al | Qual | | Qual | Qual | | Chlorobenzene | 37.0 | 8-Feb-08 27-Mar-08 27-Jun-08 31-Jul-08 28-Aug-08 30-Sep-08 27-Oct-08 25-Nov-08 18-Dec-08 21-Jan-09 22-Jul-09 26-Mar-09 29-Apr-09 22-Jul-09 9-Oct-09 15-Jan-10 21-Apr-10 16-Jul-10 15-Oct-10 30-Nov-10 26-Jan-11 26-Jul-11 28-Oct-11 23-Jan-12 13-Apr-12 21-Nov-12 1-Feb-13 29-Apr-13 9-Jul-13 9-Jul-13 9-Jul-13 9-Jul-13 18-Oct-13 9-Jul-13 9-Jul-14 24-Apr-14 12-Sept-14 resample 22-Oct-15 21-Jul-15 23-Sept-15 resample 22-Apr-15 21-Jul-15 23-Sept-15 resample 22-Apr-16 20-Apr-16 30-Mar-15 resample 22-Apr-16 21-Oct-14 20-Jan-15 30-Mar-15 resample 22-Apr-15 21-Jul-15 23-Sept-15 resample 22-Apr-16 20-Apr-16 31-Jan-17 17-Apr-17 4 26-Jul-17 12-Oct-17 10-Jan-18 11-Apr-18 27-Jul-18 24-Oct-18 11-Apr-19 29-Jul-19 29-Oct-19 1-Nov-19 21-Jan-20 22-Apr-20 23-Jul-20 22-Apr-20 23-Jul-20 29-Oct-20 | 0.090 0.092 0.092 0.092 0.092 0.092 0.092 0.092 2.300 2.300 2.300 2.300 2.300 2.300 2.300 2.300 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.069 0.160 0.140 NS 0.092 0.11 0.092 0.092 0.092 0.092 0.11 0.092 | ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט | 0.090 0.092 0.092 0.090 0.090 0.090 0.090 0.090 0.090 0.092 0.300 0.300 0.300 0.300 0.300 0.300 0.092 | | 0.090 0.092 0.092 0.090 0.090 0.090 0.090 0.090 0.090 0.092 0.092 0.300 0.300 0.300 0.300 0.300 0.300 0.092 | ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט | 0.090 0.092 0.111 0.092 0.092 0.092 0.092 0.111 0.092 | טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט | 0.090 0.092 0.092 0.090 0.090 0.090 0.090 0.090 0.090 2.300 2.300 2.300 2.300 2.300 2.300 2.300 2.300 2.300 2.300 2.300 2.300 2.300 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.069 0.160 0.140 NS 0.092 0.114 0.092 0.092 0.092 0.092 0.114 0.092 0.092 0.092 0.114 0.092 0.092 0.092 0.092 0.144 0.092 | | 0.090 U
0.092 | 0.090 0.092 0.092 0.092 0.092 0.092 0.092 2.300 2.300 2.300 2.300 2.300 2.300 0.092 0.140 0.140 NS 0.092 0.092 0.140 0.140 NS 0.092 0.092 0.140 0.140 0.140 NS 0.092 0.092 0.140 0.140 0.140 NS 0.092 0.092 0.140 0.140 0.140 NS 0.092 | טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט | 0.090 0.092 0.110 0.092 0.092 0.092 0.092 0.110 0.092 0.092 0.092 0.110 0.092 0.092 0.092 0.092 0.110 0.092 0.092 0.110 0.092 | | υ | 0.157 | U | 0.090 U 0.092 0.046 U 0.180 U 0.140 U 0.092 | Page 10 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | Room | | Room 2 | | Ambient Outdoor
(AOA-1) | |---|---|--|-------------------------|---|---|--|----------------|----------|---------------------|---|----------------|---|--------------------|--------------------------|--------|--------------------|--------|---------------------------------------|---|---------------------------------------|----------------------------| | | | - | | | | | | | | _ | | | | | _ | | | Qual | | Qual | | | Chloroethane | Approved Action Level | 8-Feb-08 27-Mar-08 25-Apr-08 29-May-08 27-Jun-08 31-Jul-08 31-Jul-08 28-Aug-08 30-Sep-08 27-Oct-08 25-Nov-08 18-Dec-08 21-Jan-09 25-Feb-09 26-Mar-09 29-Apr-09 22-Jul-09 99-Oct-09 15-Jan-10 21-Apr-10 16-Jul-10 15-Oct-10 30-Nov-10 26-Jan-11 26-Jan-11** 27-Apr-11 26-Jul-12 23-Jan-12 13-Apr-12 2-Jul-12 resample 20-Jun-12 1-Nov-12 1-Feb-13 29-Apr-13 9-Jul-13 18-Oct-13 9-Jul-13 18-Oct-13 9-Jul-14 24-Apr-14 1-Aug-14 12-Sept-14 resample 22-Oct-14 20-Jan-15 30-Mar-15 resample 22-Apr-15 21-Jul-15 23-Sept-15 resample 22-Apr-16 30-Mar-15 resample 22-Apr-17 17-Apr-17 17-Apr-17 17-Apr-17 17-Apr-17 17-Apr-17 17-Apr-17 12-Oct-16 31-Jan-17 17-Apr-17 12-Oct-17 10-Jan-18 11-Apr-18 27-Jul-18 24-Oct-19 12-Apr-19 29-Jul-19 | | פע מע | 0.050 0.053 0.053 0.053 1.300 1.300 1.300 1.300 1.300 1.300 1.300 0.053 | ם מממממממממממ ממ ממ מממממממ ממממממממממ | Cymnasium | Qual U | | סמו ממממממממממ מ ממ מממממממ מממממ מ מממממ מ | | סעמו עט טעטעטעטעטעטעטעטעטעטעטעטעטעטעטעטעטעט | Room 110 | (Rm 145) | | Room 152 Quas | | U U U U U U U U U U U U U U U U U U U | 0.090 U U U U U U U U U U U U U U U U U U | U U U U U U U U U U U U U U U U U U U | | | | | 23-Jul-20
29-Oct-20 | 0.053
0.053 | U
U | 0.053 U
0.053 U | 0.053
0.053 | U
U | 0.053 U
0.053 U | U
U | U
U | U
U | U
U | 0.053 U
0.053 U | Page 11 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM- | | Kitchen Storage | | | | | Elevator | | | | | Media Center | | | | | | | Ambient Outdoo | | |---|--|-------------------------------------|-----------------|------|-----------------------|--------------------|--------|----------------|--------|--------------------|--------|--------------------------|----------------|--------|----------------|--------|---------|---------|-------|-------------------|--------| | | Approved Action Level | | Room | z. | Cafeteria | Gymnasium | | Hallway | | Room 118 | | Room 110 | (Rm 145) | | Room 152 | | Room 14 | 9 Roon | n 234 | (AOA-1) | | | | | Sample Date | | Qual | Qual | | Qual | | Qual | | Qual | Qual | | Qual | | ual | | Qual | Qual | | Qual | | | | 8-Feb-08
27-Mar-08 | 0.110
0.840 | | 0.110
0.690 | 0.100
0.593 | U | 0.100
0.523 | U | 0.100
0.410 | U | 0.100 U
0.337 | 0.100
0.605 | U | 0.100
0.503 | U | | | | 0.100
0.098 | U | | | | 25-Apr-08 | 0.186 | | 0.210 | 0.193 | | 0.122 | | 0.125 | | 0.134 | 0.110 | | 0.130 | | | | | 0.098 | U | | | | 29-May-08 | 0.110 | | 0.110 | 0.100 | | 0.110 | | 0.100 | U | 0.100 U | 0.100 | U | 0.100 | U | | | | 0.100 | U | | | | 27-Jun-08 | 0.238 | | 0.257 | 0.202 | | 0.207 | | 0.196 | | 0.200 | 0.245 | | 0.223 | | | | | 0.167 | U | | | | 31-Jul-08
28-Aug-08 | 0.230
0.342 | | 0.151
0.373 | 0.136
0.298 | | 0.194
0.312 | | 0.204
0.269 | | 0.227
0.602 | 0.098
0.269 | U | 0.106
0.271 | | | | | 0.098
0.295 | U | | | | 30-Sep-08 | 0.490 | U | 0.490 U | 0.490 | U | 0.490 | U | 0.490 | U | 0.490 U | 0.490 | U | | U | | | | 0.490 | U | | | | 27-Oct-08 | 0.490 | U | 0.490 U | 0.490 | U | 0.490 | U | 0.490 | U | 0.490 U | 0.490 | U | | U | | | | 0.490 | U | | | | 25-Nov-08
18-Dec-08 | 0.240
0.240 | U | 0.240 U
0.240 U | 0.240
0.240 | U
U | 0.240
0.240 | U
U | 0.240
0.240 | U
U | 0.240 U
0.240 U | 0.240
0.240 | U
U | | U
U | | | | 0.240
0.240 | U
U | | | | 21-Jan-09 | 0.240 | U | 0.240 U | 0.240 | U | 0.240 | U | 0.240 | U | 0.240 U | 0.240 | U | | U | | | | 0.240 | U | | | | 25-Feb-09 | 0.240 | U | 0.240 U | 0.240 | U | NS | | 0.240 | U | 0.240 U | 0.240 | U | 0.240 | U | | | | 0.240 | U | | | | 26-Mar-09 | 0.236 | | 0.142 | 0.110 | | 0.115 | | 0.133 | | 0.119 | 0.098 | U | 0.109 | | | | | 0.108 | l l | | | | 29-Apr-09
22-Jul-09 | 0.190
0.229 | | 0.122
0.151 | 0.098
0.166 | U | 0.102
0.141 | | 0.102
0.205 | | 0.098 U
0.180 | 0.146
0.146 | | 0.098
0.171 | U | | | | 0.098
0.439 | U | | | | 9-Oct-09 | 0.576 | | 0.098 U | 0.283 | | 0.302 | | 0.283 | | 0.307 | 0.322 | | 0.302 | | | | | 0.171 | | | | | 15-Jan-10 | 0.527 | | 0.473 | 0.122 | | 0.132 | | 0.112 | | 0.117 | 0.117 | | 0.180 | | | | | 1.070 | | | | | 21-Apr-10 | 0.156 | | 0.790 | 0.205 | | 0.771 | | 0.136 | | 0.141 | 1.460 | | 0.224 | | | | | 0.098 | U | | | | 16-Jul-10
15-Oct-10 | 0.317
0.263 | | 0.249
0.195 | 0.141
0.098 | U | 0.161
0.102 | | 0.190
0.098 | U | 0.141
0.098 U |
0.258
0.107 | | 0.156
0.098 | U | | | | 0.132
0.098 | | | | | 30-Nov-10 | NS | | 0.234 | 0.112 | | NS | | NS | | NS | 0.098 | U | NS | | | | | NS | | | | | 26-Jan-11 | 0.350 | | 0.340 | 0.166 | U | 0.241 | | 0.166 | U | 0.182 | 0.166 | U | 0.166 | | 0.166 | U 0.166 | • | 0.166 | U | | | | 26-Jan-11**
27-Apr-11 | NS
0.098 | 11 | 0.380
0.220 | 0.240
0.098 | U
U | NS
0.141 | | NS
0.098 | U | NS
0.098 U | 0.240
0.098 | U
U | NS
0.098 | U | | | | NS
0.098 | U | | | | 26-Jul-11 | 0.230 | | 0.249 | 0.166 | U | 0.986 | | 0.166 | U | 0.127 | 0.244 | | 0.058 | | | | | 0.146 | | | | | 28-Oct-11 | 0.120 | | 0.110 | 0.085 | | 0.097 | | 0.079 | | 0.082 | 0.082 | | 0.082 | | | | | 0.049 | U | | | | 23-Jan-12 | 0.170 | U | 0.240 | 0.170 | U | 0.170 | U | 0.170 | U | 0.170 U | 0.170 | U | | U | | | | 0.170 | U | | | | 13-Apr-12
2-Jul-12 resample | 0.270
NS | | 0.420
NS | 0.140
NS | | 0.270
NS | | 0.130
NS | | 0.130
NS | 0.130
NS | | 0.280
0.100 | | | | | 0.098
0.094 | U | | | | 20-Jun-12 | 0.210 | | 0.520 | 0.140 | | 0.220 | | 0.180 | | 0.140 | 0.140 | | 0.580 | | | | | 0.110 | | | | | 1-Nov-12 | 0.098 | | 0.140 | 0.082 | | 0.100 | | 0.088 | | 0.110 | 0.110 | | 0.100 | | | | | 0.072 | | | | | 1-Feb-13 | 0.390 | | 0.240 | 0.088
0.140 | | 0.120 | | 0.088 | | 0.092 | 0.092 | | 0.088 | | | | | 0.098 | | | | | 29-Apr-13
9-Jul-13 | 0.180
0.260 | | 0.140
0.240 | 0.170 | | 0.160
0.300 | | 0.140
0.310 | | 0.120
0.200 | 0.140
0.200 | | 0.140
0.200 | | | | | 0.082
0.200 | | | Chloroform | 0.5 | 9-Jul-13 RIDEM | NS | | NS | NS | | NS | | 0.217 | | NS | NS | | NS | | | | | 0.175 | | | Chloroform | 0.5 | 18-Oct-13 | 0.098 | U | 0.300 | 0.098 | U | 0.130 | | 0.098 | U | 0.110 | 0.110 | | 0.120 | | | | | 0.098 | U | | | | 9-Jan-14
24-Apr-14 | 0.120
0.670 | | 0.140
0.160 | 0.098
0.310 | U | 0.120
0.120 | | 0.098
0.098 | U
U | 0.120
0.120 | 0.120
0.049 | U | 0.140
0.120 | | | | | 0.140
0.049 | U | | | | 1-Aug-14 | 3.400 | | 5.100 | 1.400 | | 1.200 | | 0.450 | Ü | 0.330 | 0.870 | | 0.410 | | | | | 6.000 | | | | | 12-Sept-14 resample | NS | | NS | NS | | NS | | NS | | NS | 0.110 | | NS | | | | | NS | | | | | 22-Oct-14 | 0.073 | U | 0.073 U | 0.073 | U | 0.190 | | 0.073 | U | 0.150 | 0.073 | U
U | | U | | | | 0.160 | ** | | | | 20-Jan-15
30-Mar-15 resample | 0.120
NS | | 0.120
NS | 0.049
NS | U | 0.100
NS | | 0.110
NS | | 0.130
NS | 0.073
NS | U | 0.140
0.088 | | | | | 0.073
NS | U | | | | 22-Apr-15 | 0.170 | | 0.220 | 0.270 ^v | | 0.220 | | 0.190 | | 0.120 | 0.180 | | 0.200 | | | | | 0.049 | U | | | | 21-Jul-15 | 0.250 | | 0.200 ^{J, A} | 0.170 ^J | U | 0.260 | | 0.210 ^J | | 0.270 | 11.000 | | 0.170 | | | | | 0.160 | | | | | 23-Sept-15 resample
29-Oct-15 | NS
0.300 | U | NS
0.370 | NS
0.300 | U | NS
0.300 | U | NS
0.300 | U | NS
0.220 ^J | 0.300
0.590 | U | NS
0.200 | U | | | | NS
0.300 | U | | | | 4-Dec-15 resample | NS | | 0.520 | NS | Ü | NS | | NS | Ü | NS | NS | U | NS | | | | | NS | | | | | 27-Jan-16 | 0.16 | | 0.13 | 0.11 | | 0.11 | | 0.10 | | 0.16 | 0.12 | | 0.11 | | | | | 0.19 | | | | | 20-Apr-16 ³
20-Jul-16 | 3.8
0.96 | | 0.086 | 0.049
0.07 | U | 0.12
0.25 | | 0.11
0.20 | | 0.09
0.31 | 0.049
0.20 | U | 0.094
0.20 | | | | | 0.086
0.079 | | | | | 21-Oct-16 | 1.5 | | 0.58 | 0.11 | | 0.19 | | 0.13 | | 0.13 | 0.09 | | 0.13 | | | | | 0.18 | | | | | 31-Jan-17 | 0.5 | | 0.28 | 0.092 | | 0.15 | | 0.11 | | 2.7 | 0.1 | | 0.1 | | | | | 0.11 | | | | | 17-Apr-17 ⁴ | 0.83 | | 0.12 | 0.11 | | 0.1 | | 0.11 | | 0.15 | 0.2 | | | U | | | | 0.11 | | | | | 26-Jul-17 | 0.42 | | 0.29 | 0.13 | | 0.44 | | 0.22 | | 0.45 | 0.25 | | 0.26 | | | | | 0.092 | | | | | 12-Oct-17
10-Jan-18 | 0.12
0.79 | | 0.28
0.35 | 0.15
0.13 | | 0.17
0.16 | | 0.13
0.13 | | 0.15
0.31 | 0.18
0.17 | | 0.2
0.15 | | | | | 0.11
0.049 | U | | | | 10-Jan-18
11-Apr-18 | 0.79 | | 0.35 | 0.13 | | 0.18 | | 0.13 | | 0.31 | 0.17 | | 0.13 | | | | | 0.49 ^D | U | | | | 27-Jul-18 | 0.12 | | 0.8 | 0.12 | | 0.49 | | 0.2 | | 0.23 | 0.19 | | 0.18 | | | | | 0.13 | - | | | | 24-Oct-18 | 0.47 | | 0.12 | 0.049 | U | 0.19 | | 0.11 | | 0.41 | 0.049 | U | | U | | | | 0.049 | U | | | | 16-Jan-19 | 0.99 | | 0.16 | 0.049 | U | 0.12 | | 0.1 | | 0.17 | 0.049 | U | | U | | | | 0.049 | U | | | | 12-Apr-19 | 0.65 | | 0.37 | 0.11 | | 0.25 | | 0.17 | | 0.18 | 0.11 | | 0.15 | | | | | 0.049 | U | | | | 29-Jul-19
29-Oct-19 | 0.38
NS | | 0.21
0.14 | 0.096
0.11 | | 0.21
0.24 | | 0.21
0.19 | | 0.22
0.2 | 0.34
0.1 | | 0.17
NS | | | | | 0.16
0.11 | | | | | 1-Nov-19 | 0.81 | | NS | NS | | NS | | NS | | NS | NS | | 0.18 | | | | | NS | | | | | 21-Jan-20 | 0.05 | U | 0.18 | 0.10 | | 0.11 | | 0.13 | | 0.14 | 0.10 | | 0.09 | | | | | 0.10 | | | | | 22-Apr-20 | 0.1 | | 0.049 U | 0.049 | U | 0.049 | U | 0.049 | U | 0.049 U | 0.049 | U | | U | | | | 0.049 | U | | | | 23-Jul-20 | 0.59 | | 0.2 | 0.12 | | 0.16 | | 0.16 | | 0.14 | 0.17 | | 0.17 | | | | | 0.12 | | | | | 29-Oct-20 | 0.57 | | 0.47 | 0.29 | | 0.28 | | 0.35 | | 0.049 U | 0.42 | | 0.28 | | | | | 0.3 | | Page 12 of 48 Date Modified: 12/10/2020 | Volatile Organic Resid
Compounds via TO-15 Concentra | eraft Proposed Indoor
sidential Target Air
rations/ Interim RIDEM-
proved Action Level | | Kitchen Storage
Room | e | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | | Media Center
(Rm 145) | | Room 152 | | Room 149 | 9 | Room 23 | 34 | Ambient Outdoor
(AOA-1) | | |---|---|---|---|---------------------------------------|---|------
---|------|--|---|--|------|--|--
--|---|---|---------------------------------------|----------|------|---------|------|--|---| | | | Sample Date | | Qual | | Qual | • | Qual | | Qual | | Qual | Qı | ual | <u> </u> | Qual | | Qual (| | Qual | | Qual | , , | Qual | | Chloromethane | 14.0 | 8-Feb-08 27-Mar-08 25-Apr-08 29-May-08 31-Jul-08 31-Jul-08 31-Jul-08 31-Jul-08 30-Sep-08 27-Oct-08 25-Nov-08 18-Dec-08 21-Jan-09 25-Feb-09 26-Mar-09 29-Apr-09 22-Jul-09 9-Oct-09 15-Jan-10 16-Jul-10 15-Oct-10 30-Nov-10 26-Jan-11** 27-Apr-11 26-Jul-11 28-Oct-11 23-Jan-12 2-Jul-12 resample 20-Jun-12 1-Nov-12 1-Feb-13 29-Apr-13 9-Jul-13 RIDEM 18-Oct-13 9-Jul-13 RIDEM 18-Oct-14 20-Jan-14 12-Sept-14 resample 22-Oct-15 4-Dec-15 resample 22-Apr-15 21-Jul-15 23-Sept-15 resample 22-Apr-15 21-Jul-15 23-Sept-15 resample 22-Apr-16 30-Mar-15 resample 22-Apr-15 21-Jul-15 21-Jul-16 21-Oct-16 31-Jan-17 17-Apr-17 4 26-Jul-17 12-Oct-17 10-Jan-18 11-Apr-18 27-Jul-18 24-Oct-18 11-Apr-19 29-Jul-19 29-Oct-19 1-Nov-19 21-Jan-20 22-Apr-20 23-Jul-20 | 2.440 2.830 2.820 2.790 2.650 3.580 2.440 1.400 1.000 1.000 1.000 1.000 1.000 1.000 2.490 2.710 2.670 3.450 3.850 2.550 1.510 1.080 NS 1.760 NS 1.050 1.160 1.400 1.300 1.300 NS 1.700 1.100 NS 0.880 0.900 1.100 NS 0.880 0.900 1.100 NS 1.200 1.200 NS 1.200 NS 1.200 1.200 NS 1.100 1.200 NS 1.100 NS 1.200 1.200 NS 1.100 1.200 NS 1.100 | U U U U U U U U U U U U U U U U U U U | 2.440 3.070 2.440 3.070 2.440 3.880 3.140 1.300 1.000 1.000 1.000 1.000 1.000 1.000 2.680 2.910 2.520 2.740 3.690 2.440 1.660 1.080 1.030 1.750 1.100 1.660 1.600 1.000 1.100 NS 0.041 1.100 NS 0.041 1.100 NS 0.041 1.100 NS 1.300 1.200 1.300 1.200 1.2 1.1 1.1 0.999 1 1.2 1.3 0.78 1 1.10 1.50 1.2 1 1.10 1.50 1.2 1 1.10 1.50 1.2 1 1.10 1.50 1.2 1 1.10 1.50 1.2 1 1.10 1.50 1.2 1.11 NS 0.08 1.00 0.11 | | 2.440 2.680 2.440 7.100 2.440 3.330 5.310 1.100 1.000 1.000 1.000 1.000 1.000 2.550 3.600 2.660 2.440 2.820 2.440 1.050 1.030 1.760 1.030 1.760 1.030 1.300 1.100 1.400 1.330 1.300 1.100 1.400 NS 0.041 0.910 1.200 NS 1.200 NS 1.200 NS 1.100 1.100 0.083 0.990 NS 1.200 | Qual | 2.440 2.440 2.440 2.440 2.440 11.000 2.830 4.370 6.880 1.400 1.000 1.000 1.000 1.000 1.400 1.500 NS 2.920 3.730 2.540 2.440 3.180 2.440 1.090 1.050 NS 1.760 NS 2.160 1.120 1.500 NS 0.041 1.200 1.200 1.200 1.200 1.200 1.100 NS 1.100 NS 1.100
1.100 | Out | 2.440 2.830 2.440 2.830 2.440 2.940 3.260 3.440 3.150 1.000 1.000 1.000 1.000 1.000 1.000 2.910 3.130 2.440 2.440 2.440 3.240 2.440 1.680 1.030 NS 1.760 NS 1.440 1.030 1.300 1.400 1.100 NS 0.041 1.000 1.200 1.800 2.200 1.142 1.200 1.000 1.100 0.083 NS 1.000 L 0.089 NS 1.400 1.100 NS 1.400 1.110 0.083 NS 1.200 NS 1.400 1.110 0.083 NS 1.000 L 0.089 NS 1.000 L 0.089 NS 1.11 1.2 L 1.1 1.2 L 1.1 1.2 L 1.1 1.2 L 1.1 1.2 L 1.3 0.966 1.11 1.20 1.50 1.44 1.11 1.1 1.2 L 1.50 | Qual | 2.460 2.440 3.000 6.280 2.620 3.740 2.440 1.700 1.200 1.000 1.000 1.000 1.000 2.440 2.660 2.780 2.440 3.630 2.400 1.110 1.030 NS 1.750 NS 1.510 1.030 0.960 1.900 1.000 NS 0.041 1.200 1.400 1.100 1.000 NS 0.041 1.100 1.000 NS 1.200 1.1100 1.100 1.000 NS 1.200 1.1100 1.10 | UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU | 2.440 2.480 2.440 2.480 2.440 6.420 2.440 6.420 2.440 2.540 1.000 1.000 1.000 1.000 1.000 1.400 1.000 2.440 3.390 3.390 3.440 3.120 2.520 1.303 1.030 1.030 1.750 1.000 1.740 1.030 1.750 1.000 NS 1.500 1.100 1.300 1.400 1.300 1.300 1.300 1.400 1.300 1.300 1.300 1.400 1.300 1.300 1.400 1.300 1.400 1.300 1.400 1.300 1.400 1.300 1.400 1.300 1.400 1.300 1.400 1.300 1.400 1.400 1.300 1.4 | Total Control | 2.440 2.440 3.140 2.770 2.500 2.440 2.540 1.000 1.000 1.000 1.300 1.100 1.100 2.440 2.540 3.320 3.440 3.750 2.440 1.030 1.030 1.100 1.030 NS 1.760 NS 1.460 1.030 1.100 1.500 1.200 1.500 0.041 1.100 1.100 1.300 1.100 1.100 1.300 1.100 1.300 1.100 1.300 1.100 1.300 1.100 1.300 1.100 1.300 1.100 1.300 1.100 1.300 1.100 1.300 1.100 1.300 1.100 1.300 1.100 1.300 1.100 1.300 1.100 1.300 1.100 | U U U U U U U U U U U U U U U U U U U | | | 1.760 | U | 2.440 2.440 2.440 2.440 2.440 2.440 2.440 2.440 1.200 1.000 1.000 1.000 1.200 1.000 2.440 2.510 2.440 2.510 2.440 2.510 2.440 2.510 3.400 1.510 1.030 NS 1.750 NS 1.270 1.030 1.300 1.100 0.840 1.1100 1.300 0.990 1.100 | Dual UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU | Page 13 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | Simula Data | Kitchen Storage
Room | | Cafeteria | 01 | Gymnasium | 01 | Elevator
Hallway | | Room 118 | Ovel | Room 110 | Media Center
(Rm 145) | Onel | Room 152 | Room 1 | | n 234 | Ambient Outdoor
(AOA-1) | 01 | |---|---|----------------------------------|-------------------------|------|--------------------|------------------|-------------------|------------------|---------------------|-----------|-------------------|------------------|----------------------|--------------------------|------------------|---------------------|--------|---------|-------|----------------------------|------------------| | | | Sample Date
8-Feb-08 | 0.100 | Qual | 0.100 | Qual
U | 0.100 | Qual
U | 0.100 | Qual
U | 0.100 | Qual
U | 0.100 U | 0.100 | Qual
U | 0.100 U | | Qual | Qual | | Qual
U | | | | 27-Mar-08 | 0.096 | U | 0.096 U | 0.096 | U | 0.096 U | | | | | U | | | | 25-Apr-08 | 0.096 | U | 0.096 U | 0.096 | U | 0.096 U | | | | | U | | | | 29-May-08 | 0.100 | U | 0.100 U | 0.100 | U | 0.100 U | | | | | U | | | | 27-Jun-08
31-Jul-08 | 0.100
0.096 | U | 0.100
0.096 | U
U | 0.100
0.096 | U
U | 0.100
0.096 | U
U | 0.096
0.096 | U
U | 0.100 U
0.096 U | 0.308
0.096 | U | 0.100 U
0.096 U | | | | | U
U | | | | 28-Aug-08 | 0.096 | U | 0.096 U | 0.096 | U | 0.096 U | | | | | U | | | | 30-Sep-08 | 4.200 | U | 4.200 U | 4.200 | U | 4.200 U | | | | | U | | | | 27-Oct-08 |
4.200 | U | 4.200 U | 4.200 | U | 4.200 U | | | | | U | | | | 25-Nov-08 | 4.200 | U | 4.200 | U
U | 4.200 | U
U | 4.200 | U
U | 4.200 | U
U | 4.200 U | 4.200 | U
U | 4.200 U
4.200 U | | | | | U
U | | | | 18-Dec-08
21-Jan-09 | 4.200
4.200 | U | 4.200 U
4.200 U | 4.200
4.200 | U | 4.200 U
4.200 U | | | | | U | | | | 25-Feb-09 | 4.200 | U | 4.200 | U | 4.200 | U | NS | | 4.200 | U | 4.200 U | 4.200 | U | 4.200 U | | | | | U | | | | 26-Mar-09 | 0.096 | U | 0.096 U | 0.096 | U | 0.096 U | | | | | U | | | | 29-Apr-09 | 0.096 | U | 0.096 | U | 0.096 | U | 0.096 | U
U | 0.096 | U
U | 0.096 U | 0.096 | U | 0.096 U | | | | | U
U | | | | 22-Jul-09
9-Oct-09 | 0.096
0.096 | U | 0.096
0.096 | U | 0.096
0.096 | U
U | 0.096
0.096 | U | 0.096
0.096 | U | 0.096 U
0.096 U | 0.096
0.096 | U | 0.096 U
0.096 U | | | | | U | | | | 15-Jan-10 | 0.096 | U | 0.096 U | 0.096 | U | 0.096 U | | | | | U | | | | 21-Apr-10 | 0.096 | U | 0.096 U | 0.096 | U | 0.096 U | | | | | U | | | | 16-Jul-10 | 0.170 | U | 0.170 U | 0.170 | U | 0.170 U | | | | | U
U | | | | 15-Oct-10
30-Nov-10 | 0.170
NS | U | 0.170
0.170 | U | 0.170
0.170 | U
U | 0.170
NS | U | 0.170
NS | U | 0.170 U
NS | 0.170
0.170 | U | 0.170 U
NS | | | | 0.170
NS | 0 | | | | 26-Jan-11 | 0.291 | U | 0.289 | U | 0.290 | U | 0.290 | U | 0.291 | U | 0.289 U | 0.289 | U | 0.291 U | 0.289 | U 0.290 | U | | U | | | | 26-Jan-11** | NS | | 0.430 | U | 0.430 | U | NS | | NS | | NS | 0.430 | U | NS | | | | NS | | | | | 27-Apr-11 | 0.170 | U | 0.170 U | 0.170 | U | 0.170 U | | | | | U | | | | 26-Jul-11
28-Oct-11 | 0.170
0.260 | U | 0.170
0.260 | U | 0.170
0.260 | U
U | 0.170
0.260 | U
U | 0.170
0.260 | U
U | 0.170 U
0.260 U | 0.170
0.260 | U | 0.170 U
0.260 U | | | | | U
U | | | | 23-Jan-12 | 0.300 | U | 0.300 U | 0.300 | U | 0.300 U | | | | | U | | | | 13-Apr-12 | 0.260 | U | 0.260 U | 0.260 | U | 0.260 U | | | | | U | | | | 2-Jul-12 resample | NS | | NS | | NS | | NS | | NS
0.170 | | NS | NS
0.170 | | 0.130 U | | | | | U | | | | 20-Jun-12
1-Nov-12 | 0.170
0.085 | U | 0.170
0.085 | U | 0.170
0.085 | U
U | 0.170
0.085 | U
U | 0.170
0.085 | U
U | 0.170 U
0.085 U | 0.170
0.085 | U
U | 0.170 U
0.085 U | | | | | U
U | | | | 1-Feb-13 | 0.170 | U | 0.170 U | 0.170 | U | 0.170 U | | | | | U | | | | 29-Apr-13 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | | U | | Dil | N. | 9-Jul-13 | 0.170 | U | 0.170 U | 0.170 | U | 0.170 U | | | | | U | | Dibromochloromethane | None | 18-Oct-13
9-Jan-14 | 0.170
0.170 | U | 0.170
0.170 | U | 0.170
0.170 | U
U | 0.170
0.170 | U
U | 0.170
0.170 | U
U | 0.170 U
0.170 U | 0.170
0.170 | U
U | 0.170 U
0.170 U | | | | | U
U | | | | 24-Apr-14 | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 | U | 0.170 | U | 0.085 U | 0.085 | U | 0.170 U | | | | | U | | | | 1-Aug-14 | 0.170 | U | 0.170 | U | 0.170 | U | 0.260 | U | 0.170 | U | 0.170 U | 0.170 | U | 0.170 U | | | | 0.170 | U | | | | 12-Sept-14 resample | NS | 0.085 | U | NS | | | | NS | | | | | 22-Oct-14
20-Jan-15 | 0.130
0.085 | U | 0.130
0.085 | U | 0.130
0.085 | U
U | 0.130
0.085 | U
U | 0.130
0.085 | U
U | 0.130 U
0.085 U | 0.130
0.130 | U
U | 0.130 U
0.085 U | | | | | U
U | | | | 30-Mar-15 resample | NS | NS | | 0.098 U | | | | NS | | | | | 22-Apr-15 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | | U | | | | 21-Jul-15 | 0.400 | U | 0.400 ^A | U | 0.400 | U | 0.400 | U | 0.500 | U | 0.400 U | 0.500 | U | 0.400 U | | | | | U | | | | 23-Sept-15 resample
29-Oct-15 | NS
0.500 | U | NS
0.400 | U | NS
0.400 | U | NS
0.500 | U | NS
0.500 | U | NS
0.500 U | 0.500
0.400 | U | NS
0.400 U | | | | NS
0.500 | U | | | | 4-Dec-15 resample | NS | | 0.400 | U | NS | | NS | | NS | | NS | NS | U | NS | | | | NS | | | | | 27-Jan-16 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | | U | | | | 20-Apr-16 ³ | 0.085 | U | 0.085 | U | 0.085 | U
U | 0.085 | U
U | 0.085 | U
U | 0.085 U | 0.085 | U | 0.085 U
0.096 U | | | | | U
U | | | | 20-Jul-16
21-Oct-16 | 0.10
0.085 | U | 0.13
0.085 | U | 0.092
0.085 | U | 0.10
0.085 | U | 0.10
0.085 | U | 0.10 U
0.085 U | 0.11
0.085 | U
U | 0.096 U
0.085 U | | | | | U | | | | 31-Jan-17 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | | U | | | | 17-Apr-17 ⁴ | 0.13 ^V | U | 0.13 $^{ m V}$ U | 0.13 ^V | U | 0.13 ^V U | | | | ** | U | | | | 26-Jul-17 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | | U | | | | 12-Oct-17 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | | U | | | | 10-Jan-18 | 0.085 | U | 0.085 | U | 0.085 | U
U | 0.085 | U | 0.085 | U
U | 0.085 U
0.170 U | 0.085 | U
U | 0.085 U
0.085 U | | | | _ | U
U | | | | 11-Apr-18
27-Jul-18 | 0.085
0.085 | U | 0.085
0.085 | U | 0.085
0.085 | U | 0.085
0.085 | U | 0.085
0.13 | U | 0.170 U
0.13 U | 0.085
0.085 | U | 0.085 U
0.085 U | | | | | U | | | | 24-Oct-18 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | | U | | | | 16-Jan-19 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | | U | | | | 12-Apr-19 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | | U | | | | 29-Jul-19 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | | U | | | | 29-Oct-19 | NS
0.005 | | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 U | 0.085 | U | NS
0.005 | | | | | U | | | | 1-Nov-19
21-Jan-20 | 0.085
0.09 | U | NS
0.09 U | NS
0.09 | U | 0.085 U
0.09 U | | | | NS
0.09 | U | | | | 21-Jan-20
22-Apr-20 | 0.09 | U | 0.09 U | 0.09 | U | 0.09 U | | | | | U | | | | 23-Jul-20 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | | U | | | | 29-Oct-20 | 0.085 | U | 0.085 U | 0.085 | U | 0.085 U | | | | 0.085 | U | Page 14 of 48 Date Modified: 12/10/2020 | | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | e | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | Room | 149 | Room 234 | Ambient Outde | oor | |---|---|---|-------------|-------------------------|------|-----------|------|-----------|------|---------------------|------|----------|------|----------|--------------------------|------|----------|-------|------|----------|-------------------|--------| | Property | | | Sample Date | | Qual | | Qual | · | Qual | • | Qual | | Qual | Qua | | Qual | Qua | ı | Qual | | al | Qual | | | | | | | _ | | | | | | | | | | | | | | | | | U | | Part | | | | | _ | | | | | | | | | | | | | | | | | U | | | | | | | _ | | | | | | | | | | | | | | | | | U
U | | | | | | | | | | | | | | | | | | U | | | | | | U | | 1 | | | | | U | | | | | | | | | | | U | | | | | | U | | ## 15 | | | 28-Aug-08 | 0.154 | U | 0.154 | U | 0.154 | U | 0.154 | | 0.154 | U | 0.154 U | 0.154 | U | 0.154 U | | | | 0.154 | U | | Part | | | | | _ | | | | | | | | | | | | | | | | | U | |
Second S | U | | 1 | | | | | | | | | U | | | | | | | | | | | | | u
U | | Product Prod | | | | | _ | | | | U | | | | | | | | | | | | | U | | Property of the | | | 25-Feb-09 | 0.150 | U | 0.150 | U | 0.150 | U | NS | | 0.150 | U | 0.150 U | 0.150 | U | 0.150 U | | | | 0.150 | U | | Part | | | 26-Mar-09 | | U | | | | | | | | | | | | | | | | | U | | 1.00 | | | - | | | | | | | | | | | | | | | | | | | U | | 15.00-98 | | | | | _ | | | | | | | | | | | | | | | | | U
U | | 2 1 2 2 2 2 3 3 3 3 4 3 3 4 4 3 4 4 | | | | | _ | | | | | | | | | | | | | | | | | U | | 15 0 c 1 | | | | | U | | | | | | | | | | | | | | | | | U | | School S | | | | | _ | | | | | | | | | | | | | | | | | U | | Part | | | | | U | | | | | | U | | U | | | | | | | | | U | | Schemit* SS | | | | | 11 | | | | | | 11 | | 11 | | | | | 0.261 | 11 | 0.262 | | U | | 2.7 | | | | | | | | | | | | | 0 | | | | | 0.201 | | 0.202 | | | | 1-2-1 | | | | | U | | U | | | | U | | U | | | | | | | | | U | | | | | | | _ | | | | | | | | | | | | | | | | | U | | Day-19 0.150 U 0.170 | | | | | _ | | | | | | | | | | | | | | | | | U | | 2.4442 2 | | | | | U | | | | | | | | | | | | | | | | | U
U | | 2-bib-more continue (EDB 18-bit 2-bit | | | | | U | | U | | U | | 0 | | U | | | U | | | | | | U | | 1-631 | | | ^ | | U | | U | | U | | U | | U | | | U | | | | | | U | | 2.Dimomochane (HDI) 2.Dimomochane (HDI) 3.Dimomochane (HDI) 4. \$\text{plant}{1.5}\$ \text{plant}{1.5}\$ \qua | | | 1-Nov-12 | 0.077 | U | 0.077 | U | 0.077 | | 0.077 | | 0.077 | | 0.077 U | 0.077 | U | 0.077 U | | | | 0.077 | U | | 2-Dibromocfinane (EDB 0.0028015 15-06-15 0.15 0.05 | | | | | _ | | | | | | | | | | | | | | | | | U | | 1-Che13 | U
U | | S-Jan-14 0.150 | .2-Dibromoethane (EDB | 0.0028/0.15 | | | _ | | | | | | | | | | | | | | | | | U | | 1-in_ip14 | , (| | | | _ | | | | | | | | | | | | | | | | | U | | 12-squ-14-squ- | | | 24-Apr-14 | 0.077 | U | 0.077 | U | 0.077 | U | 0.077 | U | 0.150 | U | 0.077 U | 0.077 | U | 0.150 U | | | | 0.077 | U | | 22-4x-14 | | | - | | U | | U | | U | | U | | U | | | | | | | | | u | | Date | | | | | 11 | | ** | | ** | | ** | | ** | | | | | | | | | U | | 10Mm.15 recomple NS NS NS NS NS NS NS N | | | | | _ | | | | | | | | | | | | | | | | | U | | 21-Jul-15 | | | | | | | | | _ | | _ | | _ | | | | | | | | | | | 23-Spri-15 resumple | | | 22-Apr-15 | 0.077 | U | | U | 0.077 | U | 0.077 | U | 0.077 | U | 0.077 U | 0.077 | U | 0.077 U | | | | 0.077 | U | | 1-20-0c-15 | | | | | U | | U | | U | | U | | U | | | | | | | | | U | | 4-De-15 resumple NS | | | | | 11 | | TT | | 11 | | 11 | | 11 | | | | | | | | | U | | 27-Jan-16 0.077 U 0. | | | | | | | | | | | | | J | | | | | | | | | | | 20-Jul-16 | | | 27-Jan-16 | | U | | | | U | | U | | U | | | | | | | | | U | | 21-Oct-16 | | | _ | | | | | | | | | | | | | | | | | | | U | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | _ | | | | | | | | | | | | | | | | | U | | $ \begin{bmatrix} 17-\mathrm{Apr} - 17^4 \\ 26-\mathrm{Jul} - 17 \\ 26-\mathrm{Jul} - 17 \\ 10-\mathrm{Jan} - 18 \\ 0.077 19 1$ | U | | 26-Jul-17 | U | | 12-Oct-17 0.077 U 0.07 | | | ^ | | | | | | | | | | | | | | | | | | | U | |
11-Apr-18 | U | | 27-Jul-18 | | | 10-Jan-18 | 0.077 | U | 0.077 | U | 0.077 | U | 0.077 | | 0.077 | U | 0.077 U | 0.077 | U | 0.077 U | | | | 0.077 | U | | 24-Oct-18 | | | 11-Apr-18 | 0.077 | U | 0.077 | U | 0.077 | U | 0.077 | U | 0.077 | | 0.150 U | 0.077 | U | 0.077 U | | | | 0.77 ^D | U | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | U | | 12-Apr-19 | | | | | _ | | | | | | | | | | | | | | | | | U | | 29-Jul-19 | U | | 29-Oct-19 NS | | | _ | | _ | | | | | | | | U | | | | | | | | | U
U | | 1-Nov-19 0.077 U NS | | | | | U | | | | | | | | 11 | | | | | | | | | U | | 21-Jan-20 0.08 U 0.07 U 0.077 | | | | | IJ | | | | | | | | | | | | | | | | | | | 22-Apr-20 0.077 U | | | | | _ | | U | | U | | U | | U | | | U | | | | | | U | | 23-InL20 0077 II | | | | | U | | | | | | | | | | | | | | | | | U | | | | | 23-Jul-20 | 0.077 | U | 0.077 U | 0.077 | U | 0.077 U | | | | 0.077 | U | | 29-Oct-20 0.077 U | | | 29-Oct-20 | 0.077 | U | 0.077 U | 0.077 | U | 0.077 U | | | | 0.077 | U | Page 15 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storag | e | | | | | Elevator | | | | | Media Cente | r | | | | | Ambient Outdo | oor | |---|---|-------------------------------------|----------------|------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|--------------------|----------------|--------|--------------------|-------|--------|----------------|------------------|--------| | | | Sample Date | Room | Qual | Cafeteria | Qual | Gymnasium | Qual | Hallway | Qual | Room 118 | Qual | Room 110 Qual | (Rm 145) | Qual | Room 152 | Room | Qual | Room 234
Qu | (AOA-1) | Qual | | | | 8-Feb-08 | 0.120 | U | | U | 0.120 | U | 0.120 | U | 0.120 | U | 0.120 U | 0.120 | U | 0.120 U | | - Quan | 4 | 0.120 | U | | | | 27-Mar-08 | 0.120 | U | | U | 0.120 | U | 0.120 | U | 0.120 | U | 0.120 U | 0.120 | U | 0.120 U | | | | 0.120 | U | | | | 25-Apr-08
29-May-08 | 0.120
0.120 | U | | U
U | 0.120
0.120 | U
U | 0.120
0.120 | U | 0.120
0.120 | U
U | 0.120 U
0.120 U | 0.120
0.120 | U | 0.120 U
0.120 U | | | | 0.120
0.120 | U | | | | 27-Jun-08 | 0.120 | U | 0.120 U | 0.822 | | 0.120 U | | | | 0.120 | U | | | | 31-Jul-08 | 0.120
0.120 | U | | U
U | 0.120
0.120 | U
U | 0.120
0.120 | U
U | 0.120
0.120 | U
U | 0.120 U
0.120 U | 0.120
0.120 | U
U | 0.120 U
0.120 U | | | | 0.120
0.120 | U | | | | 28-Aug-08
30-Sep-08 | 3.000 | U | | U | 3.000 | U | 3.000 | U | 3.000 | U | 3.000 U | 3.000 | U | 3.000 U | | | | 3.000 | U | | | | 27-Oct-08 | 3.000 | U | | U | 3.000 | U | 3.000 | U | 3.000 | U | 3.000 U | 3.000 | U | 3.000 U | | | | 3.000 | U | | | | 25-Nov-08
18-Dec-08 | 3.000
3.000 | U | | U
U | 3.000
3.000 | U | 3.000
3.000 | U | 3.000
3.000 | U
U | 3.000 U
3.000 U | 3.000
3.000 | U
U | 3.000 U
3.000 U | | | | 3.000
3.000 | U
U | | | | 21-Jan-09 | 3.000 | U | | U | 3.000 | U | 3.000 | U | 3.000 | U | 3.000 U | 3.000 | U | 3.000 U | | | | 3.000 | U | | | | 25-Feb-09 | 3.000 | U | | U | 3.000 | U | NS | | 3.000 | U | 3.000 U | 3.000 | U | 3.000 U | | | | 3.000 | U | | | | 26-Mar-09
29-Apr-09 | 0.120
0.120 | U | | U
U | 0.120
0.100 | U
U | 0.120
0.120 | U
U | 0.120
0.120 | U
U | 0.120 U
0.120 U | 0.120
0.120 | U | 0.120 U
0.120 U | | | | 0.120
0.120 | U | | | | 22-Jul-09 | 0.120 | U | | U | 0.120 | U | 0.120 | U | 0.120 | U | 0.120 U | 0.120 | U | 0.120 U | | | | 0.120 | U | | | | 9-Oct-09 | 0.120 | U | | U
U | 0.120 | U
U | 0.120 | U | 0.120 | U
U | 0.120 U
0.120 U | 0.120 | U
U | 0.120 U
0.120 U | | | | 0.120 | U
U | | | | 15-Jan-10
21-Apr-10 | 0.120
0.120 | U | | U | 0.120
0.120 | U | 0.120
0.120 | U
U | 0.120
0.120 | U | 0.120 U
0.120 U | 0.120
0.120 | U | 0.120 U
0.120 U | | | | 0.120
0.120 | U | | | | 16-Jul-10 | 0.120 | U | | U | 0.120 | U | 0.120 | U | 0.120 | U | 0.120 U | 0.120 | U | 0.120 U | | | | 0.120 | U | | | | 15-Oct-10
30-Nov-10 | 0.120
NS | U | 0.120
0.120 | U
U | 0.120
0.120 | U
U | 0.120
NS | U | 0.120
NS | U | 0.120 U
NS | 0.120
0.120 | U | 0.120 U
NS | | | | 0.120
NS | U | | | | 26-Jan-11 | 0.205 | U | | U | 0.205 | U | 0.205 | U | 0.205 | U | 0.204 U | 0.204 | U | 0.205 U | 0.204 | U | 0.205 U | | U | | | | 26-Jan-11** | NS | | | U | 0.300 | U | NS | | NS | | NS | 0.300 | U | NS | | | | NS | | | | | 27-Apr-11
26-Jul-11 | 0.120
0.120 | U | 0.120
0.120 | U | 0.120
0.120 | U | 0.120
0.120 | U
U | 0.120
0.120 | U
U | 0.120 U
0.120 U | 0.120
0.120 | U | 0.120 U
0.120 U | | | | 0.120
0.120 | U | | | | 28-Oct-11 | 0.180 | U | | U | 0.180 | U | 0.180 | U | 0.180 | U | 0.180 U | 0.180 | U | 0.180 U | | | | 0.120 | U | | | | 23-Jan-12 | 0.220 | ** | | U | 0.400 | ** | 0.210 | U | 0.210 | U | 0.210 U | 0.210 | U | 0.210 U | | | | 0.210 | U | | | | 13-Apr-12
2-Jul-12 resample | 0.180
NS | U | 0.180 U
NS | 0.180
NS | U | 0.180 U
0.180 U | | | | 0.240
0.180 | U
U | | | | 20-Jun-12 | 0.120 | U | 0.120 U | 0.120 | U | 0.120 U | | | | 0.120 | U | | | | 1-Nov-12
1-Feb-13 | 0.120
0.120 | U | ***** | U
U | 0.120
0.120 | U
U | 0.120
0.120 | U
U | 0.120
0.120 | U
U | 0.120 U
0.120 U | 0.120
0.120 | U | 0.120 U
0.120 U | | | | 0.120
0.120 | U | | | | 29-Apr-13 | 0.120 | U | | U | 0.120 | U | 0.120 | U | 0.120 | U | 0.120 U | 0.120 | U | 0.120 U | | | | 0.120 | U | | 120:11 | 72.0 | 9-Jul-13 | 0.120 | U | | U | 0.120 | U | 0.120 | U | 0.120 | U | 0.120 U | 0.120 | U | 0.120 U | | | | 0.120 | U | | 1,2-Dichlorobenzene | 73.0 | 18-Oct-13
9-Jan-14 | 0.120
0.120 | U | | U
U | 0.120
0.120 | U
U | 0.120
0.120 | U
U | 0.120
0.120 | U
U | 0.120 U
0.120 U | 0.120
0.120 | U
U | 0.120 U
0.120 U | | | | 0.120
0.120 | U
U | | | | 24-Apr-14 | 0.120 | U | | U | 0.120 | U | 0.120 | U | 0.120 | U | 0.120 U | 0.120 | U | 0.120 U | | | | 0.120 | U | | | | 1-Aug-14 | 0.120 | U | | U | 0.120 | U | 0.180 | U | 0.120 | U | 0.120 U | 0.120 | U | 0.120 U | | | | 0.120 | U | | | | 12-Sept-14 resample
22-Oct-14 | NS
0.180 | U | NS
0.180 U | 0.120
0.180 | U | NS
0.180 U | | | | NS
0.180 | U | | | | 20-Jan-15 | 0.120 | U | 0.120 U | 0.180 | U | 0.120 U | | | | 0.180 | U | | | | 30-Mar-15 resample
22-Apr-15 | NS
0.120 | 11 | NS
0.120 | U | NS
0.120 | U | NS
0.120 | U | NS
0.120 | U | NS
0.120 U | NS
0.120 | U | 0.140 U
0.120 U | | | | NS
0.120 | U | | | | 21-Jul-15 | 0.300 | U | 0.300 A | U | 0.300 | U | 0.300 | U | 0.300 | U | 0.300 U | 0.400 | U | 0.300 U | | | | 0.300 | U | | | | 23-Sept-15 resample | NS | 0.300 | U | NS | | | | NS | | | | | 29-Oct-15
4-Dec-15 resample | 0.300
NS | U | | U
U | 0.300
NS | U | 0.300
NS | U | 0.300
NS | U | 0.300 U
NS | 0.300
NS | U | 0.440
NS | | | | 0.400
NS | U | | | | 27-Jan-16 | 0.12 | U | | U | 0.12 | U | 0.12 | U | 0.12 | U | 0.12 U | | U | 0.12 U | | | | 0.12 | U | | | | 20-Apr-16 ³
20-Jul-16 | 0.12
0.14 | U | | U
U | 0.12
0.13 | U
U | 0.12
0.15 | U
U | 0.12
0.14 | U
U | 0.12 U
0.14 U | 0.12
0.16 | U
U | 0.12 U
0.14 U | | | | 0.12
0.18 | U
U | | | | 20-Jul-16
21-Oct-16 | 0.14 | U | | U | 0.13 | U | 0.13 | U | 0.14 | U | 0.14 U | | U | 0.14 U | | | | 0.18 | U | | | | 31-Jan-17 | 0.12 | U | 0.12 U | 0.12 | U | 0.12 U | | | | 0.12 | U | | | | 17-Apr-17 ⁴ | 0.18 | U | | U | 0.18 | U | 0.18 | U | 0.18 | U | 0.18 U | 0.18 | U | 0.18 U | | | | 0.18 | U | | | | 26-Jul-17
12-Oct-17 | 0.12
0.12 | U | | U
U | 0.12
0.12 | U
U | 0.12
0.12 | U | 0.12
0.12 | U
U | 0.12 U
0.12 U | 0.12
0.12 | U | 0.12 U
0.12 U | | | | 0.12
0.12 | U | | | | 10-Jan-18 | 0.12 | U | | U | 0.12 | U | 0.12 | U | 0.12 | U | 0.12 U | 0.12 | U | 0.12 U | | | | 0.12 | U | | | | 11-Apr-18 | 0.12 | U | 0.12 U | 0.12 | U | 0.12 U | | | | 0.6 ^D | U | | | | 27-Jul-18 | 0.12 | U | 0.12 | U
U | 0.12 | U
U | 0.12 | U | 0.18 | U
U | 0.18 U | 0.12 | U | 0.12 U
0.12 U | | | | 0.12 | U
U | | | | 24-Oct-18
16-Jan-19 | 0.12
0.12 | U | 0.12
0.12 | U | 0.12
0.12 | U | 0.12
0.12 | U
U | 0.12
0.12 | U | 0.12 U
0.12 U | 0.12
0.12 | U | 0.12 U
0.12 U | | | | 0.12
0.12 | U | | | | 12-Apr-19 | 0.12 | U | | U | 0.12 | U | 0.12 | U | 0.12 | U | 0.12 U | 0.12 | U | 0.12 U | | | | 0.12 | U | | | | 29-Jul-19 | 0.12 | U | | U | 0.12 | U | 0.12 | U | 0.12 | U | 0.12 U | 0.12 | U | 0.12 U | | | | 0.12 | U | | | | 29-Oct-19 | NS
0.12 | ** | | U | 0.12 | U | 0.12 | U | 0.12 | U | 0.12 U | | U | NS
0.12 U | | | | 0.12 | U | | | | 1-Nov-19
21-Jan-20 | 0.12
0.12 | U | NS
0.12 U | NS
0.12 | U | 0.12 U
0.12 U | | | | NS
0.12 | U | | | | 22-Apr-20 | 0.12 | U | | U | 0.12 | U | 0.12 | U | 0.12 | U | 0.12 U | 0.12 | U | 0.12 U | | | | 0.12 | U | | | | 23-Jul-20 | 0.12 | U | | U | 0.12 | U | 0.12 | U | 0.12 | U | 0.12 U | | U | 0.12 U | | | | 0.12 | U | | | | 29-Oct-20 | 0.12 | U | 0.12 U | 0.12 | U | 0.12 U | | | | 0.12 | U | Page 16 of 48 Date Modified: 12/10/2020 Page 17 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | , | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | | Media Center
(Rm 145) | | Room 152 | | Room 149 | Ro | om 234 | Ambient
Outdoor
(AOA-1) | ır. | |---|---|-------------|---|------|--|------|---|------|---|--|--|------|---
--|--------------------------|---|--|-----|----------|-------|--------|---|------| | | | Sample Date | | Qual | | ual | Qua | l | | ual | | ual | Qua | ` , | Qual | | 1,4-Dichlorobenzene | 24.0 | Sample Date | 0.120 0.292 0.415 0.230 0.506 0.309 0.198 3.000 3.000 3.000 3.000 3.000 3.000 0.149 0.246 0.198 0.360 0.156 0.120 1.580 0.120 1.580 0.120 1.120 0.120 | Qual | 0.120 0.272 0.287 0.120 0.176 0.524 0.252 3.000 3.000 3.000 3.000 3.000 3.000 0.129 0.144 0.120 0.402 0.186 0.180 0.493 0.120 0.282 0.470 0.740 0.174 0.120 0.180 0.210 0.180 NS 0.120 0.120 0.120 NS 0.120 0.130 0.130 0.130 0.13 | | 0.120 0.206 0.126 0.120 0.391 0.254 0.216 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 0.120 0.180 0.553 0.336 0.120
0.120 | | 0.120 0.596 0.247 0.120 0.315 0.323 0.262 3.000 3.000 3.000 3.000 3.000 NS 0.120 1.740 0.120 0.360 0.432 0.156 0.306 0.120 NS 0.222 0.120 0.180 NS 0.212 0.120 0.180 NS 0.120 0.130 NS 0.140 0.12 0.12 0.12 0.15 0.16 0.12 0.16 0.112 0.17 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 | ממח מר | 0.120 0.728 0.261 0.120 0.130 0.458 0.205 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 0.193 0.210 0.174 0.354 0.150 0.150 0.150 0.499 0.120 NS 0.120 | Oual | 0.120 0.793 0.245 0.273 0.245 0.1273 0.669 0.211 3.000 3.000 3.000 3.000 3.000 0.146 0.146 0.156 0.150 0.156 0.152 0.150 0.150 0.180 0.120 0.13 0.180 0.160 0.17 0.244 0.13 0.15 0.16 | U U UUUUUU U UUUUU UUUUU UUUUU UUUUU UU | Qua 0.120 | | 0.120 0.237 0.220 0.237 0.220 0.1582 0.320 0.222 3.000 3.000 3.000 3.000 3.000 3.000 3.000 0.150 0.150 0.150 0.150 0.150 0.120 0.120 0.126 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.180 0.120 0.120 0.180 0.120 0.120 0.180 0.120 0.120 0.120 0.180 0.120 0.130 0.140 0.140 0.120 0.140 0.140 0.120 0.140 | | 0.204 | U 0.2 | | 0.120 0.120 0.120 0.120 0.222 0.120 0.132 0.259 0.213 3.000 3.000 3.000 3.000 3.000 3.000 3.000 0.120 0.366 0.444 0.186 0.138 1.200 0.384 0.120 | | Page 18 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storag
Room | e | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Cente
(Rm 145) | r | Room 152 | Room | 149 Room 2 | 234 | Ambient Outdoor
(AOA-1) | |---|---|-------------------------------------|----------------------------|------|----------------------------|------|---------------------------|--------|----------------------------|------|----------------------------|--------|----------------------------|----------------------------|------|----------------------------|-------|------------|------|----------------------------| | | | Sample Date | | Qual | Qua | | Qual | Qua | 1 | Qual | Qual | Qu | | | | 27-Mar-08 | 2.420 | | 2.380 | | 2.280 | | 2.110 | | 2.600 | | 2.560 | 2.700 | | 2.070 | | | | 2.210 | | | | 25-Apr-08
29-May-08 | 2.060
1.700 | | 2.100
1.630 | | 2.010
1.540 | |
2.170
1.760 | | 2.030
1.630 | | 1.990
1.610 | 2.080
1.780 | | 2.030
1.600 | | | | 1.860
1.560 | | | | 27-Jun-08 | 2.280 | | 2.280 | | 2.370 | | 2.330 | | 2.240 | | 2.220 | 2.250 | | 2.250 | | | | 2.220 | | | | 31-Jul-08 | 2.030 | | 2.020 | | 1.970 | | 1.970 | | 1.910 | | 1.920 | 1.920 | | 1.900 | | | | 1.850 | | | | 28-Aug-08 | 3.600 | | 2.870 | | 2.920 | | 2.870 | | 2.920 | | 2.800 | 2.800 | | 2.980 | | | | 2.770 | | | | 30-Sep-08 | 2.500
2.500 | U | 2.700 | U | 2.500 | U
U | 2.500
2.500 | U | 2.500
2.500 | U
U | 2.900 | 2.800 | U | 2.500 U
2.500 U | | | | 2.500 U
2.500 U | | | | 27-Oct-08
25-Nov-08 | 2.500 | U | | U | 2.500
2.500 | U | 2.500 | U | 3.400 | U | 2.500 U
2.500 U | 2.500
2.500 | U | 2.500 U
2.500 U | | | | 2.500 U
2.500 U | | | | 18-Dec-08 | 2.700 | | | U | 2.500 | U | 2.500 | U | 2.500 | U | 2.500 U | 2.500 | U | 2.500 U | | | | 2.500 U | | | | 21-Jan-09 | 2.500 | U | | U | 2.500 | U | 2.500 | U | 2.500 | U | 2.500 U | 3.000 | | 2.500 U | | | | 2.500 U | | | | 25-Feb-09 | 2.500 | U | | U | 2.500 | U | NS | | 2.500 | U | 2.500 U | 2.500 | U | 2.500 U | | | | 2.500 U | | | | 26-Mar-09
29-Apr-09 | 2.220
2.500 | | 2.190
2.260 | | 2.120
2.460 | | 2.090
2.320 | | 2.220
2.260 | | 2.180
2.320 | 2.080
2.380 | | 2.120
2.360 | | | | 2.130
2.160 | | | | 22-Jul-09 | 3.140 | | 3.120 | | 2.920 | | 3.090 | | 2.780 | | 3.170 | 2.690 | | 2.960 | | | | 3.130 | | | | 9-Oct-09 | 2.290 | | 2.560 | | 2.300 | | 2.320 | | 2.300 | | 2.280 | 2.300 | | 2.290 | | | | 2.210 | | | | 15-Jan-10 | 27.800 | | 2.550 | | 2.480 | | 2.590 | | 2.410 | | 2.540 | 2.450 | | 2.410 | | | | 2.430 | | | | 21-Apr-10
16-Jul-10 | 2.340
2.480 | | 2.320
2.560 | | 2.520
2.430 | | 2.330
2.520 | | 2.330
3.690 | | 2.260
2.480 | 2.320
2.550 | | 2.330
2.480 | | | | 2.240
2.740 | | | | 15-Oct-10 | 2.460 | | 2.410 | | 2.560 | | 2.400 | | 2.470 | | 2.410 | 2.450 | | 2.450 | | | | 2.630 | | | | 30-Nov-10 | NS | | 2.480 | | 2.550 | | NS | | NS | | NS | 2.390 | | NS | | | | NS | | | | 26-Jan-11 | 2.680 | | 2.640 | | 2.340 | | 2.660 | | 2.150 | | 2.580 | 2.370 | | 2.560 | 2.230 | 2.480 | | 2.440 | | | | 26-Jan-11** | NS
2.070 | | 2.800 | | 2.700 | | NS | | NS
2.160 | | NS
2.210 | 2.600 | | NS
2.210 | | | | NS
2.460 | | | | 27-Apr-11
26-Jul-11 | 2.070
2.290 | | 2.820
2.270 | | 2.200
2.270 | | 2.450
2.360 | | 2.160
2.260 | | 2.210
2.340 | 2.220
2.250 | | 2.210
2.260 | | | | 2.460
2.350 | | | | 28-Oct-11 | 2.700 | | 2.400 | | 2.800 | | 2.600 | | 2.800 | | 2.500 | 2.600 | | 2.800 | | | | 2.500 | | | | 23-Jan-12 | 1.700 | | 1.800 | | 1.600 | | 1.500 | | 2.000 | | 2.000 | 1.800 | | 1.900 | | | | 2.000 | | | | 13-Apr-12 | 2.100 | | 2.100 | | 2.000 | | 2.000 | | 1.800 | | 1.900 | 1.700 | | 1.700 | | | | 1.300 | | | | 2-Jul-12 resample | NS
2.500 | | NS
2 coo | | NS
2.500 | | NS
2.400 | | NS
2.700 | | NS
2.300 | NS
2.500 | | 2.700 | | | | 2.500 | | | | 20-Jun-12
1-Nov-12 | 2.500 | | 2.600
2.200 | | 2.500
2.100 | | 2.400
2.200 | | 2.700
2.000 | | 2.300 | 2.500
2.100 | | 2.500
2.000 | | | | 2.300
2.100 | | | | 1-Feb-13 | 1.600 | | 1.600 | | 1.600 | | 1.600 | | 1.600 | | 1.600 | 1.600 | | 1.700 | | | | 1.600 | | | | 29-Apr-13 | 2.400 | | 2.600 | | 2.600 | | 2.400 | | 2.400 | | 2.300 | 2.400 | | 2.400 | | | | 2.400 | | D:-1-1 | 91.0 | 9-Jul-13 | 0.950 | | 0.980 | | 0.930 | | 0.960 | | 0.990 | | 1.000 | 0.980 | | 0.970 | | | | 1.000 | | Dichlorodiflouromethane | 91.0 | 18-Oct-13
9-Jan-14 | 2.000
1.400 | | 2.200
1.500 | | 1.900
1.400 | | 2.000
1.400 | | 1.900
1.500 | | 2.000
1.500 | 1.900
1.500 | | 2.000
1.600 | | | | 2.000
1.600 | | | | 24-Apr-14 | 2.300 | | 2.400 | | 2.300 | | 2.400 | | 2.800 | | 2.400 | 2.500 | | 4.100 | | | | 2.500 | | | | 1-Aug-14 | 1.500 | | 1.600 | | 1.500 | | 1.600 | | 1.500 | | 1.600 | 2.300/1.500 | | 1.500 | | | | 1.700 | | | | 12-Sept-14 resample | NS | 2.400 | | NS | | | | NS | | | | 22-Oct-14
20-Jan-15 | 1.400
1.400 | | 1.400
1.500 | | 1.400
1.300 | | 1.500
1.400 | | 1.400
1.500 | | 1.500
1.400 | 1.400
1.500 | | 1.300
1.500 | | | | 1.500
1.500 | | | | 30-Mar-15 resample | 1.400
NS | | 1.500
NS | | NS | | 1.400
NS | | 1.300
NS | | NS | NS | | 1.400 | | | | NS | | | | 22-Apr-15 | 1.800 | | 1.800 | | 4.200 ^v | | 1.800 | | 1.700 | | 1.700 | 1.900 | | 1.700 | | | | 1.600 | | | | 21-Jul-15 | 0.870 | | 0.940 ^A | | 0.890 | | 0.840 | | 0.910 | | 0.880 | 0.930 | | 0.840 | | | | 0.980 | | | | 23-Sept-15 resample | NS | | NS
1 000 | | NS | | NS | | NS
0.020 | | NS
0.070 | 0.920 | | NS
1 000 | | | | NS | | | | 29-Oct-15
27-Jan-16 | 1.100
2.1 ^M | | 1.000
2 ^M | | 1.100
1.9 ^M | | 1.000
2 ^M | | 0.930
2.1 ^M | | 0.970
2.1 ^M | 1.000
2 ^M | | 1.000
2 ^M | | | | 1.100
2.1 ^M | | | | 20-Apr-16 3 | 1.5 | | 1.7 | | 1.5 | | 1.6 | | 1.8 | | 1.6 | 1.5 | | 1.6 | | | | 1.8 | | | | 20-Jul-16 | 1.2 | | 1.3 | | 1 | | 1.2 | | 1.3 | | 1.2 | 1.2 | | 1.2 | | | | 1.2 | | | | 21-Oct-16 | 0.5 | | 0.5 | | 0.48 | | 0.48 | | 0.54 | | 0.51 | 0.51 | | 0.49 | | | | 0.55 | | | | 31-Jan-17
17-Apr-17 ⁴ | 0.8
0.86 | | 0.8
1.2 | | 0.75
0.99 | | 0.76
1.1 | | 0.77
1 | | 0.78 | 0.76 | | 0.71
1.1 | | | | 0.74 | | | | 26-Jul-17 | 1.8 | | 1.8 | | 0.099 | U | 1.8 | | 1.8 | | 1.8 | 1.8 | | 1.9 | | | | 1.8 | | | | 12-Oct-17 | 0.73 | | 0.75 | | 0.84 | | 0.72 | | 0.75 | | 0.76 | 0.76 | | 0.73 | | | | 0.89 | | | | 10-Jan-18 | 0.67 | | 0.69 | | 0.65 | | 0.69 | | 0.69 | | 0.72 | 0.69 | | 0.70 | | | | 0.65 | | | | 11-Apr-18 | 1.1 | | 1.1 | | 1.2 | | 1.0 | | 1.30 | | 1.1 | 1.4 | | 1.1 | | | | 2.2 | | | | 27-Jul-18 | 0.8 | | 0.78 | | 0.78 | | 0.97 | | 1 | | 0.96 | 0.99 | | 0.93 | | | | 0.79 | | | | 24-Oct-18 | 0.66 | | 0.61 | | 0.62 | | 0.68 | | 0.63 | | 0.67 | 0.75 | | 0.69 | | | | 0.6 | | | | 16-Jan-19 | 0.89
0.84 ^{LV} | | 0.74
0.75 ^{LV} | | 0.73 | | 0.76
0.89 ^{LV} | | 0.83
0.81 ^{LV} | | 0.84
0.77 ^{LV} | 0.85
0.89 ^{LV} | | 0.82
0.88 ^{LV} | | | | 0.94
0.81 ^{LV} | | | | 12-Apr-19
29-Jul-19 | 1.5 | | 1.5 | | 0.95
1.2 | | 1.4 | | 0.81 | U | 1.5 | 1.3 | | 0.88
0.099 U | | | | 1.40 | | | | 29-Oct-19 | NS | | 1.4 | | 1.4 | | 1.4 | | 0.099 | U | 0.099 U | 1.4 | | NS | | | | 1.40 | | | | 1-Nov-19 | 0.099 | U | NS | NS | | 1.4 | | | | NS | | | | 21-Jan-20 | 2.3 | | 2.60 | | 2.40 | | 2.40 | | 2.60 | | 2.50 | 2.40 | | 2.30 | | | | 2.50 | | | | 22-Apr-20 | 1.2 | | 1.2 | | 1.2 | | 1.2 | | 1.2 | | 1.2 | 1.2 | | 1.2 | | | | 1.20 | | | | 23-Jul-20 | 1.2 | | 1.1 | _ | 1.1 | | 1.2 | | 1.2 | | 1.1 | 1.2 | | 1.2 | | | | 1.20 | | | | 29-Oct-20 | 0.099 | U | 0.099 | U | 0.099 | U | 2.7 | | 0.099 | | 0.099 U | 0.099 | U | 0.099 U | | | | 2.70 | Page 19 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storag
Room | e | Cafeteria | Comparing | | Elevator
Hallway | | Poor 119 | | Room 110 | Media Center
(Rm 145) | | Room 152 | Room | . 140 | Room 234 | Ambient | Outdoor
9A-1) | |---|---|-------------------------------------|------------------------|------|---------------------------------|--------------------------|--------|---------------------|--------|----------------|--------|--------------------|--------------------------|--------|--------------------|-------|---------|----------|------------------|------------------| | | | Sample Date | KOOIII | Qual | Cateteria | Gymnasium | Qual | • | Qual | Room 118 | Qual | Room 110
Qual | (Kill 145) | Qual | Room 152 | Room | Qual | |)ual | Qual | | | | 8-Feb-08 | 0.080 | U | 0.080 U | | U | 0.080 | U | 0.080 | U | 0.080 U | 0.080 | U | 0.080 U | _ | - Vuiii | | 0.080 | U | | | | 27-Mar-08 | 0.081 | U | 0.081 U | | U | 0.081 | U | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | | | | 0.081 | U | | | | 25-Apr-08 | 0.081 | U | 0.081 U | | U | 0.081 | U | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | | | | 0.081 | U | | | | 29-May-08 | 0.080 | U | 0.080 U
0.080 U | | U
U | 0.080 | U | 0.080 | U
U | 0.080 U
0.080 U | 0.080 | U
U | 0.080 U
0.080 U | | | | 0.080 | U
U | | | | 27-Jun-08
31-Jul-08 | 0.080
0.081 | U | 0.080 U
0.081 U | | U | 0.080
0.081 | U
U | 0.080
0.081 | U | 0.080 U
0.081 U | 0.080
0.081 | U | 0.080 U
0.081 U | | | | 0.080
0.081 | U | | | | 28-Aug-08 | 0.081 | U | 0.081 U | | U | 0.081 | U | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | | | | 0.081 | U | | | | 30-Sep-08 | 2.000 | U | 2.000 U | | U | 2.000 | U | 2.000 | U | 2.000 U | 2.000 | U | 2.000 U | | | | 2.000 | U | | | | 27-Oct-08 | 2.000 | U | 2.000 U | | U | 2.000 | U | 2.000 | U | 2.000 U | 2.000 | U | 2.000 U | | | | 2.000 | | | | | 25-Nov-08
18-Dec-08 | 2.000
2.000 | U | 2.000 U
2.000 U | | U
U | 2.000
2.000 | U
U | 2.000
2.000 | U
U | 2.000 U
2.000 U | 2.000
2.000 | U
U | 2.000 U
2.000 U | | | | 2.000
2.000 | | | | | 21-Jan-09 | 2.000 | U | 2.000 U | | U | 2.000 | U | 2.000 | U | 2.000 U | 2.000 | U | 2.000 U | | | | 2.000 | | | | | 25-Feb-09 | 2.000 | U | 2.000 U | | U | NS | | 2.000 | U | 2.000 U | 2.000 | U | 2.000 U | | | | 2.000 | U | | | | 26-Mar-09 | 0.081 | U | 0.081 U | | U | 0.081 | U | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | | | | 0.081 | U | | | | 29-Apr-09
22-Jul-09 | 0.081
0.081 | U | 0.081 U
0.081 U | | U
U | 0.081
0.081 | U
U | 0.081
0.081 | U
U | 0.081 U
0.081 U | 0.081
0.081 | U
U | 0.081 U
0.081 U | | | | 0.081
0.081 | U | | | | 9-Oct-09 | 0.081 | U | 0.081 U | | U | 0.081 | U | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | | | | 0.081 | U | | | | 15-Jan-10 | 0.081 | U | 0.081 U | | U |
0.081 | U | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | | | | 0.081 | U | | | | 21-Apr-10 | 0.081 | U | 0.081 U | | U | 0.081 | U | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | | | | 0.081 | U | | | | 16-Jul-10
15-Oct-10 | 0.081
0.081 | U | 0.081 U
0.081 U | | U
U | 0.081
0.081 | U
U | 0.081
0.081 | U
U | 0.081 U
0.081 U | 0.081
0.081 | U
U | 0.081 U
0.081 U | | | | 0.081
0.081 | U | | | | 30-Nov-10 | NS | | 0.081 U | | U | NS | | NS | | NS | 0.081 | U | NS | | | | NS | | | | | 26-Jan-11 | 0.138 | U | 0.138 U | | U | 0.138 | U | 0.138 | U | 0.137 U | 0.138 | U | 0.138 U | 0.138 | U | 0.138 | U 0.138 | U | | | | 26-Jan-11** | NS | | 0.200 U | | U | NS | | NS | | NS | 0.200 | U | NS | | | | NS | | | | | 27-Apr-11
26-Jul-11 | 0.081
0.081 | U | 0.081 U
0.081 U | | U
U | 0.081
0.081 | U
U | 0.081
0.081 | U
U | 0.081 U
0.081 U | 0.081
0.081 | U
U | 0.081 U
0.061 U | | | | 0.081
0.081 | U | | | | 28-Oct-11 | 0.061 | U | 0.061 U | | U | 0.061 | U | 0.061 | U | 0.061 U | 0.061 | U | 0.061 U | | | | 0.040 | U | | | | 23-Jan-12 | 0.140 | U | 0.140 U | 0.140 | U | 0.140 | U | 0.140 | U | 0.140 U | 0.140 | U | 0.140 U | | | | 0.140 | U | | | | 13-Apr-12 | 0.061 | U | 0.061 U | 0.061 | U | 0.061 | U | 0.061 | U | 0.061 U | 0.061 | | 0.061 U | | | | 0.081 | U | | | | 2-Jul-12 resample
20-Jun-12 | NS
0.081 | IJ | NS
0.081 U | NS
0.081 | U | NS
0.081 | U | NS
0.081 | U | NS
0.081 U | NS
0.081 | U | 0.061 U
0.081 U | | | | 0.061
0.081 | U | | | | 1-Nov-12 | 0.040 | U | 0.040 U | | U | 0.040 | U | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | 0.040 | U | | | | 1-Feb-13 | 0.040 | U | 0.040 U | | U | 0.040 | U | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | 0.040 | U | | | | 29-Apr-13 | 0.081 | U | 0.081 U | | U | 0.081 | U | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | | | | 0.081 | U | | | | 9-Jul-13 | 0.040 | U | 0.040 U | | U | 0.040 | U | 0.040
0.006 | U
J | 0.040 U | 0.040 | U | 0.040 U | | | | 0.040
0.006 | U | | 1,1-Dichloroethane | 77.0 | 9-Jul-13 RIDEM
18-Oct-13 | NS
0.081 | U | NS
0.081 U | NS
0.081 | U | NS
0.081 | U | 0.006 | U | NS
0.081 U | NS
0.081 | U | NS
0.081 U | | | | 0.006 | U | | | | 9-Jan-14 | 0.081 | U | 0.081 U | | U | 0.081 | U | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | | | | 0.081 | U | | | | 24-Apr-14 | 0.040 | U | 0.040 U | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | 0.040 | U | | | | 1-Aug-14
12-Sept-14 resample | 0.081
NS | U | 0.081 U
NS | 0.081
NS | U | 0.120
NS | U | 0.081
NS | U | 0.081 U
NS | 0.081
0.040 | U | 0.081 U
NS | | | | 0.081
NS | U | | | | 22-Oct-14 | 0.061 | U | 0.061 U | 0.061 | U | 0.061 | U | 0.061 | U | 0.061 U | 0.040 | U | 0.061 U | | | | 0.061 | U | | | | 20-Jan-15 | 0.040 | U | 0.040 U | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 U | 0.061 | U | 0.040 U | | | | 0.061 | U | | | | 30-Mar-15 resample | NS | | NS | NS
0.040 ^v | | NS | | NS | | NS | NS | | 0.047 U | | | | NS | | | | | 22-Apr-15
21-Jul-15 | 0.040
0.200 | U | 0.040 U
0.200 ^A U | 0.200 | U | 0.040
0.200 | U | 0.040
0.200 | U | 0.040 U
0.200 U | 0.040
0.300 | U | 0.040 U
0.200 U | | | | 0.040
0.200 | U | | | | 23-Sept-15 resample | NS | | NS | NS | | NS | | NS | | NS C | 0.200 | U | NS C | | | | NS | | | | | 29-Oct-15 | 0.200 | U | 0.200 U | | U | 0.200 | U | 0.200 | U | 0.200 U | 0.200 | U | 0.200 U | | | | 0.200 | U | | | | 4-Dec-15 resample | NS | ** | 0.200 U | | | NS | | NS
0.04 | ** | NS
0.04 | NS | U | NS
0.04 | | | | NS | ** | | | | 27-Jan-16
20-Apr-16 ³ | 0.04
0.040 | U | 0.04 U
0.040 U | | U
U | 0.04
0.040 | U
U | 0.04
0.040 | U
U | 0.04 U
0.040 U | 0.04
0.040 | U
U | 0.04 U
0.040 U | | | | 0.04
0.040 | U | | | | 20-Jul-16 | 0.048 | U | 0.063 U | | U | 0.050 | U | 0.048 | U | 0.047 U | 0.053 | U | 0.046 U | | | | 0.060 | | | | | 21-Oct-16 | 0.040 | U | 0.040 U | | U | 0.040 | U | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | 0.040 | | | | | 31-Jan-17 | 0.040 | U | 0.040 U | | U | 0.040 | U | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | 0.04 | U | | | | 17-Apr-17 ⁴
26-Jul-17 | 0.061
0.04 | U | 0.061 U
0.04 U | | U | 0.061
0.04 | U
U | 0.061
0.04 | U
U | 0.061 U
0.04 U | 0.061
0.04 | U
U | 0.061 U
0.04 U | | | | 0.061
0.04 | U | | | | 26-Jul-17
12-Oct-17 | 0.04 | U | 0.04 U | | U | 0.04 | U | 0.04 | U | 0.04 U | 0.04 | U | 0.04 U | | | | 0.04 | U | | | | 10-Jan-18 | 0.04 | U | 0.04 U | | U | 0.04 | U | 0.04 | U | 0.04 U | 0.04 | U | 0.04 U | | | | 0.04 | U | | | | 11-Apr-18 | 0.040 | U | 0.040 U | | U | 0.040 | U | 0.040 | U | 0.081 U | 0.040 | U | 0.040 U | | | | 0.4 ^D | U | | | | 27-Jul-18 | 0.040 | U | 0.040 U | | U | 0.040 | U | 0.061 | U | 0.061 U | 0.040 | U | 0.040 U | | | | 0.040 | | | | | 24-Oct-18 | 0.040 | U | 0.040 U | | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | 0.040 | | | | | 16-Jan-19 | 0.040 | U | 0.040 U | | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | 0.040 | | | | | 12-Apr-19
29-Jul-19 | 0.040
0.040 | U | 0.040 U
0.040 U | | U | 0.040
0.040 | U
U | 0.04
0.04 | U
U | 0.04 U
0.04 U | 0.040
0.040 | U
U | 0.040 U
0.040 U | | | | 0.040
0.040 | | | | | 29-Jul-19
29-Oct-19 | 0.040
NS | | 0.040 U | | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | 0.040 | | | | | 1-Nov-19 | 0.04 | U | NS C | NS | 1 | NS | 1 | NS | - | NS | NS | - | 0.04 U | | | | NS | | | | | 21-Jan-20 | 0.04 | U | 0.04 U | 0.04 | U | 0.04 | U | 0.04 | U | 0.04 U | 0.04 | U | 0.04 U | | | | 0.04 | U | | | | 22-Apr-20 | 0.040 | U | 0.040 U | | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | 0.040 | | | | | 23-Jul-20 | 0.040 | U | 0.040 U | | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | 0.040 | | | | | 29-Oct-20 | 0.040 | U | 0.040 U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | 0.040 | U | Page 20 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | 2 | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | | Room 149 |) Roo | m 234 | Ambient Outdoor
(AOA-1) | |---|---|--|---|------|--|--
--|---------------------------------------|---|------|---|------|----------|--|------|---|---|----------|--------|-------|----------------------------| | | | Sample Date | | Qual | Qual | | Qual | | ual | (| Qual | Qua | Qu | | 1,2-Dichloroethane | 0.07/0.08 | 8-Feb-08 27-Mar-08 25-Apr-08 29-May-08 27-Jun-08 31-Jul-08 38-Sep-08 27-Oct-08 25-Nov-08 18-Dec-08 21-Jan-09 25-Feb-09 26-Mar-09 29-Apr-09 22-Jul-09 9-Oct-09 15-Jan-10 21-Apr-10 16-Jul-10 15-Oct-10 30-Nov-10 26-Jan-11 26-Jan-11** 27-Apr-11 26-Jul-12 2-Jul-12 resample 20-Jun-12 1-Nov-12 1-Feb-13 29-Apr-13 9-Jul-13 RIDEM 18-Oct-13 9-Jul-13 9-Jul-13 RIDEM 18-Oct-13 29-Apr-15 21-Jul-15 23-Sept-15 resample 22-Apr-15 21-Jul-15 23-Sept-15 resample 22-Apr-16 20-Apr-16 20-Apr-16 21-Oct-17 10-Jan-18 11-Apr-11 12-Oct-17 10-Jan-18 11-Apr-19 29-Jul-19 29-Jul-19 29-Jul-19 29-Jul-19 29-Jul-19 29-Jul-19 21-Jan-10 | 0.080 0.081 0.081 0.080 0.080 0.081 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.081 0.061 0.071 0.066 NS 0.081 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.100 NS 0.060 0.057 0.048 0.040 | | 0.080 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.080 0.080 0.080 0.080 0.080 0.081 0.061 0.071 0.068 NS 0.081 0.081 0.097 0.040 | מטפט מטממטמט מט מט מט מט מט מט מטמטמטמט מטמט מטמטטטטטט | 0.080 0.081 0.081 0.080 0.081 0.080 0.081 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.081 0.061 0.071 0.061 NS 0.081 0.040
0.040 | U U U U U U U U U U U U U U U U U U U | 0.080 0.081 0.081 0.080 0.081 0.080 0.080 0.080 0.080 0.080 0.080 0.081 0.086 0.096 0.096 0.052 0.081 0.040 | | 0.080 0.081 0.081 0.080 0.081 0.080 0.080 0.081 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.081 0.093 0.081 0.093 0.081 0.061 0.071 0.063 NS 0.081 0.040 0.089 0.160 0.084 0.081 0.040 0.089 0.160 0.081 0.084 0.081 0.040 0.100 NS 0.066 0.058 | | Qual | 0.080 0.081 0.081 0.081 0.081 0.081 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.081 0.061 0.071 0.061 NS 0.081 0.040 | | 0.080 0.081 0.081 0.081 0.080 0.080 0.081 0.081 0.081 0.081 0.080 0.080 0.080 0.080 0.080 0.081 0.071 0.075 0.061 0.081 0.040 0.099 0.092 0.047 0.081 0.040 0.040 0.150 0.040 | 0 U U U U U U U U U U U U U U U U U U U | | U 0.13 | | Qu | Page 21 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 Con | CT Draft Proposed Indoor
Residential Target Air
meentrations/ Interim RIDEM-
Approved Action Level | Sample Date | Kitchen Storage
Room | Oual | Cafeteria | Gymnasium | Qual | Elevator
Hallway | Dual | Room 118 |)ual | Room 110 | Media Center
(Rm 145) | ıal | Room 152 | Room 1 | | Room 234 | | nbient Outdoor
(AOA-1) | |---|---|--|-------------------------|--------|-------------------------------|-------------------------|---------------------------------------|---------------------|--|---|-------------|----------------------------|-------------------------------|-----|-------------------------------|--------|---|----------|-----|-------------------------------| | 1,1-Dichloroethylene | Approved Action Level | 8-Feb-08 27-Mar-08 25-Apr-08 29-May-08 27-Jun-08 31-Jul-08 28-Aug-08 30-Sep-08 27-Oct-08 25-Nov-08 18-Dec-08 21-Jan-09 25-Feb-09 26-Mar-09 29-Apr-09 22-Jul-09 9-Oct-09 15-Jan-10 21-Apr-10 16-Jul-10 15-Oct-10 30-Nov-10 26-Jan-11 28-Oct-11 23-Jan-12 21-Jul-12 21-Apr-12 1-Nov-12 1-Feb-13 29-Apr-13 9-Jul-13 89-Jul-13 89-Jul-13 89-Jul-13 89-Jul-14 12-Sept-14 resample 22-Oct-14 20-Jan-15 30-Mar-15 resample 22-Oct-15 4-Dec-15 resample 22-Oct-15 4-Dec-15 resample 22-Oct-16 31-Jan-17 17-Apr-17 12-Oct-16 31-Jan-17 17-Apr-17 10-Jan-18 11-Apr-18 27-Jul-18 24-Oct-18 16-Jan-19 12-Apr-19 29-Oct-19 1-Nov-19 | Room | Qual | Cafeteria Qua | • | טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט | Hallway | טט טטטט טטטטט ט טטטטטט ט טטטטטטטטטטטטט | 0.080 0.079 0.079 0.079 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.079 0.079 0.079 0.000 0.000 0.000 0.079 0.059 0.140 0.059 0.140 0.059 0.140 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.040 0.040 0.040 0.040 0.040 0.059 0.040 0.059 0.044 0.040 0.059 0.044 0.040 0.059 0.044 0.040 0.059 0.044 0.040 0.059 0.044 0.040 0.059 0.044 0.040 0.059 | | Room 110 | | | Room 152 Qual | | U | C | U U | | | | | 22-Apr-20
23-Jul-20
29-Oct-20 | 0.040
0.040
0.040 | U
U | 0.040 U
0.040 U
0.040 U | 0.040
0.040
0.040 | U
U
U | 0.040 U | U
U
U | 0.04 | U
U
U | 0.04 U
0.04 U
0.04 U |
0.040 L
0.040 L
0.040 L | J | 0.040 U
0.040 U
0.040 U | | | | | 0.040 U
0.040 U
0.040 U | Page 22 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | Room | | Room 23 | | Ambient Outdoor
(AOA-1) | | |---|---|--------------------------------|-------------------------|--------|--------------------|--------|--------------------|--------|---------------------|------|----------------|--------|--------------------|--------------------------|--------|--------------------|-------|------|---------|------|----------------------------|--------| | | | Sample Date | 4.4 | Qual | Qual | | Qual | Qu | | Qual | | Qual | | Qual | | | | 8-Feb-08
27-Mar-08 | 0.080
0.080 | U
U | 0.080
0.080 | U
U | 0.080
0.080 | U
U | 0.080
0.080 | U | 0.080
0.080 | U
U | 0.080 U
0.080 U | 0.080
0.080 | U
U | 0.080 U
0.080 U | | | | | | U
U | | | | 25-Apr-08 | 0.080 | U | 0.080 | U | 0.080 | U | 0.100 | 0 | 0.080 | U | 0.080 U | 0.080 | U | 0.080 U | | | | | | U | | | | 29-May-08 | 0.080 | U | 0.080 U | 0.080 | U | 0.080 U | | | | | | U | | | | 27-Jun-08 | 0.080 | U | 0.079 | U | 0.080 | U | 0.080 | U | 0.080 | U | 0.080 U | 0.080 | U | 0.080 U | | | | | | U | | | | 31-Jul-08 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | | | U | | | | 28-Aug-08 | 0.079 | U | 0.079 | U | 0.079 | U
U | 0.079 | U | 0.079 | U | 0.079 U | 0.092 | U | 0.079 U
5.900 U | | | | | 0.090 | | | | | 30-Sep-08
27-Oct-08 | 5.900
2.000 | U
U | 5.900
2.000 | U
U | 5.900
2.000 | U | 5.900
2.000 | U | 5.900
2.000 | U
U | 5.900 U
2.000 U | 5.900
2.000 | U
U | 5.900 U
2.000 U | | | | | | U
U | | | | 25-Nov-08 | 2.000 | U | 2.000 U | 2.000 | U | 2.000 U | | | | | | U | | | | 18-Dec-08 | 2.000 | U | 2.000 U | 2.000 | U | 2.000 U | | | | | 2.000 | U | | | | 21-Jan-09 | 2.000 | U | 2.000 U | 2.000 | U | 2.000 U | | | | | | U | | | | 25-Feb-09 | 2.000 | U | 2.000 | U | 2.000 | U | NS | | 2.000 | U | 2.000 U | 2.000 | U | 2.000 U | | | | | | U | | | | 26-Mar-09
29-Apr-09 | 0.079
0.079 | U
U | 0.079
0.079 | U
U | 0.079
0.079 | U
U | 0.079
0.079 | U | 0.079
0.079 | U | 0.079 U
0.079 U | 0.079
0.079 | U
U | 0.079 U
0.079 U | | | | | | U
U | | | | 29-Apr-09
22-Jul-09 | 0.079 | U | 0.079 | 0.079 | U | 0.079 U | | | | | | U | | | | 9-Oct-09 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | | | U | | | | 15-Jan-10 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | | | U | | | | 21-Apr-10 | 0.079 | U | 0.780 | | 0.079 | U | 0.079 | U | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | | | U | | | | 16-Jul-10 | 0.079 | U
U | 0.079 | U | 0.079 | U
U | 0.079 | U | 0.079 | U
U | 0.079 U
0.079 U | 0.079 | U
U | 0.079 U | | | | | | U
U | | | | 15-Oct-10
30-Nov-10 | 0.079
NS | U | 0.079
0.079 | U | 0.079
0.079 | U | 0.079 | U | 0.079 | U | 0.079 U | 0.079
0.079 | U | 0.079 U | | | | | 0.079 | U | | | | 26-Jan-11 | 0.135 | U | 0.134 U | 0.135 | U | 0.135 U | 0.135 | U | 0.135 | U | 0.135 | U | | | | 26-Jan-11** | NS | | 0.200 | U | 0.200 | U | | | | | | 0.200 | U | | | | | | | , | | | | 27-Apr-11 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | | 0.079 | U | | | | 26-Jul-11 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | | | U | | | | 28-Oct-11 | 0.069
0.140 | U | 0.059 | U
U | 0.059 | U
U | 0.059 | U | 0.059 | U
U | 0.059 U
0.140 U | 0.059 | U
U | 0.059 U
0.140 U | | | | | | U
U | | | | 23-Jan-12
13-Apr-12 | 0.140 | U | 0.140
0.059 | U | 0.140
0.059 | U | 0.140
0.059 | U | 0.140
0.059 | U | 0.140 U
0.059 U | 0.140
0.059 | U | 0.140 U
0.059 U | | | | | | U | | | | 2-Jul-12 resample | NS | NS | | 0.059 U | | | | | | U | | | | 20-Jun-12 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | | | U | | | | 1-Nov-12 | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | | | U | | | | 1-Feb-13 | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | | | U | | | | 29-Apr-13 | 0.079
0.040 | U
U | 0.079 | U | 0.079 | U
U | 0.079
0.040 | U | 0.079
0.040 | U
U | 0.079 U
0.040 U | 0.079
0.040 | U
U | 0.079 U
0.040 U | | | | | | U
U | | cis-1,2-Dichloroethene* | 18.0 | 9-Jul-13
18-Oct-13 | 0.079 | U | 0.040
0.079 | U | 0.040
0.079 | U | 0.079 | U | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | | | U | | , | | 9-Jan-14 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | | | U | | | | 24-Apr-14 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.079 | U | 0.040 U | 0.040 | U | 0.079 U | | | | | 0.040 | U | | | | 1-Aug-14 | 0.079 | U | 0.079 | U | 0.079 | U | 0.120 | U | 0.500 | | 0.079 U | 0.079 | U | 0.079 U | | | | | 0.160 | , | | | | 12-Sept-14 resample | NS
0.050 | | NS | U | NS | | NS | U | NS
0.050 | | NS
0.059 U | 0.040 | U | NS
0.059 U | | | | | NS | ļ | | | | 22-Oct-14
20-Jan-15 | 0.059
0.040 | U
U | 0.059
0.040 | U | 0.059
0.040 | U | 0.059
0.040 | II | 0.059
0.040 | U
U | 0.059 U
0.040 U | 0.059
0.059 | U
U | 0.059 U
0.040 U | | | | | 0.240
0.059 | U | | | | 30-Mar-15 resample | NS | | NS C | NS | | 0.046 U | | | | | NS | | | | | 22-Apr-15 | 0.040 | U | 0.040 | U | 0.040 ^v | U | 0.040 | U | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | | 0.040 | U | | | | 21-Jul-15 | 0.200 | U | 0.200 ^A | U | 0.110 ^J | U | 0.200 | U | 0.200 | U | 0.200 U | 0.300 | U | 0.200 U | | | | | 0.200 | U | | | | 23-Sept-15 resample | NS | | NS | | NS | | NS | | NS
0.200 | | NS | 0.200 | U | NS
0 200 | | | | | NS | | | | | 29-Oct-15
4-Dec-15 resample | 0.200
NS | U | 0.510
0.200 | U | 0.200
NS | U | 0.200
NS | U | 0.200
NS | U | 0.200 U
NS | 0.200
NS | U
U | 0.200 U
NS | | | | | 0.200
NS | U | | | | 27-Jan-16 | 0.04 | U | 0.200 | U | 0.04 | U | 0.04 | U | 0.04 | U | 0.04 U | 0.04 | U | 0.04 U | | | | | | U | | | | 20-Apr-16 ³ | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | | | U | | | | 20-Jul-16 | 0.047 | U | 0.061 | U | 0.043 | U | 0.049 | U | 0.047 | U | 0.046 U | 0.052 | U | 0.045 U | | | | | | U | | | | 21-Oct-16 | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | | | U | | | | 31-Jan-17 | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | | | U | | | | 17-Apr-17 ⁴ | 0.059 | U
U | 0.059 | U
U | 0.059 | U
U | 0.059 | U | 0.059 | U
U | 0.059 U
0.04 U | 0.059 | U
U | 0.059 U
0.04 U | | | | | | U
U | | | | 26-Jul-17
12-Oct-17 | 0.04
0.04 | U | 0.04 U
0.04 U | 0.04
0.04 | U | 0.04 U
0.04 U | | | | | | U | | | | 12-Oct-17
10-Jan-18 | 0.04 | U | 0.04 U | 0.04 | U | 0.04 U | | | | | | U | | | | 11-Apr-18 | 0.040 | U | 0.079 U | 0.040 | U | 0.040 U | | | | | _ | U | | | | 27-Jul-18 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.059 | U | 0.059 U | 0.040 | U | 0.040 U | | | | | | U | | | | 24-Oct-18 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | | | U | | | | 16-Jan-19 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | | 0.040 | U | | | | 12-Apr-19 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | | 0.040 | U | | | | 29-Jul-19 | 0.054 | | 0.040 | U | 0.040 | U | 0.040 | U | 0.057 | | 0.04 U | 0.040 | U | 0.056 | | | | | 0.040 | U | | | | 29-Oct-19 | NS | | 0.040 | U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | NS | | | | | 0.040 | U | | | | 1-Nov-19 | 0.04 | U | NS | NS | | 0.04 U | | | | | NS | | | | | 21-Jan-20 | 0.04 | U | 0.04 | U | 0.04 | U
U | 0.04 | U | 0.04 | U | 0.04 U | 0.04 | U | 0.04 U | | | | | | U
U | | | | 22-Apr-20
23-Jul-20 | 0.040
0.040 | U
U | 0.040
0.040 | U
U | 0.040
0.040 | U | 0.040
0.040 | U | 0.04
0.04 | U | 0.04 U
0.04 U | 0.040
0.040 | U
U | 0.040 U
0.040 U | | | | | | U | | | | 29-Oct-20 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | | 0.040 | U | | | | 27-00-20 | 0.040 | 5 | 0.040 | J | 0.040 | | 0.040 | U | 0.04 | | 0.04 | 0.040 | Ü | 0.040 | | | | | 0.040 | | Page 23 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | e | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | Room 1 | 149 | Room 234 | Ambient Outdo
(AOA-1) | oor | |---|---|----------------------------------|-------------------------|------|--------------------------|--------|----------------|--------|---------------------|--------|----------------|--------|--------------------|--------------------------|------|--------------------|--------|------|----------|--------------------------|--------| | | | Sample Date | | Qual | Qual | | Qual | Qua | 1 | Qual | Qu | al | Qual | | | | 8-Feb-08 | 0.080 | U | 0.080 U | 0.080 | U | 0.080 U | | | | 0.080 | U | | | | 27-Mar-08 | 0.079
0.079 | U | 0.079
0.079 | U | 0.079
0.079 | U
U | 0.079
0.079 | U
U | 0.079
0.079 | U
U | 0.079 U
0.079 U | 0.079
0.079 | U | 0.079 U
0.079 U | | | | 0.079
0.079 | U | | | | 25-Apr-08
29-May-08 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | 0.079 | U | | | | 27-Jun-08 | 0.080 | U | 0.079 U | 0.080 | U | 0.080 U | | | | 0.079 | U | | | | 31-Jul-08 | 0.079 | U | 0.079 U
| 0.079 | U | 0.079 U | | | | 0.079 | U | | | | 28-Aug-08 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | 0.079 | U | | | | 30-Sep-08 | 2.000 | U | 2.000 | U
U | 2.000 | U
U | 2.000 | U
U | 2.000 | U
U | 2.000 U
2.000 U | 2.000 | U | 2.000 U
2.000 U | | | | 2.000 | U
U | | | | 27-Oct-08
25-Nov-08 | 2.000
2.000 | II. | 2.000
2.000 | U | 2.000
2.000 | U | 2.000
2.000 | U | 2.000
2.000 | U | 2.000 U
2.000 U | 2.000
2.000 | U | 2.000 U
2.000 U | | | | 2.000
2.000 | U | | | | 18-Dec-08 | 2.000 | U | 2.000 U | 2.000 | U | 2.000 U | | | | 2.000 | U | | | | 21-Jan-09 | 2.000 | U | 2.000 U | 2.000 | U | 2.000 U | | | | 2.000 | U | | | | 25-Feb-09 | 2.000 | U | 2.000 | U | 2.000 | U | NS | | 2.000 | U | 2.000 U | 2.000 | U | 2.000 U | | | | 2.000 | U | | | | 26-Mar-09 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | 0.079 | U
U | | | | 29-Apr-09
22-Jul-09 | 0.079
0.079 | U | 0.079
0.079 | U | 0.091
0.079 | U
U | 0.079
0.079 | U
U | 0.079
0.079 | U
U | 0.079 U
0.079 U | 0.079
0.079 | U | 0.079 U
0.079 U | | | | 0.079
0.079 | U | | | | 9-Oct-09 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | 0.079 | U | | | | 15-Jan-10 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | 0.079 | U | | | | 21-Apr-10 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | 0.079 | U | | | | 16-Jul-10 | 0.079 | U | 0.079 | U | 0.079 | U
U | 0.079 | U
U | 0.079 | U
U | 0.079 U
0.079 U | 0.079 | U | 0.079 U
0.079 U | | | | 0.079 | U | | | | 15-Oct-10
30-Nov-10 | 0.079
NS | U | 0.079
0.079 | U | 0.079
0.079 | U | 0.079
NS | U | 0.079
NS | U | 0.079 U
NS | 0.079
0.079 | U | 0.079 U
NS | | | | 0.079
NS | U | | | | 26-Jan-11 | 0.135 | U | 0.134 U | 0.135 | U | 0.135 U | 0.135 | U (|).135 L | | U | | | | 26-Jan-11** | NS | | 0.200 | U | 0.200 | U | NS | | NS | | NS | 0.200 | U | NS | | | | NS | | | | | 27-Apr-11 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | 0.079 | U | | | | 26-Jul-11 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | 0.079 | U | | | | 28-Oct-11
23-Jan-12 | 0.059
0.140 | U | 0.059
0.140 | U | 0.059
0.140 | U
U | 0.059
0.140 | U
U | 0.059
0.140 | U
U | 0.059 U
0.140 U | 0.059
0.140 | U | 0.059 U
0.140 U | | | | 0.040
0.140 | U | | | | 13-Apr-12 | 0.059 | U | 0.140 U | 0.059 | U | 0.140 U | | | | 0.079 | U | | | | 2-Jul-12 resample | NS | NS | | 0.059 U | | | | 0.059 | U | | | | 20-Jun-12 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | 0.079 | U | | | | 1-Nov-12 | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | 0.040 | U | | | | 1-Feb-13
29-Apr-13 | 0.040
0.040 | U | 0.040
0.040 | U
U | 0.040
0.040 | U
U | 0.040
0.040 | U
U | 0.040
0.040 | U
U | 0.040 U
0.040 U | 0.040
0.040 | U | 0.040 U
0.040 U | | | | 0.040
0.040 | U
U | | | | 9-Jul-13 | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | 0.040 | U | | rans-1,2-Dichloroethene3 | 3 7.0 | 18-Oct-13 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | 0.079 | U | | | | 9-Jan-14 | 0.079 | U | 0.079 U | 0.079 | U | 0.079 U | | | | 0.079 | U | | | | 24-Apr-14 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.079 | U | 0.040 U | 0.040 | U | 0.079 U | | | | 0.040 | U | | | | 1-Aug-14 | 0.079
NS | U | 0.079
NS | U | 0.079
NS | U | 0.120
NS | U | 0.250
NS | | 0.079 U
NS | 0.079
0.040 | U | 0.079 U
NS | | | | 0.090
NS | | | | | 12-Sept-14 resample
22-Oct-14 | 0.059 | U | 0.059 U | 0.059 | U | 0.059 U | | | | 0.059 | U | | | | 20-Jan-15 | 0.040 | U | 0.040 U | 0.059 | U | 0.040 U | | | | 0.059 | U | | | | 30-Mar-15 resample | NS | NS | | 0.046 U | | | | NS | | | | | 22-Apr-15 | 0.040 | U | 0.040 | U | 0.040 V | U | 0.040 | U | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | 0.040 | U | | | | 21-Jul-15
23-Sept-15 resample | 0.200 | U | 0.200 ^A
NS | U | 0.200
NS | U | 0.200
NS | U | 0.200
NS | U | 0.200 U
NS | 0.300
0.200 | U | 0.200 U
NS | | | | 0.200
NS | U | | | | 29-Oct-15 | NS
0.200 | U | 0.200 U | 0.200 | U | 0.200 U | | | | 0.200 | U | | | | 4-Dec-15 resample | NS | - | 0.200 | U | NS | | NS | 1 | NS | | NS S | NS | U | NS S | | | | NS | - | | | | 27-Jan-16 | 0.04 | U | 0.04 U | 0.04 | U | 0.04 U | | | | 0.04 | U | | | | 20-Apr-16 ³ | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | 0.040 | U | | | | 20-Jul-16
21-Oct-16 | 0.047
0.040 | U | 0.061
0.040 | U | 0.043
0.040 | U
U | 0.049
0.040 | U
U | 0.047
0.040 | U
U | 0.046 U
0.040 U | 0.052
0.040 | U | 0.045 U
0.040 U | | | | 0.059
0.040 | U
U | | | | 31-Jan-17 | 0.040 | U | 0.040 U | 0.040 | U | 0.040 U | | | | 0.04 | U | | | | 17-Apr-17 ⁴ | 0.059 | U | 0.059 U | 0.059 | U | 0.059 U | | | | 0.059 | U | | | | 26-Jul-17 | 0.04 | U | 0.04 U | 0.04 | U | 0.04 U | | | | 0.04 | U | | | | 12-Oct-17 | 0.04 | U | 0.04 U | 0.04 | U | 0.04 U | | | | 0.04 | U | | | | 10-Jan-18 | 0.04 | U | 0.04 U | 0.04 | U | 0.04 U | | | | 0.04 | U | | | | 11-Apr-18 | 0.040 | U | 0.079 U | 0.040 | U | 0.040 U | | | | 0.4 ^D | U | | | | 27-Jul-18 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.059 | U | 0.059 U | 0.040 | U | 0.040 U | | | | 0.040 | U | | | | 24-Oct-18 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | 0.040 | U | | | | 16-Jan-19 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U
0.040 U | | | | 0.040 | U
U | | | | 12-Apr-19
29-Jul-19 | 0.040
0.056 | U | 0.040
0.040 | U | 0.040
0.040 | U
U | 0.040
0.040 | U
U | 0.04
0.043 | U | 0.04 U
0.04 U | 0.040
0.049 | U | 0.040 U
0.048 | | | | 0.040
0.046 | U | | | | 29-Jul-19
29-Oct-19 | 0.036
NS | | 0.040 | U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.049 | U | 0.048
NS | | | | 0.040 | U | | | | 1-Nov-19 | 0.04 | U | NS | NS | | 0.04 U | | | | NS | ~ 1 | | | | 21-Jan-20 | 0.04 | U | 0.04 U | 0.04 | U | 0.04 U | | | | 0.04 | U | | | | 22-Apr-20 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | 0.040 | U | | | | 23-Jul-20 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | 0.040 | U | | II . | I | 29-Oct-20 | 0.040 | U | 0.040 | U | 0.040 | U | 0.040 | U | 0.04 | U | 0.04 U | 0.040 | U | 0.040 U | | | | 0.040 | U | Page 24 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storag | ge . | | | | Elevator | | | | | | Media Center | | | | | | Ambient Outdo | oor | |---|---|-------------------------------------|----------------------|-----------|--------------------------|-----------|------------------------|----------------------|-----------|----------------------|------------------|-----------------------|------------------|-----------------------------------|----------------------|------------------|-------|------|--------|----------------------|-----------| | | | Carrala Data | Room | 101 | Cafeteria | 21 | Gymnasium | Hallway | 0 | Room 118 | 01 | Room 110 | 01 | (Rm 145) | Room 152 | 01 | Room | | Room 2 | | 10 | | | | Sample Date
8-Feb-08 | 0.090 | Qual
U | | Qual
U | 0.090 U | 1 | Qual
U | 0.090 | Qual
U | 0.090 | Qual
U | 0.090 U | 0.090 | Qual
U | | Qual | | Qual 0.090 | Qual
U | | | | 27-Mar-08 | 0.092 | U | | U | 0.092 U | 0.092 | U | 0.092 | U | 0.092 | U | 0.092 U | 0.092 | U | | | | 0.092 | U | | | | 25-Apr-08 | 0.092 | U | 0.092 | U | 0.092 U | 0.092 | U | 0.092 | U | 0.092 | U | 0.092 U | 0.092 | U | | | | 0.092 | U | | | | 29-May-08 | 0.090 | U | | U | 0.090 U | 0.090 | U | 0.090 | U | 0.090 | U | 0.090 U | 0.090 | U | | | | 0.090 | U | | | | 27-Jun-08
31-Jul-08 | 0.092
0.092 | U | | U
U | 0.090 U
0.092 U | 0.090
0.092 | U | 0.090
0.092 | U
U | 0.090
0.092 | U
U | 0.092 U
0.092 U | 0.092
0.092 | U | | | | 0.092
0.092 | U
U | | | | 28-Aug-08 | 0.092 | U | | U | 0.092 U | 0.092 | U | 0.092 | U | 0.092 | U | 0.092 U | 0.092 | U | | | | 0.092 | U | | | | 30-Sep-08 | 0.090 | U | | U | 0.090 U | 0.090 | U | 0.090 | U | 0.090 | U | 0.090 U | 0.090 | U | | | | 0.090 | U | | | | 27-Oct-08 | 0.090 | U | | U | 0.090 U | 0.090 | U | 0.090 | U | 0.090 | U | 0.090 U | 0.090 | U | | | | 0.090 | U | | | | 25-Nov-08 | 0.090
0.090 | U | | U
U | 0.090 U
0.090 U | 0.090 | U | 0.090 | U
U | 0.090
0.090 | U
U | 0.090 U
0.090 U | 0.090
0.090 | U | | | | 0.090 | U
U | | | | 18-Dec-08
21-Jan-09 | 0.090 | U | | U | 0.090 U | 0.090
0.090 | U | 0.090
0.090 | U | 0.090 | U | 0.090 U | 0.090 | U | | | | 0.090
0.090 | U | | | | 25-Feb-09 | 0.090 | U | | U | 0.090 U | NS | | 0.090 | U | 0.090 | U | 0.090 U | 0.090 | U | | | | 0.090 | U | | | | 26-Mar-09 | 0.092 | U | | U | 0.092 U | 0.092 | U | 0.092 | U | 0.092 | U | 0.092 U | 0.092 | U | | | | 0.092 | U | | | | 29-Apr-09 | 0.092 | U | | U | 0.092 U | 0.092 | U | 0.092 | U | 0.092 | U | 0.092 U | 0.092 | U | | | | 0.092 | U | | | | 22-Jul-09
9-Oct-09 | 0.092
0.092 | U | | U
U | 0.092 U
0.092 U | 0.092
0.092 | U | 0.092
0.092 | U
U | 0.092
0.092 | U
U | 0.092 U
0.092 U | 0.092
0.092 | U | | | | 0.092
0.092 | U
U | | | | 15-Jan-10 | 0.092 | U | | U | 0.092 U | 0.092 | U | 0.092 | U | 0.092 | U | 0.092 U | 0.092 | U | | | | 0.092 | U | | | | 21-Apr-10 | 0.092 | U | | U | 0.092 U | 0.092 | U | 0.092 | U | 0.092 | U | 0.092 U | 0.092 | U | | | | 0.092 | U | | | | 16-Jul-10 | 0.092 | U | | U | 0.092 U
0.092 U | 0.092 | U | 0.092 | U
U | 0.092 | U
U | 0.092 U
0.092 U | 0.092 | U | | | | 0.092 | U
U | | | | 15-Oct-10
30-Nov-10 |
0.092
NS | U | | U
U | 0.092 U
0.092 U | 0.092
NS | U | 0.092
NS | U | 0.092
NS | U | 0.092 U
0.092 U | 0.092
NS | U | | | | 0.092
NS | U | | | | 26-Jan-11 | 0.158 | U | | U | 0.157 U | 0.157 | U | 0.158 | U | 0.157 | U | 0.157 U | 0.158 | U | 0.157 | U | 0.157 | U 0.157 | U | | | | 26-Jan-11** | NS | | | U | 0.230 U | NS | | NS | | NS | | 0.230 U | NS | | | | | NS | | | | | 27-Apr-11 | 0.092 | U | | U | 0.092 U | 0.092 | U | 0.092 | U | 0.092 | U | 0.092 U | 0.092 | U | | | | 0.092 | U | | | | 26-Jul-11
28-Oct-11 | 0.092
0.069 | U | | U
U | 0.092 U
0.069 U | 0.092
0.069 | U | 0.092
0.069 | U
U | 0.092
0.069 | U
U | 0.092 U
0.069 U | 0.092
0.069 | U | | | | 0.092
0.046 | U
U | | | | 23-Jan-12 | 0.081 | U | | U | 0.081 U | 0.081 | U | 0.081 | U | 0.081 | U | 0.081 U | 0.081 | U | | | | 0.040 | U | | | | 13-Apr-12 | 0.140 | U | | U | 0.140 U | 0.140 | U | 0.140 | U | 0.140 | U | 0.140 U | 0.140 | U | | | | 0.180 | U | | | | 2-Jul-12 resample | NS | | NS | | NS | NS | | NS | | NS | | NS | 0.069 | U | | | | 0.069 | U | | | | 20-Jun-12
1-Nov-12 | 0.092
0.046 | U | | U
U | 0.092 U
0.046 U | 0.092
0.046 | U | 0.092
0.046 | U
U | 0.092
0.046 | U | 0.092 U
0.046 U | 0.092
0.046 | U | | | | 0.092
0.046 | U
U | | | | 1-Nov-12
1-Feb-13 | 0.046 | U | | U | 0.046 U | 0.092 | U | 0.046 | U | 0.092 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 29-Apr-13 | 0.046 | U | | U | 0.046 U | 0.046 | U | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 9-Jul-13 | 0.092 | U | | U | 0.092 U | 0.092 | U | 0.092 | U | 0.092 | U | 0.092 U | 0.092 | U | | | | 0.092 | U | | 1,2-Dichloropropane | 0.13 | 9-Jul-13 RIDEM | NS
0.092 | U | NS
0.092 | U | NS
0.092 U | NS
0.002 | U | 0.021 | J
U | NS
0.092 | U | NS
0.092 U | NS
0.002 | U | | | | 0.007 | J
U | | | | 18-Oct-13
9-Jan-14 | 0.092 | U | | U | 0.092 U | 0.092
0.092 | U | 0.092
0.092 | U | 0.092 | U | 0.092 U
0.092 U | 0.092
0.092 | U | | | | 0.092
0.092 | U | | | | 24-Apr-14 | 0.046 ^{L,V} | U | 2.22 | U | 0.046 ^{L,V} U | 0.046 ^{L,V} | U | 0.046 ^{L,V} | U | 0.046 ^L ,V | U | 0.046 ^{L,V} U | 0.046 ^{L,V} | U | | | | 0.046 ^{L,V} | U | | | | 1-Aug-14 | 0.092 | U | | U | 0.092 U | 0.140 | U | 0.092 | U | 0.092 | U | 0.092 U | 0.092 | U | | | | 0.092 | U | | | | 12-Sept-14 resample
22-Oct-14 | NS
0.069 | U | NS
0.069 | U | NS
0.069 U | NS
0.069 | U | NS
0.069 | U | NS
0.069 | U | 0.046 ^{L,V} U
0.069 U | NS
0.069 | U | | | | NS
0.069 | U | | | | 20-Jan-15 | 0.046 | U | | U | 0.046 U | 0.046 | U | 0.046 | U | 0.046 | U | 0.069 U | 0.046 | U | | | | 0.069 | U | | | | 30-Mar-15 resample | NS | | NS | | NS | NS | | NS | | NS | | NS | 0.053 | U | | | | NS | | | | | 22-Apr-15 | 0.046 | U | A | U | 0.046 U | 0.046 | U | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 21-Jul-15
23-Sept-15 resample | 0.200
NS | U | 0.200 ^A
NS | U | 0.200 U
NS | 0.200
NS | U | 0.200
NS | U | 0.200
NS | U | 0.300 U
0.300 U | 0.200
NS | U | | | | 0.300
NS | U | | | | 29-Oct-15 | 0.300 | U | | U | 0.200 U | 0.300 | U | | U | 0.200 | U | 0.200 U | 0.200 | U | | | | 0.300 | U | | | | 4-Dec-15 resample | NS | | 0.200 | U | NS | NS | | NS | | NS | | NS U | NS | | | | | NS | | | | | 27-Jan-16 | 0.046 | U | | U | 0.057 | 0.046 | U | 0.085 | | 0.046 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 20-Apr-16 ³
20-Jul-16 | 0.074
0.055 | U | 0.048
0.072 | U | 0.046 U
0.050 U | 0.083
0.057 | U | 0.057
0.055 | U | 0.059
0.11 | | 0.046 U
0.061 U | 0.052
0.052 | U | | | | 0.052
0.069 | U | | | | 21-Oct-16 | 0.046 | U | | U | 0.046 U | 0.046 | U | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 31-Jan-17 | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 17-Apr-17 ⁴ | 0.069 | U | | U | 0.069 U | 0.069 | U | 0.069 | U | 0.069 | U | 0.069 U | 0.069 | U | | | | 0.069 | U | | | | 26-Jul-17 | 0.046 | U | | U | 0.046 U | 0.046 | U | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 12-Oct-17
10-Jan-18 | 0.046
0.05 | U | | U
U | 0.046 U
0.05 U | 0.046
0.05 | U | 0.046
0.05 | U
U | 0.046
0.05 | U
U | 0.046 U
0.05 U | 0.046
0.05 | U | | | | 0.046
0.046 | U | | | | 10-Jan-18
11-Apr-18 | 0.05 | U | | U | 0.05 U | 0.03 | U | 0.05 | U | 0.05 | U | 0.05 U | 0.03 | U | | | | 0.46 ^D | U | | | | 27-Jul-18 | 0.046 | U | | U | 0.046 U | 0.046 | U | 0.069 | U | 0.069 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 24-Oct-18 | 0.046 | U | | U | 0.046 U | 0.046 | U | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 16-Jan-19 | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 12-Apr-19 | 0.046 | U | | U | 0.046 U | 0.046 | U | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 29-Jul-19 | 0.046 | U | 0.091 | ** | 0.046 U | 0.078 | | 0.079 | | 0.12 | , | 0.091 | 0.046 | U | | | | 0.046 | U | | | | 29-Oct-19
1-Nov-19 | NS
0.046 | U | 0.046
NS | U | 0.046 U
NS | 0.046
NS | U | 0.046
NS | U | 0.046
NS | U | 0.046 U
NS | NS
0.046 | U | | | | 0.046
NS | U | | | | 21-Jan-20 | 0.046 | U | | U | 0.05 U | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 U | 0.046 | U | | | | 0.05 | U | | | | 22-Apr-20 | 0.092 ^L | U | T T | U | 0.092 ^L U | 0.092 ^L | U | 0.092 ^L | U | 0.092 ^L | U | 0.092 ^L U | 0.092 ^L | U | | | | 0.092 ^L | U | | | | 23-Jul-20 | 0.046 | U | | U | 0.046 U | 0.046 | U | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | | | | 29-Oct-20 | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | 0.046 | U | 0.046 | U | 0.046 U | 0.046 | U | | | | 0.046 | U | Page 25 of 48 Date Modified: 12/10/2020 | Volatile Organic | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM- |-------------------------|--|---------------------------------|-------------------------|------|-----------------------------|--------|--------------------|--------|---------------------|--------|--------------------|--------|----------------------|--------------------------|------|----------------------|-------|------|---------|------|----------------------------|--------| | Compounds via 10 13 | Approved Action Level | | Kitchen Storage
Room | e | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | Room | 149 | Room 23 | 4 | Ambient Outdoor
(AOA-1) | | | | | Sample Date | | Qual | _ | | Qual | Qua | ıl | Qual | | Qual | | Qual | | | | 8-Feb-08
27-Mar-08 | 0.090
0.091 | U | 0.090
0.091 | U
U | 0.090
0.091 | U
U | 0.090
0.091 | U
U | 0.090
0.091 | U
U | 0.090 U
0.091 U | 0.090
0.091 | U | 0.090 U
0.091 U | | | | | 0.090
0.091 | U
U | | | | 25-Apr-08 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 U | | | | | 0.091 | U | | | | 29-May-08 | 0.090 | U | 0.090 U | 0.090 | U | 0.090 U | | | | | 0.090 | U | | | | 27-Jun-08 | 0.090 | U | 0.090 | U
U | 0.090 | U
U | 0.090 | U
U | 0.090 | U
U | 0.090 U
0.091 U | 0.185 | U | 0.090 U
0.091 U | l l | | | | 0.091 | U
U | | | | 31-Jul-08
28-Aug-08 | 0.091
0.091 | U | 0.091 U | 0.091
0.091 | U | 0.091 U
0.091 U | l l | | | | 0.091
0.091 | U | | | | 30-Sep-08 | 0.180 | U | 0.180 U | 0.180 | U | 0.180 U | | | | | 0.180 | U | | | | 27-Oct-08 | 0.180 | U | 0.180 U | 0.180 | U | 0.180 U | | | | | 0.180 | U | | | | 25-Nov-08
18-Dec-08 | 0.180
0.180 | U | 0.180
0.180 | U
U | 0.180
0.180 | U
U | 0.180
0.180 | U
U | 0.180
0.180 | U
U | 0.180 U
0.180 U | 0.180
0.180 | U | 0.180 U
0.180 U | l l | | | | 0.180
0.180 | U
U | | | | 21-Jan-09 | 0.180 | U | 0.180 U | 0.180 | U | 0.180 U | l l | | | | 0.180 | U | | | | 25-Feb-09 | 0.180 | U | 0.180 | U | 0.180 | U | NS | | 0.180 | U | 0.180 U | 0.180 | U | 0.180 U | | | | | 0.180 | U | | | | 26-Mar-09
29-Apr-09 | 0.091
0.091 | U | 0.091
0.091 | U
U | 0.091
0.091 | U
U | 0.091
0.091 | U
U | 0.091
0.091 | U
U | 0.091 U
0.091 U | 0.091
0.091 | U | 0.091 U
0.091 U | | | | | 0.091
0.091 | U
U | | | | 22-Jul-09 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 U | l l | | | | 0.091 | U | | | | 9-Oct-09 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 U | | | | | 0.091 | U | | | | 15-Jan-10 | 0.091
0.091 | U | 0.091 | U
U | 0.091
0.091 | U
U | 0.091
0.091 | U
U | 0.091
0.091 | U
U | 0.091 U
0.091 U | 0.091
0.091 | U | 0.091 U
0.091 U | | | | | 0.091
0.091 | U
U | | | | 21-Apr-10
16-Jul-10 | 0.091 | U | 0.091
0.091 | U | 0.091 | U | 0.091 | U | 0.091 | U | 0.091 U | 0.091 | U | 0.091 U | | | | | 0.091 | U | | | | 15-Oct-10 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 U | l l | | | | 0.091 | U | | | | 30-Nov-10 | NS | | 0.091 | U | 0.091 | U | NS | | NS
0.155 | | NS | 0.091 | U | NS | 0.154 | | 0.155 | | NS | | | | | 26-Jan-11
26-Jan-11** | 0.155
NS | U | 0.154
0.230 | U
U | 0.155
0.230 | U
U | 0.154
NS | U | 0.155
NS | U | 0.154 U
NS | 0.154
0.230 | U | 0.155 U
NS | 0.154 | U | 0.155 | U | 0.154
NS | U | | | | 27-Apr-11 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 U | | | | | 0.091 | U | | | | 26-Jul-11 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 U | l l | | | | 0.091 | U | | | | 28-Oct-11
23-Jan-12 | 0.140
0.160 | U | 0.140
0.160 | U
U | 0.140
0.160 | U
U | 0.140
0.160 | U
U | 0.140
0.160 | U
U | 0.140 U
0.160 U | 0.140
0.160 | U | 0.140 U
0.160 U | | | | | 0.091
0.160 | U
U | | | | 23-Jan-12
13-Apr-12 | 0.160 | U | 0.160 | U | 0.068 | U | 0.160 | U | 0.068 | U |
0.160 U | 0.068 | U | 0.160 U | | | | | 0.091 | U | | | | 2-Jul-12 resample | NS | NS | | 0.068 U | | | | | 0.068 | U | | | | 20-Jun-12 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 U | l l | | | | 0.091 | U | | | | 1-Nov-12
1-Feb-13 | 0.045
0.045 | U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | 0.045 U
0.045 U | 0.045
0.045 | U | 0.045 U
0.045 U | | | | | 0.045
0.045 | U
U | | | | 29-Apr-13 | 0.045 | U | 0.250 | U | 0.045 | U | 0.045 | U | 0.250 | U | 0.045 U | 0.450 | U | 0.045 U | | | | | 0.045 | U | | | | 9-Jul-13 | 0.045 | U | 0.250 | U | 0.045 | U | 0.045 | U | 0.045 | U | 0.045 U | 0.045 | U | 0.045 U | | | | | 0.045 | U | | cis-1,3-Dichloropropene | None | 9-Jul-13 RIDEM
18-Oct-13 | NS
0.091 | U | NS
0.091 | U | NS
0.091 | U | NS
0.091 | U | 0.026
0.091 | U
U | NS
0.091 U | NS
0.091 | U | NS
0.091 U | | | | | 0.026
0.091 | U
U | | | | 9-Jan-14 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 U | | | | | 0.091 | U | | | | 24-Apr-14 | 0.045 | U | 0.045 | U | 0.045 | U | 0.040 | U | 0.091 | U | 0.045 U | 0.045 | U | 0.091 U | | | | | 0.045 | U | | | | 1-Aug-14
12-Sept-14 resample | 0.091
NS | U | 0.091
NS | U | 0.091
NS | U | 0.140
NS | U | 1.000
NS | | 0.091 U
NS | 0.091
0.045 | U | 0.091 U
NS | | | | | 0.091
NS | U | | | | 22-Oct-14 | 0.068 | U | 0.068 U | 0.068 | U | 0.068 U | | | | | 0.068 | U | | | | 20-Jan-15 | 0.045 | U | 0.045 U | | U | 0.046 U | | | | | 0.068 | U | | | | 30-Mar-15 resample | NS
0.045 | U | NS
0.045 | U | NS
0.045 | ** | NS
0.045 | U | NS
0.045 | ** | NS
0.045 | NS
0.045 | U | 0.052 U | | | | | NS
0.045 | U | | | | 22-Apr-15
21-Jul-15 | 0.045
0.200 | U | 0.045
0.200 ^A | U | 0.045
0.200 | U | 0.045
0.200 | U | 0.045
0.200 | U
U | 0.045 U
0.200 U | 0.045
0.300 | U | 0.045 U
0.200 U | | | | | 0.045
0.300 | U | | | | 23-Sept-15 resample | NS | 0.300 | U | NS | | | | | NS | . | | | | 29-Oct-15 | 0.300 | U | 0.200 | U | 0.200 | U | 0.300 | U | 0.200 | U | 0.200 U | 0.200 | U | 0.200 U | | | | | 0.300 | U | | | | 4-Dec-15 resample
27-Jan-16 | NS
0.045 | U | 0.200
0.045 | U
U | NS
0.045 | U | NS
0.045 | U | NS
0.045 | U | NS
0.045 U | NS
0.045 | U | NS
0.045 U | | | | | NS
0.045 | U | | | | 20-Apr-16 ³ | 0.045 | U | 0.045 U | 0.045 | U | 0.045 U | l l | | | | 0.045 | U | | | | 20-Jul-16 | 0.054 | U | 0.07 | U | 0.049 | U | 0.056 | U | 0.054 | U | 0.053 U | | U | 0.051 U | l l | | | | 0.068 | U | | | | 21-Oct-16
31-Jan-17 | 0.045
0.045 | U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | 0.045 U
0.045 U | 0.045
0.045 | U | 0.045 U
0.045 U | l l | | | | 0.045
0.045 | U
U | | | | 17-Apr-17 ⁴ | 0.043 | U | 0.068 | U | 0.068 | U | 0.043 | U | 0.068 | U | 0.068 U | 0.068 | U | 0.068 U | | | | | 0.043 | U | | | | 26-Jul-17 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 U | | | | | 0.045 | U | | | | 12-Oct-17 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 U | l l | | | | 0.045 | U | | | | 10-Jan-18 | 0.045 | U | 0.045 U | | U | 0.045 U | | | | | 0.045
0.45 ^D | U | | | | 11-Apr-18
27-Jul-18 | 0.045
0.045 | U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | 0.045
0.068 | U
U | 0.091 U
0.068 U | | U | 0.045 U
0.045 U | | | | | 0.45 | U
U | | | | 27-Jul-18
24-Oct-18 | 0.045 | U | 0.045 | U | 0.045 | U | 0.045 | U | 0.068 | U | 0.068 U | | U | 0.045 U | | | | | 0.045 | U | | | | 16-Jan-19 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 U | | | | | 0.045 | U | | | | 12-Apr-19 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 U | | | | | 0.045 | U | | | | 29-Jul-19 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 U | | | | | 0.045 | U | | | | 29-Oct-19
1-Nov-19 | NS
0.045 | U | 0.045
NS | U | 0.045
NS | U | 0.045
NS | U | 0.045
NS | U | 0.045 U
NS | 0.045
NS | U | NS
0.045 U | | | | | 0.045
NS | U | | | | 1-Nov-19
21-Jan-20 | 0.045 | U | 0.05 U | 0.05 | U | 0.045 U | | | | | 0.05 | U | | | | 22-Apr-20 | 0.045 ^L | U | 0.045 ^L U | 0.045 ^L | U | 0.045 ^L U | | | | | 0.045 ^L | U | | | | 23-Jul-20 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 U | | | | | 0.045 | U | | | | 29-Oct-20 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 U | | | | | 0.045 | U | Page 26 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage | è | | | | | Elevator | | | | | Media Ce | nter | | | | | | | Ambient Outdoor | | |---|---|----------------------------------|-----------------|------------------|-----------------------------|------------------|----------------|------------------|----------------|-----------|----------------|------------------|--------------------|----------------|-----------|----------------|------------------|---------|------|---------|------|-----------------|------------------| | | | a | Room | 10.1 | Cafeteria | | Gymnasium | 10.1 | Hallway | 10.1 | Room 118 | 0 1 | Room 110 | (Rm 14 | | Room 152 | 10. | Room 1 | | Room 23 | | (AOA-1) | | | | | Sample Date
8-Feb-08 | 0.090 | Qual
U | 0.090 | Qual
U | 0.090 | Qual
U | 0.090 | Qual
U | 0.090 | Qual
U | 0.090 U | 0.090 | Qual
U | 0.090 | Qual
U | | Qual | | Qual | | Qual
U | | | | 27-Mar-08 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 | U | | | | | | U | | | | 25-Apr-08
29-May-08 | 0.091
0.090 | U | 0.091
0.090 | U | 0.091
0.090 | U | 0.091
0.090 | U | 0.091
0.090 | U
U | 0.091 U
0.090 U | 0.091
0.090 | U | 0.091
0.090 | U | | | | | | U
U | | | | 27-Jun-08 | 0.090 | U | 0.090 U | 0.340 | | 0.090 | U | | | | | | U | | | | 31-Jul-08 | 0.090 | U | 0.090 | U | 0.091 | U | 0.091 | U | 0.091 | U | 0.091 U | 0.091 | U | 0.091 | U | | | | | | U | | | | 28-Aug-08
27-Oct-08 | 0.091
0.180 | U | 0.091
0.180 | U
U | 0.091
0.200 | U | 0.091
0.180 | U
U | 0.091
0.180 | U
U | 0.091 U
0.180 U | 0.091
0.180 | U | 0.091
0.180 | U
U | | | | | | U
U | | | | 27-Oct-08 | 0.180 | U | 0.180 U | 0.180 | U | 0.180 | U | | | | | 0.180 | U | | | | 25-Nov-08 | 0.180 | U
U | 0.180 | U
U | 0.180 | U
U | 0.180 | U | 0.180 | U
U | 0.180 U
0.180 U | 0.180 | U | 0.180 | U | | | | | | U
U | | | | 18-Dec-08
21-Jan-09 | 0.180
0.180 | U | 0.180 U
0.180 U | 0.180
0.180 | U | 0.180
0.180 | U | | | | | | U | | | | 25-Feb-09 | 0.180 | U | 0.180 | U | 0.180 | U | NS | | 0.180 | U | 0.180 U | 0.180 | U | 0.180 | U | | | | | 0.180 | U | | | | 26-Mar-09 | 0.091 | U | 0.091 | U
U | 0.091 | U
U | 0.091 | U | 0.091 | U | 0.091 U
0.091 U | 0.091 | U | 0.091 | U | | | | | | U | | | | 29-Apr-09
22-Jul-09 | 0.091
0.091 | U
U | 0.091
0.091 | U | 0.107
0.091 | U | 0.091
0.091 | U | 0.091
0.091 | U
U | 0.091 U
0.091 U | 0.091
0.091 | U | 0.091
0.091 | U | | | | | | U
U | | | | 9-Oct-09 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 | U | | | | | 0.091 | U | | | | 15-Jan-10
21-Apr-10 | 0.091
0.091 | U
U | 0.091
0.091 | U
U | 0.091
0.091 | U
U | 0.091
0.091 | U | 0.091
0.091 | U
U | 0.091 U
0.091 U | 0.091
0.091 | U | 0.091
0.091 | U | | | | | | U
U | | | | 21-Apr-10
16-Jul-10 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 | U | | | | | | U | | | | 15-Oct-10 | 0.091 | U | 0.092 | U | 0.091 | U | 0.091 | U | 0.091 | U | 0.091 U | 0.091 | U | 0.091 | U | | | | | | U | | | | 30-Nov-10
26-Jan-11 | NS
0.155 | U | 0.091
0.154 | U
U | 0.091
0.155 | U | NS
0.154 | U | NS
0.155 | U | NS
0.154 U | 0.091
0.154 | U | NS
0.155 | U | 0.154 | IJ | 0.155 | U | NS
0.154 | U | | | | 26-Jan-11** | NS | | 0.230 | U | 0.230 | U | NS | | NS | | NS S | 0.230 | U | NS | | 0.134 | | 0.155 | | NS | Ŭ | | | | 27-Apr-11 | 0.091 | U | 0.091 U | 0.091 | U | 0.091 | U | | | | | | U | | | | 26-Jul-11
28-Oct-11 | 0.091
0.068 | U | 0.091
0.068 | U | 0.091
0.068 | U
U | 0.091
0.068 | U | 0.091
0.068 | U
U | 0.091 U
0.068 U | 0.091
0.068 | U | 0.091
0.068 | U
U | | | | | | U
U | | | | 23-Jan-12 | 0.160 | U | 0.160 U | 0.160 | U | 0.160 | U | | | | | 0.160 | U | | | | 13-Apr-12 | 0.068 | U | 0.068 U | 0.068 | U | 0.068 | U | | | | | | U | | | | 2-Jul-12 resample
20-Jun-12 | NS
0.091 | U | NS
0.091 U | NS
0.091 | U | 0.068
0.091 | U | | | | | | U
U | | | | 1-Nov-12 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 | U | | | | | 0.045 | U | | | | 1-Feb-13
29-Apr-13 | 0.045
0.045 | U
U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | 0.045
0.045 | U | 0.045
0.045 | U
U | 0.045 U
0.045 U | 0.045
0.045 | U | 0.045
0.045 | U | | | | | | U
U | | | | 9-Jul-13 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 | U | | | | | | U | | rans-1,3-Dichloropropene | None | 9-Jul-13 RIDEM | NS | | NS | | NS | | NS | | 0.049 | U | NS | NS | | NS | | | | | | | U | | | | 18-Oct-13
9-Jan-14 | 0.091
0.091 | U | 0.091
0.091 | U | 0.091
0.091 | U | 0.091
0.091 | U | 0.091
0.091 | U
U | 0.091 U
0.091 U | 0.091
0.091 | U | 0.091
0.091 | U | | | | | | U
U | | | | 24-Apr-14 | 0.045 | U | 0.045 | U | 0.045 | U | 0.040 | U | 0.091 | U | 0.045 U | 0.045 | U | 0.091 | U | | | | | | U | | | | 1-Aug-14 | 0.091 | U | 0.091 | U | 0.091 | U | 0.140 | U | 0.091 | U | 0.091 U | 0.091 | U | 0.091 | U | | | | | | U | | | | 12-Sept-14 resample
22-Oct-14 | NS
0.068 | U | NS
0.068 U | 0.045
0.068 | U | NS
0.068 | U | | | | | NS
0.068 | U | | | | 20-Jan-15 | 0.045 | U | 0.045 U | 0.068 | U | 0.046 | U | | | | | | U | | | | 30-Mar-15 resample |
NS
0.045 | ** | NS
0.045 | U | NS
0.045 | U | NS
0.045 | | NS
0.045 | U | NS
0.045 U | NS
0.045 | U | 0.052 | U
U | | | | | NS
0.045 | U | | | | 22-Apr-15
21-Jul-15 | 0.045
0.200 | U | 0.045
0.200 ^A | U | 0.045
0.200 | U | 0.045
0.200 | U
U | 0.045
0.200 | U | 0.045 U
0.200 U | 0.045
0.300 | U | 0.045
0.200 | U | | | | | 0.045
0.300 | U | | | | 23-Sept-15 resample | NS | 0.300 | U | NS | | | | | | NS | | | | | 29-Oct-15
4-Dec-15 resample | 0.300
NS | U | 0.200
0.200 | U
U | 0.200
NS | U | 0.300
NS | U | 0.200
NS | U | 0.200 U
NS | 0.200
NS | U | 0.200
NS | U | | | | | 0.300
NS | U | | | | 27-Jan-16 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 | U | | | | | | U | | | | 20-Apr-16 ³ | 0.045 | U | 0.045 U | 0.045 | U | 0.045 | U | | | | | | U | | | | 20-Jul-16
21-Oct-16 | 0.054
0.045 | U | 0.07
0.045 | U
U | 0.049
0.045 | U | 0.056
0.045 | U
U | 0.054
0.045 | U
U | 0.053 U
0.045 U | 0.060
0.045 | U | 0.051
0.045 | U
U | | | | | | U
U | | | | 31-Jan-17 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 | U | | | | | | U | | | | 17-Apr-17 ⁴ | 0.068 | U | 0.068 U | 0.068 | U | 0.068 | U | | | | | | U | | | | 26-Jul-17 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 | U | | | | | | U | | | | 12-Oct-17
10-Jan-18 | 0.045
0.045 | U | 0.045
0.045 | U
U | 0.045
0.045 | U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | 0.045 U
0.045 U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | | | | | | U
U | | | | 11-Apr-18 | 0.045 | U | 0.091 U | 0.045 | U | 0.045 | U | | | | | _ | U | | | | 27-Jul-18 | 0.045 | U | 0.045 | U | 0.045 | U | 0.045 | U | 0.068 | U | 0.068 U | 0.045 | U | 0.045 | U | | | | | | U | | | | 24-Oct-18
16-Jan-19 | 0.045
0.045 | U | 0.045
0.045 | U | 0.045
0.045 | U
U | 0.045
0.045 | U | 0.045
0.045 | U
U | 0.045 U
0.045 U | 0.045
0.045 | U
U | 0.045
0.045 | U
U | | | | | | U
U | | | | 16-Jan-19
12-Apr-19 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 | U | | | | | | U | | | | 29-Jul-19 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 | U | | | | | | U | | | | 29-Oct-19 | NS | | 0.045 | U | 0.045 | U | 0.045 | U | 0.045 | U | 0.045 U | 0.045 | U | NS | | | | | | | U | | | | 1-Nov-19
21-Jan-20 | 0.045
0.05 | U | NS
0.05 U | NS
0.05 | U | 0.045
0.05 | U | | | | | NS
0.05 | U | | | | 21-Jan-20
22-Apr-20 | 0.045 | U | 0.045 | U | 0.045 | U | 0.03 | U | 0.045 | U | 0.045 U | 0.03 | U | 0.03 | U | | | | | | U | | | | 23-Jul-20 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 | U | | | | | 0.045 | U | | | | 29-Oct-20 | 0.045 | U | 0.045 U | 0.045 | U | 0.045 | U | <u></u> | | | | 0.045 | U | Page 27 of 48 Date Modified: 12/10/2020 | | | Media Center (Rm 145) Room 152 | Room 149 Room 234 | Ambient Outdoor
(AOA-1) | |---------------|------|--------------------------------|-------------------|---| | | Qual | Qual Qual | Qual Qual | Qual | | 22-Aug 6,70 | Qual | 0.160 | Qual | 0.220 0.096 0.087 0.090 0.369 0.255 0.944 2.200 0.2200 0.2200 0.2200 0.727 0.178 1.180 0.746 0.286 0.087 0.143 0.121 NS 1.300 NS 0.091 0.161 0.130 0.470 0.130 0.470 0.130 0.470 0.130 0.470 0.130 0.470 0.130 0.470 0.130 0.150 0.310 0.330 0.430 0.160 0.887 0.180 0.160 0.887 0.19 0.210 0.210 0.88 0.180 0.160 0.180 0.160 0.180 0.160 0.130 0.150 0.310 0.330 0.430 0.140 0.087 0.280 NS 0.210 0.210 NS 0.11 0.087 0.280 NS 0.11 0.087 0.13 0.13 0.13 0.140 0.087 0.280 NS 0.11 0.087 0.11 0.11 0.11 0.087 0.11 0.11 0.094 0.099 0.14 0.111 0.111 NS 0.144 0.087 | Page 28 of 48 Date Modified: 12/10/2020 | | Compounds via TO-15 Cor | CT Draft Proposed Indoor
Residential Target Air
oncentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | e | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | Roo | om 152 | Room 1 | 149 | Room 23 | Ambient O | | |---|-------------------------|--|--
--|---------------------------------------|---|------|--|--|--|--|---|---------------------------------------|--
---|--|--------|--------|-----|---------|---|------| | Property | | | Sample Date | | Qual | | ` | | | | | | | Qual | | 1-Nov-19 0.25 U NS | Isopropylbenzene | 120.0 | 8-Feb-08 27-Mar-08 25-Apr-08 29-May-08 27-Jun-08 31-Jul-08 31-Jul-08 38-Aug-08 30-Sep-08 27-Oct-08 25-Nov-08 18-Dec-08 21-Jan-09 25-Feb-09 26-Mar-09 29-Apr-09 29-Apr-10 16-Jul-10 15-Oct-10 30-Nov-10 26-Jan-11 26-Jan-11** 27-Apr-11 26-Jul-11 28-Oct-11 23-Jan-12 13-Apr-12 2-Jul-12 resample 20-Jun-12 1-Feb-13 29-Apr-13 9-Jul-13 RIDEM 18-Oct-13 29-Apr-13 9-Jul-13 RIDEM 18-Oct-14 20-Jan-14 1-Aug-14 12-Sept-14 resample 20-Jun-12 1-Feb-13 29-Apr-13 39-Jul-13 RIDEM 18-Oct-13 39-Jan-14 24-Apr-14 1-Aug-14 12-Sept-16-Feb-13 29-Apr-15 21-Jul-15 20-Jul-16 20-Oct-16 31-Jan-17 12-Oct-17 10-Jan-18 11-Apr-18 27-Jul-18 24-Oct-17 10-Jan-18 11-Apr-18 27-Jul-18 24-Oct-19 19-Jul-19 29-Jul-19 29-Jul-19 29-Jul-19 29-Jul-19 | 2.460 2.460 2.460 2.460 2.460 2.460 2.460 4.900 4.900 4.900 4.900 4.900 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.50 0.250 | ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט | 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 4.900 4.900 4.900 4.900 4.900 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.450 0.370 NS 0.250 0.250 0.250 0.250 NS 0.250 0.250 NS 0.250 0.250 NS 0.250 0.250 NS | | 2.460 2.460 2.460 2.460 2.460 2.460 2.460 4.900 4.900 4.900 4.900 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.450 2.50 0.250
0.250 | ט טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט | 2.460 2.460 2.460 2.460 2.460 2.460 2.460 4.900 4.900 4.900 NS 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 0.370 NS 0.250 0.370 NS 0.250 0.300 NS 0.250 0.300 NS 0.250 0.300 NS 0.250 0.370 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2 | טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט | 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 4.900 4.900 4.900 4.900 4.900 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.450 0.050 0.250 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.460 U 4.900 U 4.900 U 4.900 U 4.900 U 4.900 U 4.900 U 2.460 0.2460 U 0.2460 U 0.250 0.25 | 2.460 2.460 2.460 2.460 2.460 2.460 2.460 4.900 4.900 4.900 4.900 4.900 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.450 0.250 | J 2.466 3.490 J 4.900 5.466 5.46 | | 4.180 | U | | U 4.80 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 4.900 4.900 4.900 4.900 2.460 2.50 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.370 0.370 0.388 0.370 0.370 0.388 0.370 0.370 0.390 NS 0.250 0.390 NS 0.250 0.390 0.250 | Oual | Page 29 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | Sample Date | Kitchen Storage
Room | e
Qual | Cafeteria |)ual | Gymnasium | Qual | Elevator
Hallway | Qual | Room 118 | Dual | Room 110 Qual | Media Center
(Rm 145) | Room 152 | Room 1 | 49 Roo | n 234
Qual | Ambient Outdoor
(AOA-1) | r
Qual | |---|---|-------------------------------------|--------------------------|-----------|--------------------------|--------|--------------------------|--------|--------------------------|--------|--------------------------|--------|----------------------------|---------------------------------|----------------------------|--------|---------|---------------|----------------------------|-----------| | | | 8-Feb-08 | 2.740 | U
U | | U | 2.740 | U | 2.740 | U | | U | 2.740 U | 2.740 U | 2.740 U
2.740 U | | İ | | 2.740 | U | | | | 27-Mar-08
25-Apr-08 | 2.740
2.740 | U | | U
U | 2.740
2.740 | U
U | 2.740
2.740 | U | | U
U | 2.740 U
2.740 U | 2.740 U
2.740 U | 2.740 U
2.740 U | | | | 2.740
2.740 | U
U | | | | 29-May-08 | 2.740
2.740 | U | | U
U | 2.740
2.740 | U
U | 2.740
2.740 | U
U | | U
U | 2.740 U
2.740 U | 2.740 U
2.740 U | 2.740 U
2.740 U | | | | 2.740 | U
U | | | | 27-Jun-08
31-Jul-08 | 2.740 | U | | U | 2.740 | U | 2.740 | U | | U | 2.740 U
2.740 U | 2.740 U
2.740 U | 2.740 U
2.740 U | | | | 2.740
2.740 | U | | | | 28-Aug-08
30-Sep-08 | 2.740
5.500 | U | | U
U | 2.740
5,5 | U
U | 2.740
5.500 | U
U | 2.740
6.400 | U | 2.740 U
5.500 U | 2.740 U
5.500 U | 2.740 U
67.000 | | | | 2.740
5.500 | U
U | | | | 25-Nov-08 | 5.500 | U | 5.500 | U | 5.500 | U | 5.500 | U | 5;5 | U | 5.500 U | 5.500 U | 5.500 U | | | | 5.500 | U | | | | 25-Nov-08
18-Dec-08 | 5.500
5.500 | U | | U
U | 5.500
5.500 | U
U | 5.500
5.500 | U
U | | U
U | 5.500 U
5.500 U | 5.500 U
5.500 U | 5.500 U
5.500 U | | | | 5.500
5.500 | U
U | | | | 21-Jan-09 | 5.500 | U | 5.500 U | 5.500 U | 5.500 U | | | | 5.500 | U | | | | 25-Feb-09
26-Mar-09 | 5.500
2.740 | U | | U
U | 5.500
2.740 | U
U | NS
2.740 | U | | U
U | 5.500 U
2.740 U | 5.500 U
2.740 U | 5.500 U
2.740 U | | | | 5.500
2.740 | U
U | | | | 29-Apr-09
22-Jul-09 | 2.740
2.740 | U
U | | U
U | 0.274
3.890 | U | 2.740
2.740 | U
U | | U
U | 2.740 U
2.740 U | 2.740 U
2.740 U | 2.740 U
2.740 U | | | | 2.740
2.740 | U
U | | | | 9-Oct-09 | 2.740 | U | | U | 2.740 | U |
2.740 | U | 2.740 | U | 2.740 U | 2.740 U | 2.740 U | | | | 2.740 | U | | | | 15-Jan-10
21-Apr-10 | 2.740
2.740 | U | | U
U | 2.740
2.740 | U
U | 2.740
2.740 | U
U | | U
U | 2.740 U
2.740 U | 2.740 U
2.740 U | 2.740 U
2.740 U | | | | 2.740
2.740 | U
U | | | | 16-Jul-10 | 2.740 | U | 2.740 U | 2.740 U | 2.740 U | | | | 2.740 | U | | | | 15-Oct-10
30-Nov-10 | 2.740
NS | U | | U
U | 2.740
2.740 | U
U | 2.740
NS | U | 2.740
NS | U | 2.740 U
NS | 2.740 U
2.740 U | 2.740 U
NS | | | | 2.740
NS | U | | | | 26-Jan-11 | 0.468 | U | 4.660 | U | 4.680 | U | 4.670 | U | | U | 4.660 U | 4.660 U | 4.680 U | 4.660 | U 4.680 | U | 4.660 | U | | | | 26-Jan-11**
27-Apr-11 | NS
2.740 | U | 2.740 | U | 2.740 | U | NS
2.740 | U | NS
2.740 | U | NS
2.740 U | 2.740 U | NS
2.740 U | | | | NS
2.740 | U | | | | 26-Jul-11
28-Oct-11 | 2.740
0.380 | U | | U
U | 2.740
0.380 | U
U | 2.740
0.380 | U
U | | U
U | 2.740 U
0.380 U | 2.740 U
0.380 U | 2.740 U
0.380 U | | | | 2.740
0.250 | U
U | | | | 23-Jan-12 | 0.080 | U | 0.440 U | 0.440 U | 0.440 U | | | | 0.440 | U | | | | 13-Apr-12
2-Jul-12 resample | 0.380
NS | U | 0.380 U
NS | 0.380 U
NS | 0.380 U
0.380 U | | | | 0.500
0.380 | U
U | | | | 20-Jun-12 | 0.250 | U | 2.000 | | 0.250 | U | 0.250 | U | 0.250 | U | 0.250 U | 0.250 U | 0.250 U | | | | 0.250 | U | | | | 1-Nov-12
1-Feb-13 | 0.250
0.290 | U | | U
U | 0.250
0.250 | U
U | 0.250
0.250 | U | | U
U | 0.250 U
0.250 U | 0.250 U
0.250 U | 0.250 U
0.250 U | | | | 0.250
0.250 | U
U | | | | 29-Apr-13
9-Jul-13 | 0.480
0.250 | TJ. | | U
U | 0.250
0.250 | U
U | 0.250
0.250 | U | | U
U | 0.250 U
0.250 U | 0.250 U
0.250 U | 0.250 U
0.250 U | | | | 0.250
0.250 | U
U | | p-Isopropyltoluene | 67.0 | 18-Oct-13 | 0.250 | U | | U | 0.250 | U | 0.250 | U | 0.320 | | 0.250 U | 0.250 U | 0.370 | | | | 0.250 | U | | | | 9-Jan-14
24-Apr-14 | 0.250
0.250 | U | | U
U | 0.250
0.250 | U
U | 0.250
0.250 | U
U | | U
U | 0.250 U
0.250 U | 0.250 U
0.250 U | 0.250 U
0.250 U | | | | 0.250
0.250 | U
U | | | | 1-Aug-14 | 0.250 | U | 0.250 | U | 0.250 | U | 0.380 | U | 0.250 | U | 0.250 U | 0.250 U | 0.250 U | | | | 0.250 | U | | | | 12-Sept-14 resample
22-Oct-14 | NS
0.380 ^L | U | NS
0.380 ^L U | 0.250 U
0.380 ^L U | NS
0.380 ^L U | | | | NS
0.380 ^L | U | | | | 20-Jan-15
30-Mar-15 resample | 0.250
NS | U | 0.250 U
NS | 0.380 U
NS | 0.250 U
0.290 U | | | | 0.380
NS | U | | | | 22-Apr-15 | 0.250 | U | 0.250 U | 0.250 U | 0.250 U | | | | 0.250 | U | | | | 21-Jul-15
23-Sept-15 resample | 0.170 ^J
NS | | 0.300 ^A
NS | U | 0.300
NS | U | 0.300
NS | U | 0.300
NS | U | 0.300 U
NS | 0.400 U
0.300 U | 0.300 U
NS | | | | -
NS | | | | | 29-Oct-15 | 0.300 | U | 0.250 J | | 0.300 | U | 0.300 | U | | U | 0.300 U | 0.160 J | 0.300 U | | | | 0.300 | U | | | | 4-Dec-15 resample
27-Jan-16 | NS
0.25 | U | | U
U | NS
0.25 | U | NS
0.25 | U | NS
0.25 | U | NS
0.25 U | NS U
0.25 U | NS
0.25 U | | | | NS
0.25 | U | | | | 20-Apr-16 ³
20-Jul-16 | 0.25
0.30 | U | | U
U | 0.25
0.27 | U
U | 0.25
0.31 | U
U | | U
U | 0.25 U
0.29 U | 0.25 U
0.33 U | 0.25
0.28 W U | | | | 0.25
0.37 | U
U | | | | 21-Oct-16 | 0.25 | U | 0.25 U | 0.25 U | 0.25 U | | | | 0.25 | U | | | | 31-Jan-17
17-Apr-17 ⁴ | 0.25
0.38 | U
U | | U
U | 0.25
0.38 | U
U | 0.25
0.38 | U
U | | U
U | 0.25 U
0.38 U | 0.25 U
0.38 U | 0.25 U
0.38 U | | | | 0.25
0.38 | U
U | | | | 26-Jul-17 | 0.25 | U | | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 U | 0.25 U | | | | 0.25 | U | | | | 12-Oct-17
10-Jan-18 | 0.25
0.25 | U
U | | U
U | 0.25
0.25 | U
U | 0.25
0.25 | U
U | | U
U | 0.25
0.27 | 0.25 U
0.25 U | 0.25 U
0.25 U | | | | 0.25
0.25 | U
U | | | | 10-Jan-18
11-Apr-18 | 0.25 | U | | U | 0.25 | U | 0.25 | U | | U | 0.27
0.25 U | 0.25 U | 0.25 U | | | | 1.3 ^D | U | | | | 27-Jul-18 | 0.25 | U | 7 7 | U | 0.25 | U | 0.25 | U | | U | 1.1 | 0.25 U | 0.25 U | | | | 0.25 | U | | | | 24-Oct-18
16-Jan-19 | 0.25
0.25 | U
U | * * | U
U | 0.25
0.25 | U
U | 0.25
0.25 | U | | U
U | 0.25 U
0.25 U | 0.25 U
0.25 U | 0.25 U
0.25 U | | | | 0.25
0.25 | U
U | | | | 12-Apr-19 | 0.25 | U | * * | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 U | 0.25 U | | | | 0.25 | U | | | | 29-Jul-19
29-Oct-19 | 0.25
NS | U | 7 7 | U
U | 0.25
0.25 | U
U | 0.25
0.25 | U | | U
U | 0.25 U
0.25 U | 0.25 U
0.25 U | 0.25 U
NS | | | | 0.25
0.25 | U
U | | | | 1-Nov-19 | 0.25 | U | NS | NS | 0.25 U | | | | NS | | | | | 21-Jan-20
22-Apr-20 | 0.25
0.25 | U
U | | U
U | 0.25
0.25 | U
U | 0.25
0.25 | U
U | | U
U | 0.25 U
0.25 U | 0.25 U
0.25 U | 0.25 U
0.25 U | | | | 0.25
0.25 | U
U | | | | 23-Jul-20 | 0.25 | U | 0.25 ^M U | 0.25 U | 0.25 U | | | | 0.25 | U | | | | 29-Oct-20 | 0.25 | U | 0.25 U | 0.25 U | 0.25 U | | | | 0.25 | U | Page 30 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | | Cafeteria | | Gymnasium | | Elevator
Hallway | Io i | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | _ | n 149 | Room 23 | | Ambient Outdoor
(AOA-1) | |---|---|---------------------------------|-------------------------|------------------|----------------|------------------|--------------------------|------------------|---------------------|------|----------------|------------------|--------------------|--------------------------|------------------|--------------------|-------|-------|---------|------|----------------------------| | | | Sample Date
8-Feb-08 | 0.070 | Qual
U | 0.070 | Qual
U | 0.070 | Qual
U | 0.070 | Qual | 0.070 | Qual
U | 0.070 U | 0.070 | Qual
U | 0.070 U | _ | Qual | | Qual | 0.070 L | | | | 8-Feb-08
27-Mar-08 | 0.440 | 0 | 0.102 | U | 0.102 | | 0.070 | | 0.070 | U | 0.070 | 0.102 | " | 0.070 | | | | | 0.070 C | | | | 25-Apr-08 | 0.116 | | 0.116 | | 0.107 | | 0.127 | | 0.126 | | 0.121 | 0.131 | | 0.113 | | | | | 0.072 L | | | | 29-May-08 | 0.070 | U | 0.070 U | 0.070 | U | 0.070 U | | | | | 0.070 L | | | | 27-Jun-08 | 0.072 | U | 0.070 | U | 0.070 | U | 0.074 | | 0.070 | U | 0.070 U | 0.070 | U | 0.070 U | | | | | 0.072 L | | | | 31-Jul-08
28-Aug-08 | 0.072
0.095 | U | 0.072
0.130 | U | 0.072
0.123 | U | 0.072
0.123 | U | 0.072
0.091 | U | 0.072 U
0.106 | 0.072
0.115 | U | 0.072
0.089 | | | | | 0.072 U
0.094 | | | | 30-Sep-08 | 1.800 | U | 1.800 U | 1.800 | U | 1.800 U | | | | | 1.800 U | | | | 27-Oct-08 | 1.800 | U | 1.800 | U | 1.800 | U | 1.800 | U | 2.600 | _ | 2.300 | 1.800 | U | 1.800 U | | | | | 1.800 L | | | | 25-Nov-08 | 2.100 | | 1.800 | U | 1.800 | U | 1.800 | U | 2.800 | U | 1.800 U | 1.800 | U | 1.800 U | | | | | 1.800 U | | | | 18-Dec-08 | 1.800 | U | 1.800 U | 1.800 | U | 1.800 U | | | | | 1.800 U | | | | 21-Jan-09
25-Feb-09 | 1.800
1.800 | U | 1.800
2.700 | U | 1.800
1.800 | U | 1.800
NS | U | 1.800
1.800 | U
U | 1.800 U
2.700 | 1.800
1.800 | U
U | 1.800 U
1.800 U | | | | | 1.800 L
1.800 L | | | | 26-Mar-09 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 29-Apr-09 | 0.072 | U | 0.072 | U | 2.350 | | 0.072 | U | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 22-Jul-09 | 0.072 | U | 0.072 | U | 0.223 | | 0.072 | U | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.169 | | | | 9-Oct-09 | 0.072 | U | 0.072 | U | 0.072 | U | 0.072 | U | 0.072 | | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 15-Jan-10 | 0.072
0.072 | U
U | 0.072
0.072 | U | 0.072 | U
U | 0.072
0.072 | U | 0.072
0.072 | U | 0.072 U
0.072 U | 0.072
0.072 | U
U | 0.072 U
0.072 U | | | | | 0.072 L
0.072 L | | | | 21-Apr-10
16-Jul-10 | 0.072
0.072 | U | 0.072
0.072 | U | 0.072
0.072 | U | 0.072 | U | 0.072
0.072 | U | 0.072 U
0.072 U | 0.072
0.072 | U | 0.072 U
0.072 U | | | | | 0.072 U
0.072 U | | | | 15-Oct-10 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 U | | | | 30-Nov-10 | NS | | 0.072 | U | 0.072 | U | NS | | NS | | NS | 0.072 | U | NS | | | | | NS | | | | 26-Jan-11 | 0.123 | U | 0.122 | U | 0.123 | U | 0.123 | U | 0.123 | U | 0.122 U | 0.122 | U | 0.123 U | 0.122 | U | 0.123 | U | 0.122 L | | | | 26-Jan-11** | NS
0.052 | | 0.180 | U | 0.180 | U | NS | | NS
0.052 | | NS
0.052 | 0.180 | U | NS | | | | | NS | | | | 27-Apr-11
26-Jul-11 | 0.072
0.072 | U
U | 0.072
0.072 | U | 0.072
0.072 | U | 0.072
0.072 | U | 0.072
0.072 | U
U | 0.072 U
0.072 U | 0.072
0.072 | U
U | 0.072 U
0.072 U | | | | | 0.072 L
0.072 L | | | | 28-Oct-11 | 0.110 | U | 0.110 U | 0.110 | U | 0.110 U | | | | | 0.072 U | | | | 23-Jan-12 | 0.130 | U | 0.130 U | 0.130 | U | 0.130 U | | | | | 0.130 L | | | | 13-Apr-12 | 0.110 | U | 0.110 U | 0.110 | U | 0.110 U | | | | | 0.140 U | | | | 2-Jul-12 resample | NS | l l | NS | NS | | 0.110 U | | | | | 0.110 L | | | | 20-Jun-12
1-Nov-12 | 0.072
0.072 | U
U | 0.072
0.072 | U | 0.072
0.072 | U
U | 0.072
0.072 | U | 0.072
0.072 | U
U | 0.072 U
0.072 U | 0.072
0.072 | U
U | 0.072 U
0.072 U | | | | | 0.072 L
0.072 L | | | | 1-Nov-12
1-Feb-13 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 U | | | | 29-Apr-13 | 0.072 | U | 0.072 U |
0.072 | U | 0.072 U | | | | | 0.072 L | | | | 9-Jul-13 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | • | | | | 0.072 L | | thyl tert butyl ether (MTE | 160.0 | 9-Jul-13 RIDEM | NS | | NS | | NS | | NS | | 0.041 | J | NS | NS | | NS | | | | | 0.200 L | | , , , | | 18-Oct-13
9-Jan-14 | 0.072
0.072 | U | 0.072
0.072 | U | 0.072
0.072 | U
U | 0.072
0.072 | U | 0.072
0.072 | U
U | 0.072 U
0.072 U | 0.072
0.072 | U | 0.072 U
0.072 U | | | | | 0.072 L
0.072 L | | | | 9-Jan-14
24-Apr-14 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 U | | | | 1-Aug-14 | 0.072 | U | 0.072 | U | 0.072 | U | 0.110 | U | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 12-Sept-14 resample | NS | 0.072 | U | NS | | | | | NS | | | | 22-Oct-14 | 0.110 | U | 0.110 U | 0.110 | U | 0.110 U | | | | | 0.110 U | | | | 20-Jan-15 | 0.072
NS | U | 0.072
NS | U | 0.072 | U | 0.072 | U | 0.072
NS | U | 0.072 U
NS | 0.110 | U | 0.072 U
0.083 U | | | | | 0.110 U | | | | 30-Mar-15 resample
22-Apr-15 | NS
0.072 | U | 0.072 | U | NS
0.072 ^v | U | NS
0.072 | U | NS
0.072 | U | 0.072 U | NS
0.072 | U | 0.083 U | | | | | NS
0.072 U | | | | 21-Jul-15 | 0.180 | - | 0.200 A | U | 0.200 | U | 0.550 | | 0.200 | U | 0.200 U | 0.200 | U | 0.200 U | | | | | 0.200 L | | | | 23-Sept-15 resample | NS | 0.200 | U | NS | | | | | NS | | | | 29-Oct-15 | 0.200 | U | 0.230 | | 0.200 | U | 0.200 | U | 0.200 | U | 0.200 U | 0.760 | | 0.200 U | | | | | 0.200 L | | | | 4-Dec-15 resample
27-Jan-16 | NS
0.072 | U | 0.200
0.072 | U | NS
0.072 | U | NS
0.072 | U | NS
0.072 | U | NS
0.072 U | NS
0.072 | U | NS
0.072 U | | | | | NS
0.072 U | | | | 20-Apr-16 ³ | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 20-Jul-16 | 0.086 | U | 0.11 | U | 0.078 | U | 0.088 | U | 0.086 | U | 0.084 U | 0.095 | U | 0.081 U | • | | | | 0.11 U | | | | 21-Oct-16 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 31-Jan-17 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 17-Apr-17 ⁴ | 0.11 | U | 0.11 U | 0.11 | U | 0.11 U | | | | | 0.11 U | | | | 26-Jul-17
12-Oct-17 | 0.072
0.072 | U
U | 0.072
0.072 | U
U | 0.072
0.072 | U
U | 0.072
0.072 | U | 0.072
0.072 | U
U | 0.072 U
0.072 U | 0.072
0.072 | U | 0.072 U
0.072 U | | | | | 0.072 L
0.072 L | | | | 12-Oct-17
10-Jan-18 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 U | | | | 11-Apr-18 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.36 ^D | | | | 27-Jul-18 | 0.072 | U | 0.072 | U | 0.072 | U | 0.072 | U | 0.11 | U | 0.95 | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 24-Oct-18 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 16-Jan-19 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 12-Apr-19 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 29-Jul-19 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 L | | | | 29-Oct-19 | NS | | 0.072 | U | 0.072 | U | 0.072 | U | 0.072 | U | 0.072 U | 0.072 | U | NS | | | | | 0.072 L | | | | 1-Nov-19 | 0.072 | U | NS
0.07 | | NS | | NS
0.07 | | NS | | NS | NS
0.07 | | 0.072 U | | | | | NS | | | | 21-Jan-20 | 0.07 | U
U | 0.07 | U
U | 0.07
0.072 | U | 0.07
0.072 | U | 0.07 | U
U | 0.07 U
0.072 U | 0.07 | U | 0.07 U
0.072 U | | | | | 0.07 L
0.072 L | | | | 22-Apr-20
23-Jul-20 | 0.072
0.072 | U | 0.072
0.072 | U | 0.072 | U | 0.072 | U | 0.072
0.072 | U | 0.072 U
0.072 U | 0.072
0.072 | U | 0.072 U
0.072 U | | | | | 0.072 U
0.072 U | | | | 29-Oct-20 | 0.072 | U | 0.072 U | 0.072 | U | 0.072 U | | | | | 0.072 U | | | | 1 1-1 | | لنا | | | | $\bot\bot\bot$ | | 1 - | | | | | | | | | | | | Page 31 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | | Cafeteria | Gymnasium | Elevator
Hallway | Room 118 | Room 110 | Media Center
(Rm 145) | Room 152 | Room 149 | Room 234 | Ambient Outdoor
(AOA-1) | |---|---|--|---|---------------------------------------|---|---|--|--|--|---|--|----------|----------|---| | | | Sample Date | | Qual | Qual | Qua | ıl Qua | l Qual | l Qua | l Qual | Qual | Qual |
Qua | l Qual | | Methylene chloride | | | Room | | | · | Hallway 1.740 U 1.700 | Qual 1.740 | 1 Qua 1.740 U 1.700 1.740 | (Rm 145) 1 | | | | (AOA-1) | | | | 20-Jan-15 30-Mar-15 resample 22-Apr-15 21-Jul-15 23-Sept-15 resample 29-Oct-15 4-Dec-15 resample 27-Jan-16 20-Apr-16 3 | 28.000 NS 1.800 4.800 NS 2.100 NS 0.69 0.69 1.2 1.4 0.7 1.0 0.69 0.69 0.69 1.30 1.2 0.69 0.69 1.5 0.69 0.69 4.1 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 | U U U U U U U U U U U U U U U U U U U | 27,000 NS 1,400 1,100 ^ NS 12,000 0,840 0,69 | 2.900 NS 1.100 V 1.600 NS 1.500 NS 0.69 U 0.69 U 0.75 U 1.1 0.69 U 0.69 U 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 | NS 1.500 20.000 NS 1.800 NS 1.800 NS 0.69 0.69 0.69 0.72 0.69 0.69 0.69 0.76 0.90 0.69 0.69 0.69 0.69 0.69 0.69 0.6 | NS 1.200 2.100 NS 1.400 NS 1.400 NS 0.69 0.69 0.83 1.1 0.69 U,L 1 U,0.69 U,0. | NS 1.100 1.500 NS 1.400 NS 1.400 NS 0.69 0.69 0.81 1.2 0.69 0.81 1 0.69 0.69 1 1 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 | NS 1.000 1.700 1.300 23.000 NS U 0.69 | 0.690 1.300 0.890 1.900 NS 1.200 NS 0.69 0.69 0.78 4.6 0.69 0.77 0.69 0.70 1.00 0.9 0.69 0.72 1.3 0.69 U NS 0.69 U NS 0.69 U U U U U U U U U U U U U U U U U U U | | | 1.2 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 | Page 32 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | Sample Date | Kitchen Storage
Room | Qual | Cafeteria Qual | Gymnasium | Qual | Elevator
Hallway Qu | | Room 118 | ual | Room 110 | Media Cent
(Rm 145) | | Room 152 | Room 1 | | Ambient Outdo
(AOA-1) | oor
Qual | |---|---|---|--|--------------------------------------|---|---|---------------------------------|---|-----------------------|---|--------|---|--|----------------------------|---|--------|---------|---|----------------------------| | | | 25-Apr-08
29-May-08
27-Jun-08
31-Jul-08
28-Aug-08
30-Sep-08
27-Oct-08
25-Nov-08 | 2.050
2.050
2.050
2.050
2.050
2.050
2.000
2.000 | U
U
U
U
U
U
U
U | 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 2.000 U 2.000 U 2.000 U 2.000 U | 2.050
2.050
2.050
2.050
2.050
2.000 | U
U
U
U
U
U
U | 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 2.540 U 2.000 U 2.000 U 2.000 U | U
U
U | 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 2.000 U 2.000 U | | 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 2.000 U 2.000 U 2.000 U 2.000 U | 2.050
2.050
2.050
2.050
2.050
2.050
2.000
2.000 | U
U
U
U
U
U | 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 2.000 U 2.000 U 2.000 U 2.000 U | | | 2.050
2.050
2.050
2.050
2.050
2.050
2.000
2.000
2.000 | U
U
U
U
U
U | | | | 18-Dec-08
21-Jan-09
25-Feb-09
26-Mar-09
29-Apr-09
22-Jul-09
9-Oct-09
15-Jan-10 | 2.000
2.000
2.000
2.050
2.050
2.050
2.050 | บ
บ
บ
บ
บ
บ
บ | 2.000 U 2.000 U 2.000 U 2.050 | 2.000
2.000
2.050
2.050
2.050
2.050 | U
U
U
U
U
U
U | 2.000 U 2.000 U NS 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U | U
U
U
U
U | 2.000 U 2.600 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U | | 2.000 U 2.000 U 2.000 U 2.050 | 2.000
2.000
2.000
2.050
2.050
2.050
2.050
2.050 | U
U
U
U
U
U | 2.000 U 2.000 U 2.000 U 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 0.050 U | | | 2.000
2.000
2.000
2.050
2.050
2.050
2.050
2.050 | ט
ט
ט
ט
ט
ט | | | | 21-Apr-10
16-Jul-10
15-Oct-10
30-Nov-10
26-Jan-11
26-Jan-11**
27-Apr-11
26-Jul-11 | 2.050
2.050
2.050
NS
3.490
NS
2.050 | บ
บ
บ
บ | 2.050 U 2.050 U 2.050 U 2.050 U 2.050 U 3.480 U 0.200 U 2.050 U 2.050 U | 2.050
2.050
2.050
3.490
0.200
2.050 | U
U
U
U
U
U
U | 2.050 U 2.050 U 2.050 U 2.050 U NS 3.480 U NS 2.050 U 2.050 U | U
U
U | 2.050 U
2.050 U
NS
3.490 U
NS
2.930 | | 2.050 U 2.050 U 2.050 U 2.050 U NS 59.500 NS 2.050 U 2.050 U 2.050 U | 2.050
2.050
2.050
2.050
3.480
0.200
2.050
2.050 | U
U
U
U
U
U | 2.250
2.050 U
2.050 U
NS
6.760
NS
2.050 U
2.050 U | 3.480 | U 3.490 | 2.050
2.050
2.050
NS
U 3.480
NS
2.050
2.050 | U
U
U
U | | | | 28-Oct-11
23-Jan-12
13-Apr-12
2-Jul-12 resample
20-Jun-12
1-Nov-12
1-Feb-13 | 2.100
0.140
0.120
NS
0.230
0.082
0.093 | บ
บ | 0.490
0.140 U
0.120 U
NS
0.082 U
0.260
0.100 | 0.840
0.210
0.200
NS
0.460
0.180 | | 0.560
0.190
0.120
NS
0.250
0.420
0.082 | U | 0.800
26.000
0.150
NS
0.320
0.500
0.190 | | 0.930
2.900
0.230
NS
0.270
0.650
0.280 | 1.500
0.230
0.120
NS
0.190
0.082
0.082 | U
U | 1.200
270.000
0.140
0.140
0.320
0.220
0.082 U | | | 0.390
0.540
0.160
0.120
0.120
0.170
0.095 | U | | 4-Methyl-2-pentanone | 37.0 | 29-Apr-13
9-Jul-13
18-Oct-13
9-Jan-14
24-Apr-14
1-Aug-14
12-Sept-14 resample
22-Oct-14 | 2.900
0.250
1.800
0.082
0.240
0.082 L
NS
0.120 | U
U | 0.290
0.320
0.220
0.082 U
0.120 U
0.082 U
NS
0.120 U | 0.290
0.300
0.190
0.110
0.300
0.560 L
NS
0.170 | | 0.420
0.320
1.500
0.130
0.130
0.380 L
NS
0.140 | | 0.510
0.350
2.200
0.150
0.082
0.082 U
NS
0.280 | 1 | 0.320
0.400
0.850
0.360
0.140
0.380
NS
1.200 | 0.450
0.270
3.300
0.110
0.120
0.082 L
0.250
0.120 | U | 0.400
0.280
2.400
1.400
0.082 U
0.280
NS
0.250 | | | 0.390
0.220
1.500
0.082
0.082
0.620
NS
0.120 | U
U | | | | 20-Jan-15
30-Mar-15 resample
22-Apr-15
21-Jul-15
23-Sept-15 resample
29-Oct-15
4-Dec-15 resample
27-Jan-16 | 0.500
NS
0.350
0.370
NS
0.200
NS | U | 0.570
NS
0.450
0.100 ^{3.A}
NS
0.310
0.200
0.097 | 0.610
NS
0.710
0.250
NS
0.110 ³
NS | | 0.800
NS
0.260
2.100
NS
0.280
NS | | NS | ı | 0.800
NS
0.260
0.340
NS
2.100
NS
0.8 | 0.550
NS
0.460
2.300
0.200
0.220
NS | U | 0.310
0.440
0.860
78.000
NS
1.400
NS
0.16 | | | 1.700
NS
0.490
0.200
NS
0.200
NS
0.088 | U | | | | 2/-Jan-16 20-Apr-16 20-Jul-16 21-Oct-16 31-Jan-17 17-Apr-17 26-Jul-17 12-Oct-17 | 0.11
0.35
0.16
0.2
0.082
0.12
0.31 | U
U | 0.082 U 0.13 U 0.32 0.082 U 0.15 0.29 0.082 U | 0.082
0.24
0.14
0.082 | U
U
U | 0.17
0.20
0.45
0.095
0.12
0.21
0.082 | | 0.12
0.27
0.58
0.082 | 1 | 0.8
0.19
0.39
0.28
0.14
0.15
0.38 | 0.11
0.082
0.35
0.11
0.082
0.12
0.33
0.18 | U
U | 0.11
3.2
0.99
0.3
0.12 U
0.19
0.082 U | | | 0.11
0.38
1.1
0.1
0.12
0.25 | U | | | | 10-Jan-18
11-Apr-18
27-Jul-18
24-Oct-18
16-Jan-19
12-Apr-19 | 0.082
0.082
0.082
0.082
0.082
0.082 | บ
บ
บ
บ
บ
บ | 0.09
0.08
0.082
U
0.082
U
0.082
U
0.082
U
0.082 | 0.820
0.082
0.082
0.082
0.082
0.140 | U
U
U
U | 0.082
0.082
0.082
0.170
0.08
0.08
0.082
0.082 | U
U
U | 0.082 U
0.082 U
0.12 U
0.082 U
0.082 U
0.082 U | | 0.12
0.08 U
0.12 U
0.082 U
0.082 U
0.082 U
0.082 U | 0.11
0.082
0.082
0.082
0.082
0.082
0.082 | บ
บ
บ
บ | 0.14
0.082 U
0.082 U
0.082 U
0.082 U
0.082 U
0.082 U
0.082 U | | | 0.082
0.41 ^D
0.082
0.082
0.082
0.082
0.082 | U
U
U
U
U | | | | 29-Jul-19
29-Cct-19
1-Nov-19
21-Jan-20
22-Apr-20
23-Jul-20
29-Oct-20 | NS
0.082
0.08
0.082
0.082
0.082 | บ
บ
บ
บ
บ | 0.082 U 0.082 U NS 0.08 U 0.082 U 0.082 U 0.082 U | 0.082
NS
0.08
0.082 | U
U
U
U | 0.08 U
NS
0.08 U
0.08 U
0.08 U
0.08 U | บ
บ
บ
บ | 0.082 U
NS
0.08 U
0.082 U | ת
ת | 0.082 U NS 0.08 U 0.082 U 0.082 U 0.082 U 0.082 U | 0.082
NS
0.08
0.082
0.082
0.082 | U
U
U
U | NS 0.39 0.08 0.082 U 0.082 U 0.082 U U | | | 0.082
NS
0.08
0.130
0.082 | U U | Page 33 of 48 Date Modified: 12/10/2020 | Volatile Organic | CT Draft Proposed Indoor
Residential Target Air |---------------------|---|---------------------------------|-------------------------|------|--------------------|--------|-------------------|--------|----------------------------|--------|----------------------------|--------|--------------------|-----|----------------------------|--------|----------------------------|--------|---------|-------
--------|----------------------------|--------| | Compounds via 10-15 | Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | e | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | | Media Center
(Rm 145) | | Room 152 | | Room 14 | 9 Roo | om 234 | Ambient Outdo
(AOA-1) | or | | | | Sample Date | | Qual | | Qual | | Qual | • | Qual | | Qual | Qua | ıal | | Qual | | Qual | | Qual | Qua | 1 1 | Qual | | | | 8-Feb-08
27-Mar-08 | 0.710
1.200 | | 0.130
0.118 | | 0.090
0.120 | U | 0.090
0.165 | U | 0.090
0.140 | U | 0.090 U
0.175 | J | 0.090
0.114 | U | 0.090
0.139 | U | | | | 0.090
0.085 | U | | | | 25-Apr-08 | 0.856 | | 0.156 | | 0.180 | | 0.184 | | 0.137 | | 0.137 | | 0.158 | | 0.124 | | | | | 0.085 | U | | | | 29-May-08 | 0.550 | | 0.085 | U | 0.130 | | 0.260 | | 0.090 | U | 0.110 | | 0.090 | | 0.090 | U | | | | 0.090 | U | | | | 27-Jun-08
31-Jul-08 | 1.830
1.890 | | 0.085
0.254 | U | 0.112
0.153 | | 0.186
0.266 | | 0.191
0.285 | | 0.085 U
0.288 | J | 0.481
0.109 | | 0.090
0.090 | U | | | | 0.085
0.085 | U | | | | 28-Aug-08 | 0.654 | | 0.368 | | 0.262 | | 0.392 | | 0.203 | | 0.165 | | 0.169 | | 0.140 | | | | | 0.108 | | | | | 30-Sep-08 | 2.100 | U | 2.100 U | | 2.100 | U | 2.100 | U | | | | 2.100 | U | | | | 27-Oct-08
25-Nov-08 | 2.100
2.100 | U | 2.100
2.100 | U | 2.100
2.100 | U
U | 2.100
2.100 | U
U | 2.100
2.100 | U
U | 2.100 U
2.100 U | | 2.100
2.100 | U
U | 2.100
2.100 | U
U | | | | 2.100
2.100 | U
U | | | | 18-Dec-08 | 2.100 | U | 2.100 U | | 2.100 | U | 2.100 | U | | | | 2.100 | U | | | | 21-Jan-09 | 2.100 | U | 2.100 U | | 2.100 | U | 2.100 | U | | | | 2.100 | U | | | | 25-Feb-09
26-Mar-09 | 2.100
0.814 | U | 2.100
0.113 | U | 2.100
0.110 | U | NS
0.110 | | 2.100
0.125 | U | 2.100 U
0.111 | J | 2.100
0.128 | U | 2.100
0.138 | U | | | | 2.100
0.122 | U | | | | 29-Apr-09 | 0.515 | | 0.085 | U | 0.136 | U | 0.085 | U | 0.136 | | 0.085 U | J | 0.085 | U | 0.085 | U | | | | 0.085 | U | | | | 22-Jul-09 | 1.280 | | 0.085 | U | 0.153 | | 0.085 | U | 0.285 | | 0.272 | | 0.213 | | 0.217 | | | | | 0.187 | | | | | 9-Oct-09
15-Jan-10 | 0.838
1.100 | | 0.153
0.221 | | 0.149
0.085 | U | 0.174
0.089 | | 0.566
0.196 | | 0.179
0.098 | | 0.140
0.085 | U | 0.149
0.085 | U | | | | 0.140
0.085 | U | | | | 21-Apr-10 | 0.281 | | 0.204 | | 0.289 | | 0.187 | | 0.328 | | 0.174 | | 0.145 | | 0.140 | | | | | 0.085 | U | | | | 16-Jul-10 | 0.702 | | 0.085 | U | 0.085 | U | 0.085 | U | 0.779 | | 0.085 U | | 0.085 | U | 0.085 | U | | | | 0.085 | U | | | | 15-Oct-10
30-Nov-10 | 0.549
NS | | 0.085
0.149 | U | 0.085
0.119 | U | 0.085
NS | U | 0.098
NS | | 0.805 U
NS | J | 0.085
0.085 | U | 0.085
NS | U | | | | 0.085
NS | U | | | | 26-Jan-11 | 0.327 | | 0.149 | | 0.174 | | 0.217 | | 0.182 | | 0.202 | | 0.145 | U | 0.182 | | 0.174 | 0.14 | 15 U | 0.188 | | | | | 26-Jan-11** | NS | | 0.510 | | 0.370 | | NS | | NS | | NS | | 0.370 | | NS | | | | | NS | | | | | 27-Apr-11 | 0.166 | | 0.166 | | 0.170 | | 0.192 | | 0.277 | | 0.085 U | J | 0.145 | | 0.085 | U | | | | 0.085 | U | | | | 26-Jul-11
28-Oct-11 | 0.677
0.300 | | 2.460
0.130 | U | 0.132
0.130 | U | 11.700
0.130 | U | 0.315
0.330 | | 1.320
0.130 U | ī | 0.200
0.130 | U | 0.085
0.130 | U
U | | | | 0.085
0.085 | U
U | | | | 23-Jan-12 | 0.820 | | 0.250 | | 0.410 | | 0.480 | | 0.270 | | 0.510 | | 0.150 | | 0.150 | U | | | | 0.150 | U | | | | 13-Apr-12 | 0.560 | | 0.140 | | 0.130 | U | 0.130 | U | 0.550 | | 0.280 | | 0.130 | U | 0.130 | U | | | | 0.170 | U | | | | 2-Jul-12 resample
20-Jun-12 | NS
0.720 | | NS
0.300 | | NS
0.240 | | NS
1.200 | | NS
0.430 | | NS
0.150 | | NS
0.085 | U | 0.130
0.200 | U | | | | 0.130
0.200 | U | | | | 1-Nov-12 | 0.720 | | 0.300 | | 0.240 | U | 0.130 | | 0.450 | | 0.160 | | 0.180 | U | 0.200 | | | | | 0.200 | U | | | | 1-Feb-13 | 0.870 | | 0.085 | U | 0.085 | U | 0.085 | U | 0.095 | | 0.085 U | J | 0.085 | U | 0.085 | U | | | | 0.085 | U | | | | 29-Apr-13 | 1.600 | | 0.230 | | 0.230 | | 0.200 | | 0.740 | | 0.150 | | 0.520 | | 0.210 | | | | | 0.085 | U | | | | 9-Jul-13
9-Jul-13 RIDEM | 0.410
NS | | 0.120
NS | | 0.085
NS | U | 0.140
NS | | 0.410
0.420 | | 0.085 U
NS | J | 0.110
NS | | 0.085
NS | U | | | | 0.085
0.039 | U | | Styrene | 52.0 | 18-Oct-13 | 0.200 | | 0.085 | U | 0.085 | U | 0.130 | | 0.270 | | 0.110 | | 0.340 | | 0.290 | | | | | 0.130 | | | | | 9-Jan-14 | 0.260 | | 0.260 | | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 U | | 0.120 | | 0.085 | U | | | | 0.085 | U | | | | 24-Apr-14
1-Aug-14 | 1.100
0.880 | | 0.085
0.260 | U | 0.085
0.260 | U | 0.085
0.210 | U | 0.085
0.560 | U | 0.085 U
0.350 | J | 0.160
0.680 | | 4.500
0.430 | | | | | 0.085
0.085 | U
U | | | | 12-Sept-14 resample | NS | | 0.200
NS | | 0.200
NS | | 0.210
NS | | 0.500
NS | | NS | | 0.130 | | 0.430
NS | | | | | NS | | | | | 22-Oct-14 | 0.130 | U | 0.130 U | J | 0.130 | U | 0.130 | U | | | | 0.130 | U | | | | 20-Jan-15 | 0.120
NS | | 0.085
NS | U | 0.085
NS | U | 0.085
NS | U | 0.085
NS | U | 0.085 U
NS | J | 0.130
NS | U | 0.230
0.098 | U | | | | 0.130
NS | U | | | | 30-Mar-15 resample
22-Apr-15 | 0.670 | | 0.220 | | 0.085 | U | 0.120 | | 0.190 | | 0.085 U | J | 0.200 | | 0.360 | U | | | | 0.085 | U | | | | 21-Jul-15 | 0.300 | | 0.200 ^A | U | 0.200 | U | 0.380 | | 0.150 J | U | 0.380 | | 0.270 | | 0.200 | U | | | | 0.200 | U | | | | 23-Sept-15 resample | NS
0.200 | ** | NS
0.530 | | NS
0.200 | | NS
0.200 | U | NS
0.200 | ** | NS
0.200 | | 0.200 | U | NS
0.200 | * * | | | | NS
0.200 | ** | | | | 29-Oct-15
4-Dec-15 resample | 0.200
NS | U | 0.530
0.200 | U | 0.200
NS | U | 0.200
NS | 0 | 0.200
NS | U | 0.200 U
NS | , | 0.350
NS | U | 0.200
NS | U | | | | 0.300
NS | U | | | | 27-Jan-16 | 0.085 | U | 0.085 U | J | 0.12 | | 0.085 | U | | | | 0.085 | U | | | | 20-Apr-16 3 | 0.15 | | 0.085 | U | 0.085 | U | 0.12 | | 0.085 | U | 0.085 U | J | 0.085 | U | 0.085 | U | | | | 0.085 | U | | | | 20-Jul-16
21-Oct-16 | 0.36
0.89 | | 0.25
0.15 | | 0.16
0.085 | U | 0.22
0.24 | | 0.58
0.14 | | 0.43
0.11 | | 0.40
0.09 | | 0.37
0.18 | | | | | 0.2
0.37 | | | | | 31-Jan-17 | 0.25 | | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 U | J | 0.085 | U | 0.085 | U | | | | 0.085 | U | | | | 17-Apr-17 ⁴ | 0.2 | | 0.13 | U | 0.13 | U | 0.13 | U | 0.13 | U | 0.13 U | J | 0.13 | U | 0.13 | U | | | | 0.13 | U | | | | 26-Jul-17 | 0.19 | | 0.085 | U | 0.085 | U | 0.085 | U | 0.13 | | 0.11 | | 0.11 | | 0.16 | | | | | 0.085 | U | | | | 12-Oct-17
10-Jan-18 | 0.1
0.21 | | 0.085
0.09 | U
U | 0.085
0.09 | U | 0.085 | U
U | 0.1
0.09 | U | 0.085 U
0.09 U | | 0.085 | U | 0.13
0.09 | U | | | | 0.085
0.085 | U
U | | | | 10-Jan-18
11-Apr-18 | 1.3 ¹ | | 0.09 ¹ | U | 0.09 ¹ | U | 0.09
0.085 ^I | U | 0.09
0.085 ¹ | U | 0.09 U | | 0.09
0.085 ¹ | U | 0.09
0.085 ^I | J | | | | 0.085
0.43 ^D | U | | | | 27-Jul-18 | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 | U | 0.13 | U | 0.13 U | | 0.085 | U | 0.085 | U | | | | 0.085 | U | | | | 24-Oct-18 | 0.370 | | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 | U | 0.26 | 1 | 0.085 | U | 0.085 | U | | | | 0.085 | U | | | | 16-Jan-19 | 0.25 ^W | | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 | . | 0.085 | U | 0.085 | U | | | | 0.085 | U | | | | 12-Apr-19 | 0.77 | | 0.085 | U | 0.085 | U
U | 0.100 | 11 | 0.085 | U | 0.085 U
0.085 U | | 0.085 | U | 0.085 | U
U | | | | 0.085 | U
U | | | | 29-Jul-19
29-Oct-19 | 0.34
NS | | 0.085
0.085 | U | 0.085
0.085 | U | 0.085
0.085 | U
U | 0.1
0.085 | U | 0.085 U | | 0.150
0.085 | U | 0.085
NS | U | | | | 0.085
0.085 | U | | | | 1-Nov-19 | 0.6 | | NS | | NS | | NS | | NS | Ŭ | NS C | | NS | - | 0.085 | U | | | | NS | | | | | 21-Jan-20 | 0.21 | | 0.09 | U | 0.09 | U | 0.09 | U | 0.09 | U | 0.09 U | J | 0.09 | U | 0.09 | U | | | | 0.09 | U | | | | 22-Apr-20 | 0.11 | | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 U | | 0.085 | U | 0.085 | U | | | | 0.085 | U | | | | 23-Jul-20
29-Oct-20 | 0.71
0.36 | | 0.085
0.085 | U | 0.085
0.099 | U | 0.085
0.089 | U | 0.099
0.12 | | 0.085 U
0.085 U | | 0.190
0.085 | U | 0.100
0.130 | | | | | 0.085
0.130 | U
U | | | | 27-OCI-20 | 0.30 | | 0.083 | U | 0.033 | | 0.089 | | 0.12 | | U.003 U | , l | 0.063 | U | 0.130 | | | | | 0.130 | U | Page 34 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storag
Room | ge | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | Room 1 | 49 | Room 234 | Ambient Outdo
(AOA-1) | oor | |---|---|--------------------------|---------------------------|------|---------------------------|--------|-------------------|--------|---------------------|--------|-------------|--------|-------------------------------|---------------------------|------|---------------------|--------|------|----------|--------------------------|--------| | | | Sample Date | | Qual | | Qual | | Qual | | Qual | Q | Qual | Qual | | Qual | Qua | | Qual | Qu | al | Qual | | | | 8-Feb-08 | 0.140 | U | 0.140 | U | 0.140 | U | 0.140 | U | | U | 0.140 U | 0.140 | U | 0.140 U | | | | 0.140 | U | | | | 27-Mar-08 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 25-Apr-08
29-May-08
 0.137
0.140 | U | 0.137
0.140 | U | 0.137
0.140 | U
U | 0.137
0.140 | U
U | | U
U | 0.137 U
0.140 U | 0.137
0.140 | U | 0.137 U
0.140 U | | | | 0.137
0.140 | U
U | | | | 27-Jun-08 | 0.140 | U | 0.140 | U | 0.140 | U | 0.137 | U | | U | 0.140 U | 0.179 | 0 | 0.140 U | | | | 0.140 | U | | | | 31-Jul-08 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 28-Aug-08 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 30-Sep-08 | 0.140 | U | 0.140 | U | 0.140 | U | 0.137 | U | 0.140 | U | 0.140 U | 0.140 | U | 0.137 U | | | | 0.140 | U | | | | 27-Oct-08 | 0.140 | U | 0.140 | U | 0.140 | U | 0.140 | U | | U | 0.140 U | 0.140 | U | 0.140 U | | | | 0.140 | U | | | | 25-Nov-08 | 0.140 | U | 0.140 | U | 0.140 | U | 0.140 | U | | U | 0.140 U | 0.140 | U | 0.140 U | | | | 0.140 | U | | | | 18-Dec-08 | 0.140 | U | 0.140 | U | 0.140 | U | 0.140 | U | | U
U | 0.140 U | 0.140 | U | 0.140 U | | | | 0.140 | U
U | | | | 21-Jan-09
25-Feb-09 | 0.140
0.140 | U | 0.140
0.140 | U | 5.000
0.320 | | 0.140
NS | U | | U | 0.140 U
0.140 U | 0.140
0.140 | U | 0.140 U
0.140 U | | | | 0.140
0.140 | U | | | | 26-Mar-09 | 0.140 | U | 0.140 | U | 0.137 | U | 0.137 | U | | U | 0.140 U | 0.140 | U | 0.140 U | | | | 0.137 | U | | | | 29-Apr-09 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 22-Jul-09 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 9-Oct-09 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 15-Jan-10 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 21-Apr-10 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 16-Jul-10 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | ***** | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 15-Oct-10 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 30-Nov-10
26-Jan-11 | NS
0.234 | U | 0.137
0.233 | U | 0.137
0.234 | U
U | NS
0.234 | U | NS
0.234 | U | NS
0.233 U | 0.137
0.233 | U | NS
0.234 U | 0.233 | 11 | 0.234 U | NS
0.233 | U | | | | 26-Jan-11
26-Jan-11** | 0.234
NS | 0 | 0.233 | U | 0.234 | U | 0.234
NS | 0 | 0.234
NS | U | 0.233
NS | 0.233 | 0 | 0.234 U | 0.233 | U | 0.234 | 0.233
NS | 0 | | | | 27-Apr-11 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 26-Jul-11 | 0.137 | U | 0.137 | U | 0.137 | U | 0.137 | U | | U | 0.137 U | 0.137 | U | 0.137 U | | | | 0.137 | U | | | | 28-Oct-11 | 0.370 | U | 0.370 U | 0.370 | U | 0.370 U | | | | 0.250 | U | | | | 23-Jan-12 | 0.440 | U | 0.440 | U | 0.440 | U | 0.440 | U | | U | 0.440 U | 0.440 | U | 0.440 U | | | | 0.440 | U | | | | 13-Apr-12 | 0.370 | U | 0.370 | U | 0.370 | U | 0.370 | U | | U | 0.370 U | 0.370 | U | 0.370 U | | | | 0.500 | U | | | | 2-Jul-12 resample | NS | NS | | 0.370 U | | | | 0.370 | U | | | | 20-Jun-12 | 0.250 | U | 0.250 | U
U | 0.250 | U | 0.250 | U | | U
U | 0.250 U
0.250 U | 0.250 | U | 0.250 U
0.250 U | | | | 0.250 | U
U | | | | 1-Nov-12
1-Feb-13 | 0.250
0.250 | U | 0.250
0.250 | U | 0.250
0.250 | U
U | 0.250
0.250 | U
U | | U | 0.250 U
0.250 U | 0.250
0.250 | U | 0.250 U
0.250 U | | | | 0.250
0.250 | U | | 1,1,1,2-Tetrachloroethane | 0.082/0.14 | 29-Apr-13 | 0.250 | U | 0.250 | U | 0.250 | U | 0.250 | U | | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.025 | U | | , | | 9-Jul-13 | 0.250 | U | 0.250 | U | 0.250 | U | 0.250 | U | | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 18-Oct-13 | 0.250 | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 9-Jan-14 | 0.250 | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 24-Apr-14 | 0.250 | U | 0.250 | U | 0.250 | U | 0.250 | U | | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 1-Aug-14 | 0.250 | U | 0.250 | U | 0.250 | U | 0.370 | U | | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 12-Sept-14 resample | NS
0.270 | U | NS
0.270 | U | NS
0.370 | | NS
0.370 | ** | NS
0.270 | | NS
0.370 U | 0.250 | U | NS
0.270 | | | | NS
0.370 | ** | | | | 22-Oct-14
20-Jan-15 | 0.370
0.250 | II. | 0.370
0.250 | U | 0.370
0.250 | U
U | 0.370
0.250 | U
U | | U | 0.370 U
0.250 U | 0.370
0.370 | U | 0.370 U
0.250 U | | | | 0.370
0.370 | U
U | | | | 30-Mar-15 resample | NS | | 0.230
NS | 0 | NS | | NS | | NS | | NS C | NS | | 0.290 U | | | | NS | | | | | 22-Apr-15 | 0.250 | U | 0.250 A | U | 0.250 | U | 0.250 | U | | U | 0.250 U | 0.250 | U | 0.250 U | | | | 0.250 | U | | | | 27-Jan-16 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 20-Apr-16 3 | 0.25 | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 20-Jul-16 | 0.30 | U | 0.39 | U | 0.27 | U | 0.31 | U | | U | 0.29 U | 0.33 | U | 0.28 U | | | | 0.37 | U | | | | 21-Oct-16 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 31-Jan-17 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 17-Apr-17 ⁴ | 0.37 | U | 0.37 | U | 0.37 | U | 0.37 | U | | U | 0.37 U | 0.37 | U | 0.37 U | | | | 0.37 | U | | | | 26-Jul-17 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 12-Oct-17 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 10-Jan-18 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25
1.2 ^D | U
U | | | | 11-Apr-18
27-Jul-18 | 0.25 | U | 0.25
0.25 | U | 0.25
0.25 | U
U | 0.25 | U
U | | U
U | 0.25 U
0.37 U | 0.25 | U | 0.25 U
0.25 U | | | | 0.25 | U | | | | 27-Jul-18
24-Oct-18 | 0.25
0.25 | U | 0.25 | U | 0.25 | U | 0.25
0.25 | U | | U | 0.37 U
0.25 U | 0.25
0.25 | U | 0.25 U | | | | 0.25 | U | | | | 24-Oct-18
16-Jan-19 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 16-Jan-19
12-Apr-19 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 12-Apr-19
29-Jul-19 | 0.25
0.25 ^L | II. | 0.25
0.25 ^L | U | 0.25 ^L | U | 0.25 ^L | U | | U | 0.25 U
0.25 ^L U | 0.25
0.25 ^L | U | 0.25 U | | | | 0.25 ^L | U | | | | 29-Jul-19
29-Oct-19 | NS | | 0.25 ^L | U | 0.25 ^L | U | 0.25 ^L | U | | U | 0.25 ^L U | 0.25 ^L | U | NS | | | | 0.25 ^L | U | | | | 29-Oct-19
1-Nov-19 | 0.25 ^L | U | NS | U | NS | U . | NS | | NS | | NS | NS | 0 | 0.25 ^L U | | | | NS | | | | | 21-Jan-20 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 22-Apr-20 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 23-Jul-20 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | 29-Oct-20 | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | | U | 0.25 U | 0.25 | U | 0.25 U | | | | 0.25 | U | | | | · | | | | | | | | 1 | | | | | | _ | 1 | | | | | Page 35 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storag
Room | | Cafeteria | Gymnasium | Elevator
Hallway | Room 118 | Room 110 | Media Center
(Rm 145) | Room 152 | Room 149 | | m 234 | Ambient Outdoor
(AOA-I) | |---|---|-------------------------------------|------------------------|-----------|------------------------------------|--------------------|-----------------------------------|--------------------|--------------------|---|-----------------------------------|----------|---------|-------|----------------------------| | | | Sample Date
8-Feb-08 | 0.140 | Qual
U | 0.140 U | | 0.140 U | 0.140 U | | Qual Qual U 0.140 U | 0.140 U | | Qual | Qual | 0.140 U | | | | 27-Mar-08 | 0.137 | U | 0.140 U | | 0.140 U | 0.140 U | | U 0.137 U | | | | | 0.140 U | | | | 25-Apr-08 | 0.137 | U | 0.137 U | | 0.137 U | 0.137 U | | U 0.137 U | 0.137 U | | | | 0.137 U | | | | 29-May-08 | 0.140 | U | 0.140 U | 0.140 U | 0.140 U | 0.140 U | | U 0.140 U | 0.140 U | | | | 0.140 U | | | | 27-Jun-08 | 0.140 | U | 0.140 U | | 0.137 U | 0.140 U | | U 0.992 | 0.140 U | | | | 0.140 U | | | | 31-Jul-08 | 0.137 | U | 0.137 U | 1 11 | 0.137 U | 0.137 U | | U 0.137 U 0.137 U | 0.137 U
0.137 U | | | | 0.137 U
0.137 U | | | | 28-Aug-08
30-Sep-08 | 0.137
0.140 | U | 0.137 U
0.140 U | | 0.137 U
0.140 U | 0.137 U
0.140 U | | U 0.137 U 0.140 U | 0.137 U
0.140 U | | | | 0.137 U
0.140 U | | | | 27-Oct-08 | 0.140 | U | 0.140 U | | 0.140 U | 0.140 U | | U 0.140 U | ***** | | | | 0.140 U | | | | 25-Nov-08 | 0.140 | U | 0.140 U | 0.140 U | 0.140 U | 0.140 U | J 0.140 | U 0.140 U | 0.140 U | | | | 0.140 U | | | | 18-Dec-08 | 0.140 | U | 0.140 U | | 0.140 U | 0.140 U | | U 0.140 U | 0.140 U | | | | 0.140 U | | | | 21-Jan-09 | 0.140 | U | 0.140 U | | 0.140 U | 0.140 U | | U 0.140 U | ***** | | | | 0.140 U | | | | 25-Feb-09
26-Mar-09 | 0.140
0.137 | U | 0.140 U
0.137 U | | NS
0.137 U | 0.140 U
0.137 U | | U 0.140 U 0.137 U | 0.140 U
0.137 U | | | | 0.140 U
0.137 U | | | | 29-Apr-09 | 0.137 | U |
0.137 U | | 0.137 U | 0.137 U | | U 0.137 U | | | | | 0.137 U | | | | 22-Jul-09 | 0.137 | U | 0.137 U | | 0.137 U | 0.137 U | | U 0.137 U | | | | | 0.137 U | | | | 9-Oct-09 | 0.137 | U | 0.137 U | | 0.137 U | | | U 0.137 U | 0.137 U | | | | 0.137 U | | | | 15-Jan-10 | 0.137 | U | 0.137 U | 1 11 | 0.137 U | | | U 0.137 U | ***** | | | | 0.137 U | | | | 21-Apr-10 | 0.137 | U | 0.137 U | | 0.137 U | 0.137 U | | U 0.137 U 0.137 U | | | | | 0.137 U
0.137 U | | | | 16-Jul-10
15-Oct-10 | 0.137
0.137 | U | 0.137 U
0.137 U | | 0.137 U
0.137 U | 0.137 U | | U 0.137 U 0.137 U | 0.137 U
0.137 U | | | | 0.137 U
0.137 U | | | | 30-Nov-10 | NS | | 0.137 U | | NS | NS | NS | 0.137 U | | | | | NS | | | | 26-Jan-11 | 0.234 | U | 0.233 U | 0.234 U | 0.234 U | 0.234 U | J 0.233 | U 0.233 U | 0.234 U | 0.233 | U 0.234 | 4 U | 0.233 U | | | | 26-Jan-11** | NS | | 0.340 U | | NS | NS | NS | 0.340 U | | | | | NS | | | | 27-Apr-11 | 0.137 | U | 0.137 U | | 0.137 U | | | U 0.137 U | | | | | 0.137 U | | | | 26-Jul-11
28-Oct-11 | 0.137
0.100 | U | 0.137 U
0.100 U | 1 11 | 0.137 U
0.100 U | 0.137
0.100 | | U 0.137 U 0.100 U | 0.137 U
0.100 U | | | | 0.137 U
0.069 U | | | | 23-Jan-12 | 0.240 | U | 0.240 U | | 0.240 U | | | U 0.240 U | ***** | | | | 0.240 U | | | | 13-Apr-12 | 0.100 | U | 0.100 U | | 0.100 U | 0.100 U | | U 0.100 U | | | | | 0.140 U | | | | 2-Jul-12 resample | NS | | NS | NS | NS | NS | NS | NS | 0.100 U | | | | 0.100 U | | | | 20-Jun-12 | 0.140 | U | 0.140 U | | 0.140 U | 0.140 U | | U 0.140 U | 0.140 U | | | | 0.140 U | | | | 1-Nov-12 | 0.069
0.069 | U | 0.069 U
0.069 U | | 0.069 U
0.069 U | 0.069 U | | U 0.069 U
U 0.069 U | 0.069 U
0.069 U | | | | 0.069 U
0.069 U | | | | 1-Feb-13
29-Apr-13 | 0.069 | U | 0.069 U | | 0.069 U
0.069 U | 0.069 U | | U 0.069 U | 0.069 U | | | | 0.069 U | | | | 9-Jul-13 | 0.140 | U | 0.140 U | | 0.140 U | 0.140 U | | U 0.140 U | | | | | 0.140 U | | 1,1,2,2-Tetrachloroethane | 0.011/0.14 | 9-Jul-13 RIDEM | NS | | NS | NS | NS | 0.093 U | | NS | NS | | | | 0.093 U | | 1,1,2,2-1 cu acmoroculano | 0.011/0.14 | 18-Oct-13 | 0.140 | U | 0.140 U | | 0.140 U | 0.140 U | | U 0.140 U | 0.140 U | | | | 0.140 U | | | | 9-Jan-14 | 0.140 | U | 0.140 U
0.069 ^{L,V} U | | 0.140 U
0.069 ^{L,V} U | | | U 0.140 U 0.069 ^{L,V} U | 0.140 U
0.069 ^{L,V} U | | | | 0.140 U | | | | 24-Apr-14
1-Aug-14 | 0.069
0.140 | U | 0.069 ^{L, v} U
0.140 U | | 0.069 ^{L,V} U
0.210 U | 0.069 U
0.140 U | | U 0.069 ^{L,V} U 0.140 U | _ | | | | 0.069 U
0.140 U | | | | 12-Sept-14 resample | NS | | 0.140 U | NS | 0.210
NS | 0.140
NS | NS | 0.069 U | 0.140 O | | | | 0.140 C | | | | 22-Oct-14 | 0.100 | U | 0.100 U | | 0.100 U | | | U 0.100 U | | | | | 0.100 U | | | | 20-Jan-15 | 0.069 | U | 0.069 U | 0.069 U | 0.069 U | 0.069 U | J 0.069 | U 0.100 U | 0.069 U | | | | 0.100 U | | | | 30-Mar-15 resample | NS | | NS | NS | NS | NS | NS | NS | 0.079 U | | | | NS | | | | 22-Apr-15
21-Jul-15 | 0.069
0.300 | U | 0.069 U
0.300 A U | 0.069 U
0.300 U | 0.069 U
0.400 U | 0.069 U
0.400 U | U 0.069
U 0.400 | U 0.069 U
U 0.400 U | 0.069 U
0.300 U | | | | 0.069 U
0.400 U | | | | 23-Sept-15 resample | NS | | NS | NS | NS C | NS | NS | 0.400 U | | | | | NS | | | | 29-Oct-15 | 0.400 | U | 0.400 U | | 0.400 U | | J 0.400 | U 0.300 U | | | | | 0.400 U | | | | 4-Dec-15 resample | NS | | 0.300 U | | NS | NS | NS | NS U | | | | | NS | | | | 27-Jan-16 | 0.069 | U | 0.069 U | | 0.069 U | | J 0.069 | U 0.069 U | | | | | 0.069 U | | | | 20-Apr-16 ³
20-Jul-16 | 0.069
0.082 | U | 0.069 U
0.11 U | | 0.096
0.084 U | 0.069 U
0.082 U | | U 0.069 U 0.091 U | | | | | 0.069 U
0.10 U | | | | 21-Oct-16 | 0.069 | U | 0.069 U | | 0.069 U | | | U 0.069 U | | | | | 0.069 U | | | | 31-Jan-17 | 0.069 | U | 0.069 U | | 0.069 U | | | U 0.069 U | 1 1 1 1 | | | | 0.069 U | | | | 17-Apr-17 ⁴ | 0.10 | U | 0.10 U | | 0.10 U | | | U 0.10 U | | | | | 0.1 U | | | | 26-Jul-17 | 0.069 | U | 0.069 U | 0.069 U | 0.069 U | 0.069 | 0.069 | U 0.069 U | 0.069 U | | | | 0.069 U | | | | 12-Oct-17 | 0.069 | U | 0.069 U | | 0.069 U | | | U 0.069 U | | | | | 0.069 U | | | | 10-Jan-18 | 0.069 | U | 0.069 U | | 0.069 U | | | U 0.069 U | 1 1 1 1 | | | | 0.069 U | | | | 11-Apr-18 | 0.069 | U | 0.069 U | | 0.069 U | | | U 0.069 U | 1 1 1 1 | | | | 0.69 ^D U | | | | 27-Jul-18 | 0.069 | U | 0.069 U | | 0.069 U | | | U 0.069 U | 1 1 1 1 | | | | 0.069 U | | | | 24-Oct-18 | 0.069 | U | 0.069 U | | 0.069 U
0.069 U | | | U 0.069 U | | | | | 0.069 U | | | | 16-Jan-19
12-Apr-19 | 0.069
0.069 | U | 0.069 U
0.069 U | | 0.069 U
0.069 U | 0.07 t | | U 0.069 U U 0.069 U | | | | | 0.069 U
0.069 U | | | | 12-Apr-19
29-Jul-19 | 0.069 | U | 0.069 U | | 0.069 U | 0.07 | | U 0.069 U | 1 1 1 1 | | | | 0.069 U | | | | 29-Oct-19 | NS | | 0.069 U | | 0.069 U | | J 0.07 | U 0.069 U | 1 1 1 1 | | | | 0.069 U | | | | 1-Nov-19 | 0.069 | U | NS | NS O | NS | NS NS | NS NS | NS | 0.069 U | | | | NS | | | | 21-Jan-20 | 0.07 | U | 0.07 U | | 0.07 U | | U 0.07 | U 0.07 U | | | | | 0.07 U | | | | 22-Apr-20 | 0.069 | U | 0.069 U | 0.069 U | 0.069 U | 0.07 t | J 0.07 | U 0.069 U | 0.069 U | | | | 0.069 U | | | | 23-Jul-20 | 0.069 | U | 0.069 U | | 0.069 U | 0.07 t | | U 0.069 U | | | | | 0.069 U | | | | 29-Oct-20 | 0.069 | U | 0.069 U | 0.069 U | 0.069 U | 0.07 U | J 0.07 | U 0.069 U | 0.069 U | | | | 0.069 U | Page 36 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | e | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | | Media Center
(Rm 145) | | Room 152 | | Room 14 | 9 | Room 234 | Ambient Out
(AOA-1 | | |---|---|--|---|------|--|---------------------------------------|---|------|----------------------|---------------------------------------
--|---------------------------------------|--|---------------------------------------|--------------------------|--------|----------------------|---------------------------------------|---------|------|----------|-----------------------|---| | | | Sample Date | | Qual | Juieterid | Qual | -James dill | Qual | | Qual | | Qual | | Qual | | ual | | Qual | | Qual | | ual | _ | | Tetrachloroethene* | | 8-Feb-08 27-Mar-08 ² 25-Apr-08 29-May-08 27-Jun-08 31-Jul-08 38-Sep-08 27-Oct-08 25-Nov-08 18-Dec-08 21-Jan-09 25-Feb-09 26-Mar-09 29-Apr-09 22-Jul-09 9-Oct-09 15-Jan-10 21-Apr-10 16-Jul-10 15-Oct-10 30-Nov-10 26-Jan-11 26-Jan-11** 27-Apr-11 26-Jul-12 23-Jul-12 13-Apr-12 2-Jul-12 resample 20-Jun-13 9-Jul-13 9-Jul-13 9-Jul-13 9-Jul-13 1-Aug-14 1-Aug-14 1-Aug-14 1-Aug-14 1-Aug-14 12-Sept-14 resample 22-Apr-15 30-Mar-15 resample 22-Apr-15 1-Jul-15 23-Sept-15 resample 22-Apr-15 21-Jul-17 12-Oct-16 31-Jan-17 17-Apr-17 12-Oct-16 31-Jan-17 17-Apr-17 12-Oct-18 11-Apr-18 27-Jul-18 24-Oct-18 16-Jan-19 12-Apr-19 29-Jul-19 29-Jul-19 29-Oct-19 1-Nov-19 21-Jan-20 | Kitchen Storage Room 0.140 12,500 0.180 0.140 0.249 1.030 0.321 3.400 4.200 3.400 3.400 3.400 1.530 0.136 0.291 2.250 0.359 0.637 0.318 0.136 NS 0.636 NS 0.142 0.529 0.100 0.240 0.150 NS 0.390 0.360 0.130 0.610 0.270 NS 0.140 0.140 0.068 0.590 NS 0.140 0.140 0.068 0.590 NS 0.420 0.068 0.221 0.17 0.23 NS 0.16 0.14 | | Cafeteria 0.140 6.680 0.254 0.140 0.449 1.000 0.367 3.400 4.200 3.400 3.400 3.400 1.210 0.136 0.190 1.550 0.346 0.752 0.420 0.136 0.461 0.484 0.580 0.176 0.563 0.140 0.240 0.110 NS 0.800 0.460 0.095 0.560 0.240 NS 0.140 0.190 0.068 0.510 NS 0.360 0.160 NS 0.790 0.410 NS 0.360 0.160 NS 0.790 0.410 NS 0.240 0.110 NS 0.360 0.160 NS 0.790 0.410 NS 0.360 0.160 NS 0.790 0.410 NS 0.240 0.110 NS 0.360 0.160 NS 0.790 0.410 NS 0.360 0.160 NS 0.790 0.410 NS 0.250 0.410 NS 0.260 0.210 NS 0.177 0.068 0.511 0.89 0.111 0.17 0.17 0.068 0.59 0.14 | ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט | O.140 13.300 0.179 0.140 0.397 0.887 0.283 3.400 4.200 3.400 3.400 3.400 3.400 1.170 0.697 0.224 1.580 0.339 0.440 0.420 0.136 0.291 0.370 0.490 0.176 0.522 0.100 0.240 0.120 NS 0.310 0.400 0.73 0.560 0.230 NS 0.150 0.140 0.068 0.240 NS 0.150 0.150 NS 0.160 0.068 0.2700 NS 0.160 0.068 0.074 0.3 0.068 0.074 0.3 0.068 0.074 0.3 0.068 0.19 0.18 0.068 0.074 0.3 0.068 0.19 0.18 0.068 0.074 0.3 0.068 0.19 0.18 0.068 0.19 0.18 0.068 0.19 0.110 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.114 0.16 0.22 0.14 0.14 0.16 0.22 0.14 0.14 0.16 0.22 0.14 0.14 0.16 0.22 0.14 0.14 0.16 0.22 0.14 0.14 0.16 0.22 0.14 0.14 0.16 0.22 0.14 0.14 0.16 0.22 0.14 0.14 0.16 0.22 0.14 0.14 0.16 0.22 0.14 0.14 0.16 0.22 0.14 0.14 0.16 | Qual | Color | U U U U U U U U U U U U U U U U U U U | Room 118 0.140 26,000 0.231 0.140 0.424 0.795 0.274 3.400 4.200 3.400 3.400 3.400 1.080 0.136 0.196 1.380 0.312 0.508 0.501 0.136 NS 0.440 NS 0.176 0.549 0.100 0.320 0.150 NS 0.390 0.470 0.090 0.880 0.250 0.279 0.180 0.190 0.140 3.800 NS 0.190 0.140 3.800 NS 0.190 0.140 0.380 0.390 0.17 0.180 0.095 0.084 0.081 1.4 0.068 0.17 0.188 0.095 0.084 0.081 1.4 0.068 0.17 0.188 0.068 0.17 0.188 0.068 0.17 0.188 0.068 0.17 0.188 0.068 0.17 0.188 0.068 0.17 0.188 0.068 0.17 0.188 0.068 0.17 0.188 0.068 0.17 0.188 0.068 0.17 0.188 0.068 0.17 0.188 0.068 0.17 0.181 0.068 0.17 0.181 0.068 0.17 0.181 0.068 0.17 0.181 0.068 0.17 0.181 0.068 0.17 0.181 0.068 0.17 0.181 0.068 0.17 0.181 0.068 0.17 0.181 0.068 0.17 0.181 0.068 0.17 0.181 0.266 0.20 0.141 0.266 0.22 0.166 0.14 | U U U U U U U U U U U U U U U U U U U | 0.140 7.730 0.276 0.140 7.730 0.276 0.140 0.243 0.872 0.434 3.400 4.200 3.400 3.400 3.400 3.400 3.400 3.400 1.320 0.136 0.196 1.700 3.460 0.447 0.230 0.136 NS 0.725 NS 0.136 0.325 0.110 0.510 0.160 NS 0.400 0.770 0.210 0.046 0.320 NS 0.210 0.190 0.068 0.360 NS 0.190 0.290 NS 0.190 0.290 NS 0.190 0.290 NS 0.190 0.290 0.390 NS 0.190 0.290 0.390 NS 0.190 0.290 0.46 0.12 0.19 0.18 0.068 0.23 0.16 0.2 0.068 0.23 0.16 0.22 0.23 0.17 0.14 0.22 0.28 NS | U U U U U U U U U U U U U U U U U U U | (Rm 145) Q | | Room 152 | U U U U U U U U U U U U U U U U U U U | 0.472 | Qual | 0.428 | (AOA-1 | | | | | 22-Apr-20
23-Jul-20
29-Oct-20 | 0.14
0.16
0.44 | U | 0.14
0.15
0.33 | U | 0.14
0.14
0.3 | U | 0.14
0.14
0.34 | U | 0.14
0.14
0.29 | U
U
U | 0.14
0.16
0.32 | U | | U
U | 0.14
0.14
0.39 | U
U | | | | 0.14
0.14
1.7 | U | Page 37 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | Sample Date | Kitchen Storage
Room | Cafeteria
Qual | Qual | Gymnasium | Qual | Elevator
Hallway | Qual | Room 118 | Qual | Room 110 | Media Center
(Rm 145) | Qual | Room 152 | Room 1 | 49 Ro | oom 234
Qual | Ambient Outdoor
(AOA-1) | |---|---|---|---|---|------------------|---|------------------|---|-------------|---|------------------|---|---|------------------|--|--------|-------|-----------------|---| | | | 29-May-08
27-Jun-08
31-Jul-08
28-Aug-08
30-Sep-08
27-Oct-08
25-Nov-08
18-Dec-08
21-Jan-09
25-Feb-09
26-Mar-09
29-Apr-09
22-Jul-09
9-Oct-09
15-Jan-10 | 0.930 3.870 2.760 5.230 1.900 6.700 5.500 1.900 1.900 1.900 6.110 0.779 1.550 4.740 1.920 | U 1.900 1.800 0.595 1.010 3.690 1.580 | U
U
U
U | 1.630 3.200 2.690 7.800 2.500 3.500 1.900 1.900 1.900 3.990 0.079 2.540 4.190 1.520 | U
U
U
U | 1.330 3.850 1.990 7.530 1.900 6.100 2.000 1.900 1.900 NS 3.540 0.704 1.130 3.900 1.690 | U
U
U | 0.870 4.110 2.720 5.920 5.000 2.300 1.900 1.900 1.900 3.900 1.050 3.150 4.500 1.690 | บ
บ
บ
บ | 1.060 3.840 2.200 5.640 1.900 U 5.500 1.900 U 1.900 U 1.900 U 4.730 0.595 3.410 4.170 1.540 | 1.020
4.520
1.680
5.680
1.900
3.800
1.900
1.900
1.900
5.870
0.614
3.880
4.220 | U
U
U
U | 0.670 3.020 1.440 5.240 2.300 6.600 1.900 U 1.900 U 1.900 U 1.900 U 6.080 0.610 7.670 4.090 1.630 | | | | 0.320 2.410 1.850 6.050 1.900 8.400 1.900 U 1.900 U 1.900 U 1.900 U 1.900 U 1.900 U 4.900 U 4.900 U 5.310 0.953 6.850 4.580 2.860 | | | | 21-Apr-10
16-Jul-10
15-Oct-10
30-Nov-10
26-Jan-11
26-Jan-11**
27-Apr-11
26-Jul-11
28-Oct-11
23-Jan-12
13-Apr-12
2-Jul-12 resample
20-Jun-12
1-Nov-12 | 4.770 2.070 7.230 NS 5.860 NS 0.764 2.040 6.700 3.200 1.800 NS 2.200 4.300 | 8.610 1.210 0.618 1.280 5.970 7.700 0.855 3.920 2.800 2.500 1.500 NS 2.500 2.500 0.460 | | 5.220 1.180 0.565 1.200 5.640 8.400 1.070 1.590 2.900 0.130 1.300 NS 1.800 1.800 | | 7.430 1.360 0.715 NS 6.490 NS 1.070 1.210 1.800 2.700 1.400 NS 2.300 3.000 | | 4.490
2.250
0.501
NS
5.840
NS
1.030
1.620
2.500
2.800
1.400
NS
2.300
2.400 | | 4.140 1.570 0.358 NS 6.050 NS 0.840 1.060 3.600 3.000 1.500 NS 2.000 4.000 | 4.030
3.760
0.565
0.825
5.830
8.300
0.783
1.400
5.200
2.700
1.400
NS
2.200
4.600 | | 3.900 1.330 0.312 NS 7.230 NS 0.625 0.934 3.100 3.000 1.200 0.550 2.400 3.500 | 5.650 | 4.0 | 000 | 0.414
0.787
0.625
NS
7.210
NS
0.648
0.652
1.400
3.600
0.320
0.550
2.600
0.750 | | Toluene | 210.0 |
1-Feb-13
29-Apr-13
9-Jul-13
18-Oct-13
9-Jan-14
24-Apr-14
1-Aug-14
12-Sept-14 resample
22-Oct-14
20-Jan-15
30-Mar-15 resample
22-Apr-15
21-Jul-15
23-Sept-15 resample | 0.810 3.900 2.300 0.970 12.000 0.770 2.000 NS 1.000 0.890 NS 4.500 6.100 NS | 0.460 3.100 2.100 0.510 15.000 0.340 1.600 NS 0.820 0.880 NS 4.100 2.400 A | | 0.430 3.100 1.900 0.470 0.840 0.360 2.800 NS 0.650 0.780 NS 4.300 2.700 NS | | 0.520 3.100 2.300 0.800 0.990 0.330 4.400 NS 0.420 1.100 NS 3.900 2.200 NS | | 0.650 2.700 2.300 1.200 0.830 0.280 9.900 NS 1.400 0.890 NS 5.200 2.500 NS | | 0.780 2.200 2.200 0.670 0.870 0.320 4.200 NS 0.800 1.100 NS 3.100 2.700 NS | 0.950
5.000
2.500
2.300
1.200
0.590
4.600/5.300
0.930
0.620
3.500
NS
4.300
2.400
1.100 | | 0.510
2.600
2.200
1.200
1.100
0.770
3.500
NS
0.710
0.970
0.840
4.400
2.200
NS | | | | 0.460
0.690
2.500
0.660
0.810
0.280
0.650
NS
1.200
1.500
NS
1.400
1.600
NS | | | | 29-Oct-15 4-Dec-15 resample 27-Jan-16 20-Apr-16 decorated 20-Jul-16 21-Oct-16 31-Jan-17 17-Apr-17 decorated 12-Oct-17 10-Jan-18 11-Apr-18 27-Jul-18 | 0.470
NS
1.3
0.63
0.97
2.7
1.3
0.98
2
0.49
1.50
1.70 | 11.000
0.540
0.65
0.26
0.76
3.5
0.82
0.71
1.7
0.45
2.10
1.40 | | 0.760 NS 0.7 0.2 0.35 0.94 0.83 0.3 1.7 0.79 1.90 1.20 0.71 | | 0.590
NS
0.66
0.27
0.95
3.8
0.9
0.36
1.7
0.45
2.0
1.3
1.1 | | 0.420
NS
0.83
0.44
1.8
1.8
0.92
0.79
1.9
0.69
1.0 | | 0.670
NS
0.92
0.27
1.4
2.0
0.97
0.58
1.8
0.76
1.10
1.40 | 3.400
NS
1.1
0.24
1.5
0.92
0.86
0.59
1.9
0.51
2.40
1.00 | U | 0.620
NS
1.2
0.25
1.1
2.1
0.88
1
1.9
0.58
1.50
1.40
0.99 | | | | 0.220 ³ NS 0.8 0.21 0.57 16 1.1 1.2 0.6 0.31 0.42 0.78 ^D 0.69 | | | | 24-Oct-18
16-Jan-19
12-Apr-19
29-Jul-19
29-Oct-19
1-Nov-19
21-Jan-20
22-Apr-20
23-Jul-20
29-Oct-20 | 1.2
1.8
1.4
0.82
0.88
NS
1.1
1.3
0.18
0.89 | 0.76
1.2
0.48
0.43
0.72
NS
0.91
0.14
0.65 | | 0.76
1.1
0.45
0.4
0.64
NS
0.95
0.15 | | 1.1
1.6
1.2
0.57
0.48
0.78
NS
0.95
0.19
0.64
1.7 | | 1
1.2
0.5
0.5
0.8
NS
0.97
0.1
0.9
2.3 | | 1.7
1.5
1.3
0.54
0.61
0.8
NS
1.00
0.16
0.63
2.7 | 0.6
1.3
0.51
0.75
1
NS
0.96
0.21
0.96
2.5 | | 0.49
0.89
0.63
0.39
NS
1.2
0.67
0.18
0.75 | | | | 0.56
0.66
0.59
0.38
0.72
NS
0.73
0.13
0.52
2.5 | Page 38 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | Sample Date | Kitchen Storage
Room | Qual | Cafeteria | Ougl | Gymnasium | Ougl | Elevator
Hallway | Qual | Room 118 | Ougl | Room 110 | Media Center
(Rm 145) | Qual | Room 152 | Room | 149
Qual | Room 23 | 34 | Ambient Outdoor
(AOA-1) | |---|---|-------------------------------------|-------------------------|--------|--------------------|------------------|--------------------|-----------|---------------------|------|--------------------|------------------|----------------------|--------------------------|------------------|----------------------|-------|-------------|---------|------|----------------------------| | | | Sample Date
8-Feb-08 | 0.110 | U | 0.110 | Qual
U | 0.110 | Qual
U | 0.110 | Quai | 0.110 | Qual
U | 0.110 U | 0.110 | Qual
U | 0.110 U | | Quar | | Qual | 0.110 U | | | | 27-Mar-08 | 0.110 | U | 0.109 | U | 0.109 | U | 0.110 | U | 0.110 | U | 0.110 U | 0.110 | U | 0.110 U | | | | | 0.110 U | | | | 25-Apr-08 | 0.109 | U | 0.109 U | 0.109 | U | 0.109 U | | | | | 0.109 U | | | | 29-May-08 | 0.110 | U | 0.110 U | 0.110 | U | 0.110 U | | | | | 0.110 U | | | | 27-Jun-08 | 0.110 | U | 0.110 | U | 0.110 | U | 0.110 | U | 0.109 | U | 0.109 U | 0.110 | U | 0.110 U | | | | | 0.109 U | | | | 31-Jul-08
28-Aug-08 | 0.109
0.109 | U
U | 0.109
0.109 | U
U | 0.109
0.109 | U
U | 0.109
0.109 | U | 0.109
0.109 | U
U | 0.109 U
0.109 U | 0.109
0.109 | U | 0.109 U
0.109 U | | | | | 0.109 U
0.109 U | | | | 30-Sep-08 | 2.700 | U | 2.700 U | 2.700 | U | 2.700 U | | | | | 2.700 L | | | | 27-Oct-08 | 3.400 | U | 3.400 | U | 3.400 | U | 3.140 | U | 3.400 | U | 3.400 U | 3.400 | U | 3.400 U | | | | | 3.400 U | | | | 25-Nov-08 | 2.700 | U | 2.700 U | 2.700 | U | 2.700 U | | | | | 2.700 U | | | | 18-Dec-08 | 2.700 | U | 2.700 U | 2.700 | U | 2.700 U | | | | | 2.700 U | | | | 21-Jan-09
25-Feb-09 | 2.700
2.700 | U | 2.700
2.700 | U
U | 2.700
2.700 | U | 2.700
NS | U | 2.700
2.700 | U
U | 2.700 U
2.700 U | 2.700
2.700 | U
U | 2.700 U
2.700 U | | | | | 2.700 U
2.700 U | | | | 26-Mar-09 | 0.109 | U | 0.109 U | 1.090 | | 0.109 U | | | | | 0.109 U | | | | 29-Apr-09 | 0.120 | | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 | U | 0.153 | 0.229 | | 0.174 | | | | | 0.272 | | | | 22-Jul-09 | 0.109 | U | 0.109 U | 0.109 | U | 0.109 U | | | | | 0.109 U | | | | 9-Oct-09 | 0.109 | U | 0.109 | U
U | 0.109 | U | 0.109 | U | 0.109 | U
U | 0.109 U
0.109 U | 0.109 | U
U | 0.109 U
0.109 U | | | | | 0.109 U
0.109 U | | | | 15-Jan-10
21-Apr-10 | 0.109
0.109 | U | 0.109 U
0.109 U | 0.109
0.109 | U | 0.109 U
0.109 U | | | | | 0.109 U
0.109 U | | | | 16-Jul-10 | 0.109 | U | 0.109 U | 0.109 | U | 0.109 U | | | | | 0.109 U | | | | 15-Oct-10 | 0.109 | U | 0.109 | U | 1.090 | U | 0.109 | U | 0.109 | U | 0.109 U | 0.109 | U | 0.109 U | | | | | 0.109 U | | | | 30-Nov-10 | NS | | 0.109 | U | 0.109 | U | NS | | NS | | NS | 0.109 | U | NS | | | | | NS | | | | 26-Jan-11
26-Jan-11** | 0.186
NS | U | 0.185
0.270 | U
U | 0.186
0.270 | U
U | 0.186
NS | U | 0.180
NS | U | 0.185 U
NS | 0.185
0.270 | U | 0.186 U
NS | 0.185 | U | 0.186 | U | 0.185 U
NS | | | | 27-Apr-11 | 0.109 | U | 0.109 U | 0.109 | U | 0.109 U | | | | | 0.109 U | | | | 26-Jul-11 | 0.109 | U | 0.109 U | 0.109 | U | 0.109 U | | | | | 0.109 U | | | | 28-Oct-11 | 0.082 | U | 0.082 U | 0.082 | U | 0.082 U | | | | | 0.055 U | | | | 23-Jan-12 | 0.190 | U | 0.190 U | 0.190 | U | 0.190 U | | | | | 0.190 U | | | | 13-Apr-12 | 0.082 | U | 0.082 U | 0.082 | U | 0.082 U
0.082 U | | | | | 0.110 U | | | | 2-Jul-12 resample
20-Jun-12 | NS
0.110 | U | NS
0.110 U | NS
0.110 | U | 0.082 U
0.110 U | | | | | 0.082 U
0.110 U | | | | 1-Nov-12 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 1-Feb-13 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 29-Apr-13 | 0.110 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 9-Jul-13 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | 1,1,1-Trichloroethane* | 500.0 | 9-Jul-13 RIDEM
18-Oct-13 | NS
0.110 | U | NS
0.110 | U | NS
0.110 | U | NS
0.110 | U | 0.041
0.110 | J
U | NS
0.110 U | NS
0.110 | U | NS
0.110 U | | | | | 0.034 J
0.110 U | | | | 9-Jan-14 | 0.110 | U | 0.110 U | 0.110 | U | 0.110 U | | | | | 0.110 U | | | | 24-Apr-14 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 1-Aug-14 | 0.110 | U | 0.110 | U | 0.110 | U | 0.160 | U | 0.110 | U | 0.110 U | 0.110 | U | 0.110 U | | | | | 0.110 U | | | | 12-Sept-14 resample | NS | | NS | | NS | | NS | l | NS | | NS | 0.055 | U | NS | | | | | NS | | | | 22-Oct-14
20-Jan-15 | 0.082
0.055 | U | 0.082 U
0.055 U | 0.082
0.082 | U
U | 0.082 U
0.270 | | | | | 0.082 U
0.082 U | | | | 30-Mar-15 resample | 0.033
NS | | 0.033
NS | U | 0.033
NS | | NS | 0 | 0.033
NS | 0 | 0.033
NS | 0.082
NS | 0 | 0.270
0.063 U | | | | | NS NS | | | | 22-Apr-15 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 21-Jul-15 | 0.300 | U | 0.300 ^A | U | 0.300 | U | 0.300 | U | 0.300 | U | 0.300 U | 0.300 | U | 0.300 U | | | | | 0.300 U | | | | 23-Sept-15 resample | NS
0.200 | | NS | ** | NS | | NS | | NS | | NS | 0.300 | U | NS | | | | | NS | | | | 29-Oct-15
4-Dec-15 resample | 0.300
NS | U | 0.300
0.300 | U | 0.300
NS | U | 0.300
NS | U | 0.300
NS | U | 0.300 U
NS | 0.300
NS | U
U | 0.300 U
NS | | | | | 0.300 U
NS | | | | 27-Jan-16 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 20-Apr-16 ³ | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 20-Jul-16 | 0.065 | U | 0.085 | U | 0.059 | U | 0.067 | U | 0.065 | U | 0.064 U | 0.072 | U | 0.061 U | | | | | 0.081 U | | | | 21-Oct-16 | 0.055 | U | 0.055 | ,, | 0.083 | | 0.055 | U | 0.059 | ** | 0.057 | 0.055 | U | 0.055 U | | | | | 0.087 | | | | 31-Jan-17
17-Apr-17 ⁴ | 0.055
0.082 | U
U | 0.055
0.082 | U
U | 0.055
0.082 | U | 0.055
0.082 | U | 0.055
0.082 | U
U | 0.055 U
0.082 U | 0.055
0.082 | U
U | 0.055 U
0.082 U | | | | | 0.055 U
0.082 U | | | | 26-Jul-17 | 0.055 | U | 0.082 | U | 0.082 | U | 0.082 | U | 0.055 | U | 0.082 U | 0.055 | U | 0.082 U | | | | | 0.082 C | | | | 12-Oct-17 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 10-Jan-18 | 0.055 ^L | U | 0.055 ^L U | 0.055 ^L | U | 0.055 ^L U | | | | | 0.055 ^L | | | | 11-Apr-18 | 0.055 | U | 0.110 U | 0.055 | U | 0.055 U | | | | | 0.55 ^D U | | | | 27-Jul-18 | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.082 | U | 0.082 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 24-Oct-18 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 16-Jan-19 | 0.055
 U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 12-Apr-19 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 29-Jul-19 | 0.070
NS | | 0.063
0.055 | U | 0.055 | U
U | 0.055
0.055 | U | 0.057
0.055 | U | 0.055 U
0.055 U | 0.068
0.055 | U | 0.072
NS | | | | | 0.074
0.055 | | | | 29-Oct-19
1-Nov-19 | 0.055 | U | 0.055
NS | U | 0.055
NS | | 0.055
NS | 0 | 0.055
NS | U | 0.055 U | 0.055
NS | U | 0.055 U | | | | | 0.055 C | | | | 21-Jan-20 | 0.06 | U | 0.06 U | 0.06 | U | 0.06 U | | | | | 0.06 U | | | | 22-Apr-20 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 23-Jul-20 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | | | | 29-Oct-20 | 0.055 | U | 0.055 U | 0.055 | U | 0.055 U | | | | | 0.055 U | Page 39 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storag
Room | e . | Cafeteria | Gymnasii | ım | Elevator
Hallway | | Room 118 | | Room 110 | | Media Center
(Rm 145) | | Room 152 | | Room 1 | 149 | Room 2 | | Ambient Outdoor
(AOA-1) | |---|---|-------------------------------------|------------------------|--------|-----------------------------|--------------------|--------|---------------------|--------|----------------|--------|----------------|--------|--------------------------|---|----------------|------|--------|------|--------|------|----------------------------| | | | Sample Date | | Qual | Q | ual | Qual | | Qual | | Qual | | Qual | Qual | | | Qual | | Qual | | Qual | Qı | | | | 8-Feb-08 | 0.110 | U | | 0.110 | U | 0.110 | U | 0.110 | U | 0.110 | U | 0.110 U | 1 | 0.110 | U | | | | | 0.110 U | | | | 27-Mar-08 | 0.109 | U | | U 0.109
U 0.109 | U | 0.109 | U | 0.109 | U | 0.109 | U
U | 0.112 U
0.109 U | | 0.109 | U | | | | | 0.109 U
0.109 U | | | | 25-Apr-08
29-May-08 | 0.109
0.110 | U | | U 0.109
U 0.110 | U | 0.109
0.110 | U | 0.109
0.110 | U | 0.109
0.110 | U | 0.109 U
0.110 U | | 0.109
0.110 | U | | | | | 0.109 U
0.110 U | | | | 27-Jun-08 | 0.110 | U | | 0.110 | U | 0.110 | U | 0.110 | U | 0.110 | U | 0.302 | | 0.110 | U | | | | | 0.110 U | | | | 31-Jul-08 | 0.109 | U | 0.109 | | U | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 U | | 0.109 | U | | | | | 0.109 U | | | | 28-Aug-08 | 0.109 | U | 0.109 | J 0.109 | U | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 U | | 0.109 | U | | | | | 0.109 U | | | | 30-Sep-08 | 0.110 | U | 0.110 | J 0.300 | | 0.110 | U | 0.110 | U | 0.110 | U | 0.110 U | | 0.110 | U | | | | | 0.110 U | | | | 27-Oct-08 | 0.110 | U | | 0.110 | U | 0.110 | U | 0.110 | U | 0.110 | U | 0.110 U | | 0.110 | U | | | | | 0.110 U | | | | 25-Nov-08 | 0.110 | U | | J 0.110 | U | 0.110 | U | 0.110 | U | 0.110 | U | 0.110 U | | 0.110 | U | | | | | 0.110 U | | | | 18-Dec-08
21-Jan-09 | 0.110
0.110 | U
U | 0.110
0.110 | U 0.110
U 0.110 | U
U | 0.110
0.110 | U | 0.110
0.110 | U
U | 0.110
0.110 | U
U | 0.110 U
0.110 U | | 0.110
0.110 | U | | | | | 0.110 U
0.110 U | | | | 25-Feb-09 | 0.110 | U | | U 0.110 | U | NS | U | 0.110 | U | 0.110 | U | 0.110 U | | 0.110 | U | | | | | 0.110 U | | | | 26-Mar-09 | 0.109 | U | | J 0.109 | U | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 U | | 0.109 | U | | | | | 0.109 U | | | | 29-Apr-09 | 0.109 | U | | U 0.109 | U | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 U | | 0.109 | U | | | | | 0.109 U | | | | 22-Jul-09 | 0.109 | U | 0.109 | J 0.109 | U | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 U | | 0.109 | U | | | | | 0.109 U | | | | 9-Oct-09 | 0.109 | U | | J 0.109 | U | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 U | | 0.109 | U | | | | | 0.109 U | | | | 15-Jan-10 | 0.109 | U | | J 0.109 | U | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 U | | 0.109 | U | | | | | 0.109 U | | | | 21-Apr-10 | 0.109 | U | | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 U | | 0.109 | U | | | | | 0.109 U | | | | 16-Jul-10
15-Oct-10 | 0.109
0.109 | U | 0.109
1.090 | U 0.109
U 0.109 | U | 0.109
0.109 | U | 0.109
0.109 | U
U | 0.109
0.109 | U
U | 0.109 U
0.109 U | | 0.109
0.109 | U | | | | | 0.109 U
0.109 U | | | | 30-Nov-10 | 0.109
NS | | ** * | J 0.109
J 0.109 | U | 0.109
NS | J | 0.109
NS | | 0.109
NS | | 0.109 U | | 0.109
NS | | | | | | 0.109
NS | | | | 26-Jan-11 | 0.186 | U | | U 0.186 | U | 0.186 | U | 0.186 | U | 0.185 | U | 0.185 U | | 0.186 | U | 0.185 | U | 0.186 | U | 0.185 U | | | | 26-Jan-11** | NS | | 0.270 | J 0.270 | U | NS | | NS | | NS | | 0.270 U | | NS | | | | | | NS | | | | 27-Apr-11 | 0.109 | U | 0.109 | J 0.109 | U | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 U | | 0.109 | U | | | | | 0.109 U | | | | 26-Jul-11 | 0.109 | U | 0.109 | | U | 0.109 | U | 0.109 | U | 0.109 | U | 0.109 U | | 0.109 | U | | | | | 0.109 U | | | | 28-Oct-11 | 0.082 | U | | J 0.082 | U | 0.082 | U | 0.082 | U | 0.082 | U | 0.082 U | | 0.082 | U | | | | | 0.055 U | | | | 23-Jan-12 | 0.190 | U | | U 0.190
U 0.082 | U | 0.190 | U
U | 0.190 | U
U | 0.190 | U
U | 0.190 U
0.082 U | | 0.190
0.082 | U | | | | | 0.190 U
0.110 U | | | | 13-Apr-12
2-Jul-12 resample | 0.082
NS | U | 0.082
NS | U 0.082
NS | 0 | 0.082
NS | U | 0.082
NS | U | 0.082
NS | U | 0.082 U
NS | | 0.082 | U | | | | | 0.110 U
0.082 U | | | | 20-Jun-12 | 0.110 | U | | J 0.110 | U | 0.110 | U | 0.110 | U | 0.110 | U | 0.110 U | | 0.110 | U | | | | | 0.110 U | | | | 1-Nov-12 | 0.055 | U | | J 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 1-Feb-13 | 0.055 | U | 0.055 | U 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 29-Apr-13 | 0.055 | U | 0.055 | J 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | 1.10 77:11 | | 9-Jul-13 | 0.055 | U | | J 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | 1,1,2-Trichloroethane | 2.2 | 18-Oct-13 | 0.110 | U | 0.110 | | U | 0.110 | U | 0.110 | U | 0.110 | U | 0.110 U
0.110 U | | 0.110 | U | | | | | 0.110 U | | | | 9-Jan-14
24-Apr-14 | 0.110
0.055 | U | | U 0.110
U 0.055 | U | 0.110
0.055 | U | 0.110
0.055 | U
U | 0.110
0.055 | U
U | 0.110 U
0.055 U | | 0.110
0.055 | U | | | | | 0.110 U
0.055 U | | | | 1-Aug-14 | 0.110 | U | | J 0.110 | U | 0.160 | U | 0.110 | U | 0.110 | U | 0.110 U | | 0.110 | U | | | | | 0.110 U | | | | 12-Sept-14 resample | NS | | NS | NS | _ | NS | - | NS | _ | NS | _ | 0.055 U | | NS | _ | | | | | NS | | | | 22-Oct-14 | 0.082 | U | 0.082 | J 0.082 | U | 0.082 | U | 0.082 | U | 0.082 | U | 0.082 U | | 0.082 | U | | | | | 0.082 U | | | | 20-Jan-15 | 0.055 | U | 0.055 | J 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.082 U | | 0.055 | U | | | | | 0.082 U | | | | 30-Mar-15 resample | NS | | NS | NS | | 0.063 | U | | | | | NS | | | | 22-Apr-15 | 0.055 | U | 0.055
0.300 ^A | | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U
0.300 U | | | | 21-Jul-15
23-Sept-15 resample | 0.300
NS | U | NS | U 0.300
NS | U | 0.300
NS | U | 0.300
NS | U | 0.300
NS | U | 0.300 U
0.300 U | | 0.300
NS | U | | | | | 0.300 U
NS | | | | 29-Oct-15 | 0.300 | U | | J 0.300 | U | 0.300 | U | 0.300 | U | 0.300 | U | 0.300 U | | 0.300 | U | | | | | 0.300 U | | | | 4-Dec-15 resample | NS | | | J NS | | NS | | NS | | NS | | NS U | | NS | | | | | | NS | | | | 27-Jan-16 | 0.055 | U | | U 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | 1 | 0.055 | U | | | | | 0.055 U | | | | 20-Apr-16 ³ | 0.055 | U | | J 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 20-Jul-16 | 0.065 | U | | J 0.059 | U | 0.067 | U | 0.065 | U | 0.064 | U | 0.072 U | | 0.061 | U | | | | | 0.081 U | | | | 21-Oct-16 | 0.055 | U | | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 31-Jan-17
17-Apr-17 ⁴ | 0.055
0.082 | U | | U 0.055
U 0.082 | U | 0.055 | U
U | 0.055 | U
U | 0.055 | U
U | 0.055 U
0.082 U | | 0.055
0.082 | U | | | | | 0.055 U
0.082 U | | | | 26-Jul-17 | 0.082 | U | | U 0.082
U 0.055 | U | 0.082
0.055 | U | 0.082
0.055 | U | 0.082
0.055 | U | 0.082 U
0.055 U | | 0.082 | U | | | | | 0.082 U | | | | 12-Oct-17 | 0.055 | U | | J 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 12-Oct-17
10-Jan-18 | 0.055 | U | | U 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 11-Apr-18 | 0.055 | U | | U 0.055 | U | 0.055 | U | 0.055 | U | 0.110 | U | 0.055 U | | 0.055 | U | | | | | 0.55 ^D U | | | | 27-Jul-18 | 0.055 | U | | U 0.055 | U | 0.055 | U | 0.082 | U | 0.082 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 24-Oct-18 | 0.055 | U | | U 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 16-Jan-19 | 0.055 | U | | J 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 12-Apr-19 | 0.055 | U | | U 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 29-Jul-19 | 0.055 | U | | U 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 29-Oct-19 | NS | | 0.055 | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | NS | | | | | | 0.055 U | | | | 1-Nov-19 | 0.055 | U | NS | NS | | 0.055 | U | | | | | NS | | | | 21-Jan-20 | 0.06 | U | 0.06 | J 0.06 | U | 0.06 | U | 0.06 | U | 0.06 | U | 0.06 U | | 0.06 | U | | | | | 0.06 U | | | | 22-Apr-20 | 0.055 | U | | 0.055 | U | 0.055 | U | 0.055 | U |
0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 23-Jul-20 | 0.055 | U | | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | | | | 29-Oct-20 | 0.055 | U | 0.055 | U 0.055 | U | 0.055 | U | 0.055 | U | 0.055 | U | 0.055 U | | 0.055 | U | | | | | 0.055 U | Page 40 of 48 Date Modified: 12/10/2020 | Volatile Organic | CT Draft Proposed Indoor
Residential Target Air |---------------------|---|---------------------------------|-------------------------|------|----------------|------|----------------|--------|---------------------|--------|--------------------------|--------|--------------------|--------------------------|------|--------------------|-------|-------|----------|----------------------------|--------| | Compounds via TO-15 | Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | e | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | r | Room 152 | Pag | m 149 | Room 234 | Ambient Outdo
(AOA-1) | oor | | | | Sample Date | Room | Qual | | Qual | Gymnasium | Qual | • | Qual | | Qual | Qual | | Qual | Qı | | Qua | | | Qual | | | | 8-Feb-08 | 0.110 | | 0.120 | | 0.110 | U | 0.107 | U | 0.110 | U | 0.110 U | 0.350 | | 0.110 U | J | | | 0.110 | U | | | | 27-Mar-08
25-Apr-08 | 0.239
0.107 | U | 0.233
0.164 | | 0.218
0.147 | | 0.226
0.272 | | 0.325
0.151 | | 0.308
0.152 | 0.217
0.158 | | 0.170
0.229 | | | | 0.107
0.107 | U | | | | 29-May-08 | 0.110 | U | 0.110 | U | 0.110 | U | 0.107 | U | 0.110 | U | 0.110 U | 0.110 | | 0.110 U | J | | | 0.110 | U | | | | 27-Jun-08 | 0.110 | U | 0.110 | U | 0.110 | U | 0.107 | | 0.110 | U | 0.107 U | 0.143 | | 0.195 | | | | 0.107 | U | | | | 31-Jul-08
28-Aug-08 | 0.113
0.193 | | 0.107
0.116 | U | 0.107
0.107 | U
U | 0.107
0.107 | U
U | 0.107
0.146 | U | 0.107 U
0.134 | 0.107
0.110 | U | 0.107 U | | | | 0.107
0.838 | U | | | | 30-Sep-08 | 0.800 | U | 0.800 U | 0.800 | U | 0.800 | | | | 0.800 | U | | | | 27-Oct-08 | 0.800 | U | 0.800 U | 0.800 | U | 0.800 | | | | 0.800 | U | | | | 25-Nov-08 | 0.540 | U | 0.540 U | 0.540 | U | 0.540 U | | | | 0.540 | U
U | | | | 18-Dec-08
21-Jan-09 | 0.540
0.540 | U | 0.540
0.540 | U | 0.540
0.540 | U
U | 0.540
0.540 | U
U | 0.540
0.540 | U
U | 0.540 U
0.540 U | 0.540
0.540 | U | 0.540 U
0.540 U | | | | 0.540
0.540 | U | | | | 25-Feb-09 | 0.110 | U | 0.110 | U | 0.110 | U | NS | | 0.110 | U | 0.110 U | 0.110 | U | 0.110 U | | | | 0.130 | | | | | 26-Mar-09 | 4.000 | | 0.326 | | 1.510 | | 0.438 | | 0.639 | | 1.180 | 1.610 | | 0.450 | | | | 6.870 | | | | | 29-Apr-09
22-Jul-09 | 0.107
0.177 | U | 0.107
0.107 | U | 1.340
0.188 | | 0.107
0.123 | U | 0.107
0.193 | U | 0.107 U
0.709 | 0.107
0.140 | U | 0.107
0.177 | J | | | 0.107
0.209 | U | | | | 9-Oct-09 | 0.231 | | 0.215 | | 0.182 | | 0.123 | | 0.242 | | 0.156 | 0.156 | | 0.156 | | | | 0.107 | U | | | | 15-Jan-10 | 0.107 | | 0.107 | | 0.113 | | 0.107 | U | 0.107 | U | 0.107 U | 0.107 | U | 0.107 U | J | | | 0.107 | U | | | | 21-Apr-10 | 0.247 | | 0.580 | | 0.279 | | 0.505 | | 0.376 | | 0.360 | 0.419 | | 0.456 | | | | 0.107 | U | | | | 16-Jul-10
15-Oct-10 | 0.107
0.107 | U | 0.107
0.107 | U | 0.107
0.107 | U
U | 0.220
0.107 | U | 0.107
0.107 | U | 0.107 U
0.107 U | 0.107
0.107 | U | 0.107 U | | | | 0.107
0.107 | U
U | | | | 30-Nov-10 | NS | | 0.107 | U | 0.107 | U | NS | | NS | | NS | 0.109 | U | NS | | | | NS | | | | | 26-Jan-11 | 0.568 | | 0.502 | | 0.531 | | 0.604 | | 0.504 | | 0.584 | 0.429 | | 0.550 | 0.484 | ļ | 0.467 | 0.767 | | | | | 26-Jan-11** | NS
0.107 | 11 | 0.570 | U | 0.600 | U | NS | U | NS
0.107 | U | NS
0.107 U | 0.600
0.107 | U | NS
0.107 U | , | | | NS
0.107 | U | | | | 27-Apr-11
26-Jul-11 | 0.107 | U | 0.107
0.107 | U | 0.107
0.118 | U | 0.107
0.107 | U | 0.107 | U | 0.107 U | 0.107 | U | 0.107 U | | | | 0.107 | U | | | | 28-Oct-11 | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | | | | 0.054 | U | | | | 23-Jan-12 | 0.190 | U | 0.190 | U | 0.190 | U | 0.290 | | 0.190 | U | 0.190 U | 0.190 | U | 0.190 U | | | | 0.190 | U | | | | 13-Apr-12
2-Jul-12 resample | 0.081
NS | U | 0.081
NS | U | 0.081
NS | U | 0.081
NS | U | 0.090
NS | | 0.081
NS | 0.081
NS | U | 0.081 U | | | | 0.110
0.081 | U | | | | 20-Jun-12 | 0.110 | U | 0.110 | U | 0.110 | U | 0.110 | U | 0.120 | | 0.110 | 0.110 | U | 0.110 U | | | | 0.110 | U | | | | 1-Nov-12 | 0.054 | U | 0.054 | U | 0.067 | | 0.054 | U | 0.054 | U | 0.054 U | 0.054 | U | 0.054 U | J | | | 0.054 | U | | | | 1-Feb-13 | 0.054 | U | 0.054 U | 0.054 | U | 0.054 U | J | | | 0.054 | U | | | | 29-Apr-13
9-Jul-13 | 0.120
0.160 | | 0.110
0.140 | | 0.110
0.140 | | 0.110
0.150 | | 0.130
0.120 | | 0.120
0.400 | 0.110
0.280 | | 0.110
0.310 | | | | 0.054
0.080 | U | | Tui-lalana 41 * | 1.0 | 9-Jul-13 RIDEM | NS | | NS | | NS | | NS | | 0.120 | | NS | NS | | NS | | | | 0.088 | | | Trichloroethene* | 1.0 | 18-Oct-13 | 0.110 | U | 0.110 | 0.110 | | 0.390 | | | | 0.110 | U | | | | 9-Jan-14 | 0.110 | U | 0.110 U | 0.110 | U | 0.110 U | | | | 0.110 | U
U | | | | 24-Apr-14
1-Aug-14 | 0.054
0.110 | II U | 0.054
0.110 | U | 0.054
0.110 | U
U | 0.054
0.170 | 0 | 0.110
1.700 | U | 0.054 U
0.110 U | 0.054
0.270 | U | 0.110
0.140 | , | | | 0.054
1.100 | _ 0 | | | | 12-Sept-14 resample | NS | | NS | _ | NS | _ | NS | | NS | | NS | 0.054 | U | NS | | | | NS | | | | | 22-Oct-14 | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | J | | | 0.180 | | | | | 20-Jan-15
30-Mar-15 resample | 0.054
NS | U | 0.054 U
NS | 0.081
NS | U | 20.000
0.062 U | т | | | 0.081
NS | U | | | | 22-Apr-15 | 0.260 | | 0.260 | | 0.440 | | 0.270 | | 0.410 | | 0.170 | 0.370 | | 0.290 | ´ | | | 0.054 | U | | | | 21-Jul-15 | 0.260 | | 0.14 J, A | | 0.260 | | 0.240 ^J | | 0.300 | U | 0.200 J | 0.190 ^J | | 0.300 | J | | | 0.300 | U | | | | 23-Sept-15 resample | NS
0.200 | | NS | | NS
0.200 | ** | NS
0.200 | ** | NS
0.220 ^J | | NS
0.200 | 0.300 | U | NS
0.200 | * | | | NS
0.200 | ** | | | | 29-Oct-15
4-Dec-15 resample | 0.300
NS | U | 1.100
0.300 | U | 0.300
NS | U | 0.300
NS | U | 0.220
NS | | 0.300 U
NS | 0.290
NS | U | 0.200
NS | , | | | 0.300
NS | U | | | | 27-Jan-16 | 0.054 | U | 0.071 | 0.054 | U | 0.054 U | J | | | 0.054 | U | | | | 20-Apr-16 ³ | 0.11 | | 0.054 | U | 0.054 | U | 0.097 | | 0.06 | | 0.077 | 0.054 | U | 0.064 | | | | 0.075 | | | | | 20-Jul-16
21-Oct-16 | 0.24
0.12 | | 0.17
0.12 | | 0.058
0.086 | U | 0.066
0.15 | U | 0.077
0.088 | | 0.086
0.058 | 0.088
0.054 | U | 0.060
0.067 | , | | | 0.080
0.088 | U | | | | 31-Jan-17 | 0.054 | U | 0.054 U | 0.054 | U | 0.054 U | J | | | 0.054 | U | | | | 17-Apr-17 ⁴ | 0.081 | U | 0.081 U | 0.081 | U | 0.081 U | J | | | 0.081 | U | | | | 26-Jul-17 | 0.18 | | 0.18 | | 0.18 | | 0.15 | | 0.16 | | 0.19 | 0.17 | | 0.16 | | | | 0.071 | | | | | 12-Oct-17 | 0.054 | U | 0.054 U | 0.054 | U | 0.054 U | | | | 0.054 | U | | | | 10-Jan-18
11-Apr-18 | 0.054
0.084 | U | 0.054
0.080 | U | 0.054
0.054 | U
U | 0.054
0.064 | U | 0.054
0.069 | U | 0.054 U
0.110 U | 0.054
0.073 | U | 0.054
0.084 | , | | | 0.054
0.54 ^D | U | | | | 27-Jul-18 | 0.054 | U | 0.080 | U | 0.054 | U | 0.054 | U | 0.069 | U | 0.110 U | 0.073 | U | 0.084
0.054 | J | | | 0.054 | U | | | | 24-Oct-18 | 0.054 | U | 0.054 U | 0.054 | U | 0.054 U | | | | 0.054 | U | | | | 16-Jan-19 | 0.054 | U | 0.054 U | 0.054 | U | 0.054 U | | | | 0.054 | U | | | | 12-Apr-19 | 0.054 | U | 0.054 U | 0.054 | U | 0.054 U | J | | | 0.054 | U | | | | 29-Jul-19 | 0.088 | | 0.060 | | 0.054 | U | 0.060 | | 0.064 | | 0.082 | 0.086 | | 0.080 | | | | 0.071 | | | | | 29-Oct-19
1-Nov-19 | NS
0.054 | U | 0.088
NS | | 0.080
NS | | 0.054
NS | U | 0.084
NS | | 0.08
NS | 0.054
NS | U | NS
0.054 U | т | | | 0.054
NS | U | | | | 1-NoV-19
21-Jan-20 | 0.054 | U | 0.05 U | 0.05 | U | 0.054 U | | | | 0.05 | U | | | | 22-Apr-20 | 0.054 | U | 0.054 U | 0.054 | U | 0.054 U | | | | 0.054 | U | | | | 23-Jul-20 | 0.054 | U | 0.054 U | 0.054 | U | 0.054 U | J | | | 0.054 | U | | | | 29-Oct-20 | 0.120 | | 0.130 | | 0.100 | | 0.120 | | 0.14 | U | 0.15 | 0.054 | U | 0.140 | | | | 0.180 | | Page 41 of 48 Date Modified: 12/10/2020 | Second S |
--| | | Page 42 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage | | Cafatoria | | Gymnasium | | Elevator
Hallway | | Page 118 | | Poom 110 | | Media Center | | Poom 152 | | Poom 140 | Po | .m 234 | Ambient Outdoor |)r | |---|---|---|---|---------------------------------------|---|---------------------------------------|--|---------------------------------------|---|---------------------------------------|--|---------------------------------------|---|-----|---|---
--|---------------------------------------|----------|----|--------|---|------| | | | Sample Date | KJUII | Qual | | Qual | Gymnasiuili | Qual | Hailmay | Qual | | Qual | | ıal | | Qual | | _ | | | | , , | Qual | | 1,2,4-Trimethylbenzene | 9.3 | 8-Feb-08 27-Mar-08 25-Apr-08 29-May-08 27-Jun-08 31-Jul-08 28-Aug-08 30-Sep-08 27-Oct-08 25-Nov-08 18-Dec-08 21-Jan-09 25-Feb-09 26-Mar-09 29-Apr-09 22-Jul-09 9-Oct-09 15-Jan-09 21-Apr-10 16-Jul-10 15-Oct-10 30-Nov-10 26-Jan-11 26-Jan-11** 27-Apr-11 26-Jul-11 28-Oct-11 23-Jan-12 13-Apr-12 2-Jul-12 resample 20-Jun-12 1-Feb-13 29-Apr-13 9-Jul-13 9-Jul-13 RIDEM 18-Oct-13 9-Jul-14 24-Apr-14 1-Aug-14 12-Sept-14 resample 22-Oct-15 4-Dec-15 resample 22-Oct-15 4-Dec-15 resample 22-Apr-16 30-Mar-15 resample 22-Apr-16 31-Jan-17 17-Apr-17 16-Jul-17 12-Oct-17 10-Jan-18 11-Apr-18 27-Jul-18 24-Oct-18 16-Jan-19 12-Apr-19 29-Jul-19 29-Jul-19 29-Jul-19 21-Jan-20 22-Apr-20 | NS 0.300 0.900 1.330 0.998 0.300 1.560 1.650 0.438 2.500 2.500 2.500 2.500 2.500 2.500 2.500 0.942 1.520 1.010 1.240 0.609 0.393 0.354 0.319 NS 1.010 NS 0.138 0.575 0.340 0.660 0.400 NS 0.560 0.720 0.330 0.990 0.480 NS 2.600 4.500 0.120 0.320 NS 0.150 NS 0.380 0.750 NS 0.380 0.750 NS 0.380 0.750 NS 0.300 NS 0.098 0.11 0.667 0.488 0.14 0.15 0.150 | U U U U U U U U U U U U U U U U U U U | 0.970 1.590 1.760 0.470 0.443 1.360 1.430 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 0.859 0.368 0.216 1.080 0.550 0.845 0.216 0.408 0.334 1.120 1.900 0.280 2.160 0.220 0.580 0.410 NS 1.200 0.480 0.180 0.540 0.410 NS 1.200 0.480 0.180 0.540 0.410 NS 0.598 8.900 0.098 8.900 0.098 0.098 0.77 0.560 NS 0.510 0.360 NS 0.780 0.200 0.098 | U U U U U U U U U U U U U U U U U U U | 2.520 3.390 11.700 8.320 2.120 1.380 3.690 2.500 2.500 2.500 2.500 2.500 3.900 1.500 1.340 1.140 1.250 0.452 4.590 0.388 0.329 0.560 1.100 2.100 2.080 1.120 0.300 0.580 0.760 NS 0.910 0.310 0.170 0.540 0.280 NS 0.120 0.220 0.210 0.630 NS 0.160 0.098 NS 0.570 0.250 NS 0.420 NS 0.21 0.098 0.66 0.25 0.38 0.15 0.2 0.290 0.21 0.098 | U U U U U U U U U U U U U U U U U U U | 1.890 3.240 1.640 6.680 3.040 2.080 5.340 2.000 3.500 2.500 2.500 2.500 1.200 0.339 1.460 0.521 0.643 0.344 0.211 NS 1.200 NS 0.255 0.285 0.290 0.710 0.480 NS 0.680 0.300 0.160 0.510 0.340 NS 2.400 0.180 0.098 1.300 NS 0.150 0.160 0.098 0.098 0.098 0.098 0.098 | U U U U U U U U U U U U U U U U U U U | Room 118 0.210 0.920 0.909 0.270 0.634 0.959 0.642 6.800 2.500 2.500 2.500 2.500 2.500 2.500 0.526 0.192 0.594 0.712 0.206 0.570 0.250 0.098 NS 0.780 NS 0.147 0.236 0.230 0.340 NS 0.147 0.236 0.230 0.340 NS 0.147 0.236 0.230 0.380 0.340 NS 0.600 0.460 0.150 0.700 0.440 0.470 3.200 0.180 0.098 1.500 NS 0.150 0.098 NS 0.150 0.098 | U U U U U U U U U U U U U U U U U U U | 0.210 0.210 0.210 1.390 0.839 0.960 0.246 1.940 0.461 2.500 2.500 2.500 2.500 2.500 2.500 0.263 0.098 0.791 0.796 0.196 0.545 0.138 0.098 0.997 NS 0.113 0.157 0.260 1.000 0.340 NS 0.470 0.650 0.120 0.320 0.230 NS 0.140 0.180 0.098 0.220 NS 0.150 0.370 0.290 NS 0.150 0.290 NS 0.150 0.290 NS 0.150 0.27 0.3 0.29 0.098 0.15 0.27 0.3 0.29 0.098 0.15 0.098 0.15 0.098 0.15 0.098 0.15 0.098 0.15 0.098 0.15 0.098 0.098 0.15 | | 0.210 0.828 0.911 0.692 0.707 0.455 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 0.737 0.108 0.889 0.702 0.216 0.427 0.319 0.098 0.868 2.000 0.172 0.290 0.310 0.520 0.290 0.310 0.520 0.290 0.310 0.120 0.160 0.170 0.880 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.300 0.410 0.180 0.300 0.410 0.180 0.300 0.410 0.180 0.300 0.410 0.180 0.300 0.410 0.180 0.300 0.410 0.180 0.300 0.410 0.190 0.160 0.170 0.180 0.300 0.410 0.180 0.300 0.410 0.190 0.190 0.198 0.198 0.198 0.198 0.198 0.198 0.098 | ע ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט | 0.310 0.989 0.750 0.110 0.989 0.750 0.1110 0.206 0.142 0.464 9.300 2.500 2.500 2.500 2.500 2.500 2.500 2.500 3.564 0.098 0.673 0.717 0.196 0.476 0.187 0.098 NS 1.030 NS 0.113 0.177 0.330 0.650 0.360 0.150 0.610 0.600 0.160 0.440 0.240 NS 3.200 0.240 0.130 1.200 NS 0.150 0.490 0.150 0.150 0.490 0.160 0.150 0.150 0.150 0.89 0.88 0.130 0.150 0.490 0.160 0.150
0.150 0 | J J J J J J J J J J J J J J J J J J J | .000 | | 8 U | (AOA-1) al 0.210 0.098 0.098 0.098 0.100 0.175 0.157 0.354 2.500 2.500 2.500 2.500 2.500 2.500 2.500 0.739 0.142 0.894 0.069 0.196 0.098 0.108 0.098 0.128 0.123 0.098 0.470 0.240 0.150 0.310 0.120 0.098 0.130 0.120 0.098 0.130 0.120 0.098 0.130 0.120 0.098 0.130 0.150 0.310 0.120 0.098 0.130 0.150 0.310 0.150 0.310 0.150 0.310 0.1210 0.098 0.130 0.150 0.300 NS 0.111 0.098 0.66 2.66 0.14 0.15 0.098 | Quai | | | | 23-Jul-20
29-Oct-20 | 0.15
0.4 | | 0.098
0.38 | U | 0.098
0.31 | U | 0.098
0.31 | | 0.098
0.37 | U | 0.11
0.32 | | | U
U | 0.098
0.57 | J | | | | 0.098
0.48 | U | Page 43 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage | 2 | | | | | Elevator | | | | | | Media Center | | | | | | | Ambient Outd | loor | |---|---|---------------------------------|-----------------|--------|-----------------------------|--------|--------------------------|--------|----------------|------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|---------|-------|--------------|----------------------------|--------| | | | Sample Date | Room | Qual | Cafeteria | Qual | Gymnasium | Qual | Hallway | Qual | Room 118 | Qual | Room 110 | Qual | (Rm 145) | Qual | Room 152 | Qual | Room 14 | 9 Roo | m 234
Qua | (AOA-1) | Qual | | | | 8-Feb-08 | 0.460 | 2 | 0.450 | ~.aı | 1.300 | ~1 | 0.980 | ~ | 0.100 | U | | U | 0.100 | U | 0.100 | U | | | Qui | 0.100 | U | | | | 27-Mar-08 | 0.535 | | 0.652 | | 1.620 | | 1.530 | | 0.292 | | 0.438 | | 0.256 | | 0.334 | | | | | 0.098 | U | | | | 25-Apr-08 | 0.367 | | 0.816 | | 7.170 | | 0.802 | | 0.342 | | 0.293 | | 0.375 | | 0.280 | U | | | | 0.098 | U | | | | 29-May-08
27-Jun-08 | 0.170
0.942 | | 0.220
0.232 | | 4.710
1.100 | | 4.050
1.580 | | 0.140
0.385 | | 0.640
0.102 | | 0.470
0.387 | | 0.100
0.100 | U | | | | 0.100
0.098 | U | | | | 31-Jul-08 | 1.040 | | 0.782 | | 0.671 | | 1.360 | | 0.570 | | 1.190 | | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 28-Aug-08 | 0.170 | | 0.732 | | 1.950 | | 2.990 | | 0.270 | | 0.181 | | 0.181 | | 0.155 | | | | | 0.100 | | | | | 30-Sep-08
27-Oct-08 | 2.500
2.500 | U
U | 2.500
2.500 | U
U | 2.500
2.500 | U
U | 2.500
2.500 | U | 2.500
2.500 | U
U | | U
U | 2.500
2.500 | U
U | 9.300
2.500 | U | | | | 2.500
2.500 | U | | | | 25-Nov-08 | 2.500 | U | | U | 2.500 | U | 2.500 | U | | | | 2.500 | U | | | | 18-Dec-08 | 2.500 | U | | U | 2.500 | U | 2.500 | U | | | | 2.500 | U | | | | 21-Jan-09 | 2.500 | U
U | 2.500 | U | 2.500 | U
U | 2.500 | U | 2.500 | U
U | | U
U | 2.500 | U | 2.500 | U
U | | | | 2.500 | U | | | | 25-Feb-09
26-Mar-09 | 2.500
0.330 | | 2.500
0.315 | U | 2.500
0.678 | U | NS
0.540 | | 2.500
0.194 | 0 | 2.500
0.185 | U | 2.500
0.246 | U | 2.500
0.198 | U | | | | 2.500
0.238 | 0 | | | | 29-Apr-09 | 0.098 | U | 0.192 | | 0.678 | | 0.629 | | 0.098 | | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 22-Jul-09 | 0.378 | | 0.098 | U | 0.427 | | 0.138 | | 0.246 | | 0.270 | | 0.295 | | 0.241 | | | | | 0.241 | | | | | 9-Oct-09
15-Jan-10 | 0.550
0.265 | | 0.452
0.260 | | 0.476
0.192 | | 0.599
0.206 | 1 | 0.255
0.098 | U | 0.265
0.098 | U | 0.221
0.098 | U | 0.241
0.098 | U | | | | 0.226
0.098 | U | | | | 21-Apr-10 | 0.263 | | 0.368 | | 2.100 | | 2.600 | 1 | 0.206 | | 0.098 | | 0.098 | | 0.177 | | | | | 0.098 | U | | | | 16-Jul-10 | 0.113 | | 0.098 | U | 0.138 | | 0.118 | | 0.098 | U | 0.098 | U | 0.147 | | 0.098 | U | | | | 0.098 | U | | | | 15-Oct-10
30-Nov-10 | 0.128
NS | | 0.172
0.133 | | 0.123
0.177 | | 0.098
NS | U | 0.098
NS | U | 0.098
NS | U | 0.098
0.098 | U | 0.098
NS | U | | | | 0.098
NS | U | | | | 30-Nov-10
26-Jan-11 | 0.293 | | 0.133 | | 0.177 | | 0.410 | | 0.260 | | 0.267 | | 0.098 | U | 0.302 | | 0.334 | 0.16 | 8 U | 0.342 | | | | | 26-Jan-11** | NS | | 0.590 | | 0.700 | | NS | | NS | | NS | | 0.630 | | NS | | 0.55 | 0.10 | | NS | | | | | 27-Apr-11 | 0.098 | U | 0.128 | | 0.820 | | 0.113 | | 0.098 | U | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 26-Jul-11
28-Oct-11 | 0.206
0.150 | U | 0.737
0.150 | U | 0.393
0.150 | U | 0.108
0.150 | U | 0.098
0.150 | U
U | | U
U | 0.098
0.150 | U
U | 0.098
0.150 | U | | | | 0.098
0.098 | U | | | | 23-Jan-12 | 0.220 | | 0.170 | U | 0.200 | | 0.230 | | 0.170 | U | 0.220 | | 0.180 | | 0.180 | | | | | 0.170 | U | | | | 13-Apr-12 | 0.150 | U | 0.150 | U | 0.270 | | 0.170 | | 0.150 | U | | U | 0.150 | U | 0.150 | U | | | | 0.270 | | | | | 2-Jul-12 resample | NS | | NS | | NS | | NS | | NS
0.220 | | NS | | NS | | 0.150 | U | | | | 0.150 | U | | | | 20-Jun-12
1-Nov-12 | 0.180
0.220 | | 0.450
0.140 | | 0.340
0.098 | U | 0.250
0.120 | | 0.220
0.140 | | 0.150
0.190 | | 0.140
0.220 | | 0.200
0.170 | | | | | 0.110
0.098 | U | | | | 1-Feb-13 | 0.098 | U | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 29-Apr-13 | 0.250 | | 0.180 | | 0.180 | | 0.180 | | 0.250 | | 0.130 | | 0.190 | | 0.150 | | | | | 0.098 | U | | | | 9-Jul-13
9-Jul-13 RIDEM | 0.180
NS | | 0.150
NS | | 0.098
NS | U | 0.110
NS | | 0.160
0.143 | | 0.098
NS | U | 0.098
NS | U | 0.098
NS | U | | | | 0.098
0.037 | U
J | | 1,3,5-Trimethylbenzene | 9.3 | 9-Jul-13 RIDEM
18-Oct-13 | 0.170 | | 0.098 | U | 0.098 | U | 0.180 | | 0.143 | | | U | 0.420 | | 0.280 | | | | | 0.180 | J | | | | 9-Jan-14 | 1.100 | | 2.100 | | 0.098 | U | 0.098 | U | 0.098 | U | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 24-Apr-14 | 0.098 | U | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 1-Aug-14
12-Sept-14 resample | 0.130
NS | | 0.120
NS | | 0.220
NS | | 0.290
NS | | 0.310
NS | | 0.098
NS | U | 0.290
0.098 | U | 0.280
NS | | | | | 0.230
NS | | | | | 22-Oct-14 | 0.150 | U | | U | 0.150 | U | 0.150 | U | | | | 0.150 | U | | | | 20-Jan-15 | 0.098 | U | 0.110 | | 0.098 | U | 0.098 | U | 0.098 | U | ***** | U | 0.150 | U | 0.098 | U | | | | 0.150 | U | | | | 30-Mar-15 resample
22-Apr-15 | NS
0.130 | | NS
0.150 | | NS
0.170 | | NS
0.140 | | NS
0.190 | | NS
0.100 | | NS
0.160 | | 0.110
0.140 | U | | | | NS
0.098 | U | | | | 21-Jul-15 | 0.230 J | | 0.200 ^A | U | 0.200 | U | 0.300 | U | 0.300 | U | 0.300 | U | 0.300 | U | 0.200 | U | | | | 0.300 | U | | | | 23-Sept-15 resample | NS | | 0.300 | U | NS | | | | | NS | | | | | 29-Oct-15
4-Dec-15 resample | 0.300
NS | U | 0.220 ^J
0.200 | U | 0.200 ^J
NS | | 0.300
NS | U | 0.300
NS | U | 0.300
NS | U | 0.200
NS | U
U | 0.200
NS | U | | | | 0.300
NS | U | | | | 27-Jan-16 | 0.098 | U | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 20-Apr-16 3 | 0.098 | U | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 20-Jul-16 | 0.21 | | 0.25 | | 0.20 | U | 0.23 | | 0.24
0.098 | U | 0.24
0.098 | U | 0.24 | U | 0.23 | U | | | | 0.15 | U | | | | 21-Oct-16
31-Jan-17 | 0.13
0.098 | U | 0.16
0.098 | U | 0.10
0.098 | U | 0.18
0.098 | U | 0.098 | U | | U | 0.098
0.098 | U | 0.098
0.098 | U | | | | 0.71
0.098 | U | | | | 17-Apr-17 ⁴ | 0.15 | U | | U | 0.15 | U | 0.15 | U | | | | 0.15 | U | | | | 26-Jul-17 | 0.098 | U | | | 0.098 | U | | | | 12-Oct-17 | 0.098 | U | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 10-Jan-18 | 0.098 | U | 0.18 | ** | 0.14 | *** | 0.18 | ** | 0.098 | U | | U | 0.19 | ** | 0.10 | ** | | | | 0.098
0.49 ^D | U | | | | 11-Apr-18
27-Jul-18 | 0.098
0.098 | U
U | 0.098
0.098 | U | 0.098
0.098 | U | 0.098
0.098 | U | 0.098
0.15 | U
U | 0.098
0.97 | U | 0.098
0.098 | U | 0.098
0.098 | U | | | | 0.49 | U | | | | 24-Oct-18 | 0.11 | | 0.098 | U | 0.098 | U | 0.098 | U | 0.098 | U | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 16-Jan-19 | 0.098 | U | | U |
0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 12-Apr-19 | 0.098 | U | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 29-Jul-19 | 0.1 | | 0.098 | U | 0.098 | U | 0.098 | U | 0.098 | U | 0.1 | | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 29-Oct-19
1-Nov-19 | NS
0.098 | U | 0.098
NS | U | NS
0.24 | | | | | 0.098
NS | U | | | | 21-Jan-20 | 0.10 | U | | U | 0.10 | U | 0.10 | U | | | | 0.10 | U | | | | 22-Apr-20 | 0.098 | U | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 23-Jul-20 | 0.098 | U | | U | 0.098 | U | 0.098 | U | | | | 0.098 | U | | | | 29-Oct-20 | 0.12 | | 0.11 | | 0.11 | | 0.098 | U | 0.12 | | 0.098 | U | 0.098 | U | 0.16 | | | | | 0.13 | | Page 44 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storag
Room | e | Cafeteria | Gymnas | ium. | Elevator
Hallway | | Room 118 | | Room 110 | | Media Center
(Rm 145) | Room 1: | 52 | Roon | 149 | Room 2 | Ambient Outdoor (AOA-1) | |---|---|-------------------------------------|-------------------------------|------|-------------------------------|-------------|------|-------------------------------|------|-------------------------------|--------|-------------------------------|--------|--------------------------|-------------------------------|------|---------|------|--------|-------------------------------| | | | Sample Date | Koom | Qual | Qu | • | Qual | | Qual | | Qual | | Qual | Qual | Koom 1 | Qual | | Qual | | Qual (AOA-1) | | | | 8-Feb-08 | 0.050 | U | 0.050 L | | U | 0.050 | U | 0.050 | U | 0.050 | U | 0.050 U | 0.050 | U | | 21 | | 0.050 | | | | 27-Mar-08 | 0.051 | U | 0.051 L | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.050 | U | | | | 0.051 | | | | 25-Apr-08 | 0.051 | U | 0.051 L | ***** | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 29-May-08
27-Jun-08 | 0.050
0.050 | U | 0.050 U
0.050 U | | U | 0.050
0.051 | U | 0.050
0.050 | U
U | 0.050
0.050 | U
U | 0.050 U
0.051 U | 0.050
0.050 | U | | | | 0.050
0.051 | | | | 27-Jun-08
31-Jul-08 | 0.050 | U | 0.050 U | | U | 0.051 | U | 0.051 | U | 0.050 | U | 0.051 U | 0.050 | U | | | | 0.051 | | | | 28-Aug-08 | 0.051 | U | 0.051 U | | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 30-Sep-08 | 0.100 | U | 0.100 U | | | 0.100 | U | 0.100 | U | 0.100 | U | 0.100 | 0.100 | U | | | | 0.100 | | | | 27-Oct-08 | 0.100 | U | 0.100 U
0.100 U | | U | 0.100 | U | 0.100 | U
U | 0.100 | U
U | 0.100 U
0.100 U | 0.100 | U | | | | 0.100
0.100 | | | | 25-Nov-08
18-Dec-08 | 0.100
0.100 | U | 0.100 U
0.100 U | | U | 0.100
0.100 | U | 0.100
0.100 | U | 0.100
0.100 | U | 0.100 U
0.100 U | 0.100
0.100 | U | | | | 0.100
0.100 | | | | 21-Jan-09 | 0.100 | U | 0.100 U | | U | 0.100 | U | 0.100 | U | 0.100 | U | 0.100 U | 0.100 | U | | | | 0.100 | | | | 25-Feb-09 | 0.100 | U | 0.100 U | | U | NS | | 0.100 | U | 0.100 | U | 0.100 U | 0.100 | U | | | | 0.100 | | | | 26-Mar-09 | 0.051 | U | 0.051 L | | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 29-Apr-09
22-Jul-09 | 0.051
0.051 | U | 0.051 L
0.051 L | | U | 0.051
0.051 | U | 0.051
0.051 | U
U | 0.051
0.051 | U
U | 0.051 U
0.051 U | 0.051
0.051 | U | | | | 0.051
0.051 | | | | 9-Oct-09 | 0.051 | U | 0.051 U | | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 15-Jan-10 | 0.051 | U | 0.051 U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 21-Apr-10 | 0.051 | U | 0.051 L | | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 16-Jul-10
15-Oct-10 | 0.051
0.051 | U | 0.051 U | | U | 0.051
0.051 | U | 0.051
0.051 | U | 0.051
0.051 | U
U | 0.051 U
0.051 U | 0.051
0.051 | U | | | | 0.051
0.051 | | | | 30-Nov-10 | NS | | 0.051 U | | U | NS | | NS | | NS | | 0.051 U | NS | | | | | NS | | | | 26-Jan-11 | 0.087 | U | 0.087 L | | U | 0.087 | U | 0.087 | U | 0.087 | U | 0.087 U | 0.087 | U | 0.087 | U | 0.087 | U 0.087 | | | | 26-Jan-11** | NS | | 0.130 U | | U | NS | | NS | | NS | | 0.130 U | NS | | | | | NS | | | | 27-Apr-11 | 0.051
0.051 | U | 0.051 L
0.051 L | | U | 0.051
0.051 | U | 0.051
0.051 | U
U | 0.051
0.051 | U
U | 0.051 U
0.051 U | 0.051
0.051 | U | | | | 0.051
0.051 | | | | 26-Jul-11
28-Oct-11 | 0.031 | U | 0.031
0.038 | | U | 0.031 | U | 0.031 | U | 0.031 | U | 0.031 U | 0.031 | U | | | | 0.026 | | | | 23-Jan-12 | 0.090 | U | 0.090 U | | U | 0.090 | U | 0.090 | U | 0.090 | U | 0.090 U | 0.090 | U | | | | 0.090 | | | | 13-Apr-12 | 0.038 | U | 0.038 L | | U | 0.038 | U | 0.038 | U | 0.038 | U | 0.038 U | 0.038 | U | | | | 0.100 | | | | 2-Jul-12 resample | NS
0.051 | *** | NS
0.051 | NS | ** | NS
0.051 | ** | NS | | NS
0.051 | ** | NS
0.051 | 0.038 | U | | | | 0.038 | | | | 20-Jun-12
1-Nov-12 | 0.051
0.026 | U | 0.051 U
0.026 U | | U | 0.051
0.026 | U | 0.051
0.026 | U | 0.051
0.026 | U
U | 0.051 U
0.026 U | 0.051
0.026 | U | | | | 0.051
0.026 | | | | 1-Feb-13 | 0.026 | U | 0.026 U | | U | 0.026 | U | 0.026 | U | 0.026 | U | 0.051 | 0.026 | U | | | | 0.026 | | | | 29-Apr-13 | 0.026 | U | 0.026 L | 0.026 | U | 0.026 | U | 0.026 | U | 0.026 | U | 0.026 U | 0.026 | U | | | | 0.026 | | | | 9-Jul-13 | 0.026 | U | 0.026 U | | U | 0.026 | U | 0.026 | U | 0.026 | U | 0.026 U.86 | 0.026 | U | | | | 0.026 | | Vinyl chloride* | 0.1 | 9-Jul-13 RIDEM
18-Oct-13 | NS
0.051 | U | NS
0.051 U | NS
0.051 | U | NS
0.051 | IJ | 0.001
0.051 | J
U | NS
0.051 | U | NS
0.051 U | NS
0.053 | U | | | | 0.002
0.051 | | | | 9-Jan-14 | 0.051 | U | 0.051 U | | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 24-Apr-14 | 0.026 | U | 0.026 L | | U | 0.026 | U | 0.051 | U | 0.026 | U | 0.026 U | 0.280 | | | | | 0.026 | | | | 1-Aug-14 | 0.051 | U | 0.051 U | | U | 0.077 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 12-Sept-14 resample
22-Oct-14 | NS
0.038 | U | NS
0.038 | NS
0.038 | U | NS
0.038 | U | NS
0.038 | U | NS
0.038 | U | 0.026 U
0.038 U | NS
0.038 | U | | | | NS
0.038 | | | | 20-Jan-15 | 0.026 ^L | U | 0.026 L | | U | 0.026 ^L | U | 0.026 ^L | U | 0.026 L | U | 0.038 ^L U | 0.026 L | U | | | | 0.038 ^L | | | | 30-Mar-15 resample | NS | | NS | NS | 0.029 | U | | | | NS | | | | 22-Apr-15 | 0.026 | U | 0.026 U
0.100 ^A | | U | 0.026 | U | 0.026 | U | 0.026 | U | 0.026 U | 0.026 | U | | | | 0.026 | | | | 21-Jul-15
23-Sept-15 resample | 0.100
NS | U | 0.100 ·· U | 0.100
NS | U | 0.100
NS | 0 | 0.100
NS | U | 0.100
NS | U | 0.200 U
0.100 U | 0.100
NS | U | | | | 0.100
NS | | | | 29-Oct-15 | 0.100 | U | 0.100 U | | U | 0.100 | U | | U | 0.100 | U | 0.100 U | 0.100 | U | | | | 0.200 | | | | 4-Dec-15 resample | NS | | 0.100 U | | | NS | | NS | | NS | | NS U | NS | | | | | NS | | | | 27-Jan-16
20-Apr-16 ³ | 0.026
0.026 | U | 0.026 U
0.026 U | | U | 0.026
0.026 | U | 0.026
0.026 | U
U | 0.026
0.026 | U
U | 0.026 U
0.026 U | 0.026
0.026 | U | | | | 0.026
0.026 | | | | 20-Jul-16 | 0.026
0.030 ^{V,L} | U | 0.026
0.040 ^{V,L} | | U | 0.026
0.031 ^{V,L} | U | 0.026
0.031 ^{V,L} | U | 0.026
0.030 ^{V,L} | U | 0.026 U | 0.026
0.029 ^{V,L} | U | | | | 0.026
0.038 ^{V,L} | | | | 21-Oct-16 | 0.026 | U | 0.026 L | | U | 0.026 | U | 0.026 | U | 0.026 | U | 0.026 U | 0.026 | U | | | | 0.026 | | | | 31-Jan-17 | 0.026 | U | 0.026 U | | U | 0.026 | U | 0.026 | U | 0.026 | U | 0.026 U | 0.026 | U | | | | 0.026 | | | | 17-Apr-17 ⁴ | 0.038 | U | 0.038 U | | U | 0.038 | U | 0.038 | U | 0.038 | U | 0.038 U | 0.038 | U | | | | 0.038 | | | | 26-Jul-17 | 0.026 | U | 0.026 U | | U | 0.026 | U | 0.026 | U | 0.026 | U | 0.026 U | 0.026 | U | | | | 0.026
0.026 | | | | 12-Oct-17
10-Jan-18 | 0.026
0.026 | U | 0.026 U
0.026 U | | U | 0.026
0.026 | U | 0.026
0.026 | U
U | 0.026
0.026 | U
U | 0.026 U
0.026 U | 0.026
0.026 | U | | | | 0.026
0.026 | | | | 11-Apr-18 | 0.051 | U | 0.051 U | | U | 0.051 | U | 0.020 | U | 0.051 | U | 0.020 U | 0.020 | U | | | | 0.26 ^D | | | | 27-Jul-18 | 0.051 | U | 0.051 U | | U | 0.051 | U | 0.077 | U | 0.077 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 24-Oct-18 | 0.051 | U | 0.051 U | | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 16-Jan-19 | 0.051 | U | 0.051 U | | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 12-Apr-19 | 0.051 | U | 0.051 L | | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 29-Jul-19
29-Oct-19 | 0.051
NS | U | 0.051 U | | U | 0.051
0.051 | U | 0.051
0.051 | U
U | 0.051
0.051 | U
U | 0.051 U
0.051 U | 0.051
NS | U | | | | 0.051
0.051 | | | | 1-Nov-19 | 0.051 | U | 0.051 C | 0.051
NS | | 0.051
NS | | 0.051
NS | | 0.051
NS | U | 0.051 U | 0.051 | U | | | | 0.051
NS | | | | 21-Jan-20 | 0.05 | U | 0.05 L | | U | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 U | 0.05 | U | | | | 0.05 | | | | 22-Apr-20 | 0.051 | U | 0.051 U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 23-Jul-20 | 0.051 | U | 0.051 U | | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | | | | 0.051 | | | | 29-Oct-20 | 0.051 | U | 0.051 U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 | U | 0.051 U | 0.051 | U | <u></u> | | | 0.051 | Page 45 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed
Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storag
Room | e Qual | Cafeteria Qual | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | Media Center
(Rm 145) | | Room 152 | Room 1 | | Ambient Outdoor
(AOA-1) | | |---|---|-------------------------------------|------------------------|--------|--------------------|----------------|--------|--------------------------|--------|----------------|--------|--------------------|--------------------------|--------|--------------------------|--------|---------|----------------------------|--------| | | | Sample Date
8-Feb-08 | 0.710 | Zuai | 0.660 | 2.110 | Qual | 1.460 | Qual | 0.550 | Qual | 0.450 Qual | 0.390 | Qual | 0.420 Qual | | Qual Qu | 0.580 | Qual | | | | 27-Mar-08 | 2.460 | | 2.080 | 3.510 | | 2.960 | | 2.620 | | 2.890 | 1.810 | | 1.910 | | | 0.269 | | | | | 25-Apr-08
29-May-08 | 2.220
0.350 | | 1.870
0.290 | 8.240
5.110 | | 2.170
2.260 | | 1.960
0.290 | | 2.080
0.410 | 2.150
0.340 | | 1.850
0.250 | | | 0.205
0.170 | U | | | | 27-Jun-08 | 1.060 | | 1.080 | 3.280 | | 3.000 | | 1.250 | | 0.994 | 2.160 | | 0.926 | | | 0.795 | | | | | 31-Jul-08 | 1.360 | | 1.160 | 3.330 | | 1.140 | | 1.140 | | 1.370 | 0.656 | | 0.488 | | | 0.656 | | | | | 28-Aug-08
30-Sep-08 | 2.130
4.300 | IJ | 3.220
4.300 U | 8.690
4.300 | U | 8.200
4.300 | U | 1.910
4.300 | U | 2.190
4.300 U | 2.280
4.300 | U | 1.960
22.000 | | | 2.240
4.300 | U | | | | 27-Oct-08 | 4.300 | U | 4.300 U | | U | 5.000 | | | U | 4.300 U | 4.300 | U | 4.300 U | | | 4.700 | - | | | | 25-Nov-08 | 4.300
4.300 | U
U | 4.300 U
4.300 U | | U
U | | U
U | | U
U | 4.300 U
4.300 U | 4.300
4.300 | U
U | 4.300 U
4.300 U | | | | U
U | | | | 18-Dec-08
21-Jan-09 | 4.300 | U | 4.300 U | | U | | U | | U | 4.300 U | 4.300 | U | 4.300 U
4.300 U | | | | U | | | | 25-Feb-09 | 4.300 | U | 4.300 U | 15.000 | | NS | | | U | 4.300 U | 4.300 | U | 4.300 U | | | | U | | | | 26-Mar-09
29-Apr-09 | 3.080
0.456 | | 2.850
0.733 | 4.530
0.534 | | 4.340
1.950 | | 1.580
0.477 | | 1.990
0.308 | 2.340
0.312 | | 1.870
0.347 | | | 2.310
0.442 | | | | | 29-Api-09
22-Jul-09 | 0.920 | | 0.577 | 2.680 | | 0.824 | | 1.560 | | 2.070 | 2.510 | | 1.720 | | | 3.510 | | | | | 9-Oct-09 | 2.610 | | 2.240 | 3.360 | | 3.190 | | 2.200 | | 2.090 | 1.960 | | 1.910 | | | 2.290 | | | | | 15-Jan-10
21-Apr-10 | 1.080
1.200 | | 0.915
2.000 | 1.040
4.380 | | 0.946
1.610 | | 0.724
1.800 | | 0.603
1.670 | 0.672
1.430 | | 0.607
1.350 | | | 0.672
0.174 | U | | | | 16-Jul-10 | 0.868 | | 0.568 | 1.290 | | 1.120 | | 1.290 | | 0.729 | 1.890 | | 0.694 | | | 0.330 | | | | | 15-Oct-10 | 0.642 | | 0.972 | 1.340 | | 0.408 | | 0.299 | | 0.174 | 0.468 | | 0.174 U | | | 0.317 | | | | | 30-Nov-10
26-Jan-11 | NS
2.810 | | 0.620
2.600 | 1.000
2.910 | | NS
3.320 | | NS
2.590 | | NS
2.790 | 0.230
2.540 | | NS
3.450 | 2.700 | 1.010 | NS
3.480 | | | | | 26-Jan-11** | NS | | 4.300 | 5.100 | | NS | | NS | | NS | 4.900 | | NS | | | NS | | | | | 27-Apr-11 | 0.295 | | 0.412 | 2.030 | | 0.642 | | 3.020
0.799 | | 0.260 | 0.412
0.864 | | 0.191 | | | 0.256 | | | | | 26-Jul-11
28-Oct-11 | 1.240
2.400 | | 3.650
1.100 | 2.630
1.400 | | 3.670
0.750 | | 1.300 | | 0.816
1.700 | 1.900 | | 0.486
1.500 | | | 0.404
0.480 | | | | | 23-Jan-12 | 1.600 | | 1.300 | 1.300 | | 1.500 | | 1.300 | | 1.400 | 1.400 | | 1.500 | | | 1.500 | | | | | 13-Apr-12 | 0.810 | | 0.690 | 0.810 | | 0.660 | | 0.670 | | 0.740 | 0.640 | | 0.520
0.260 U | | | | U
U | | | | 2-Jul-12 resample
20-Jun-12 | NS
1.200 | | NS
1.300 | NS
1.200 | | NS
1.400 | | NS
1.300 | | NS
1.200 | NS
1.400 | | 0.260 U
1.400 | | | 0.260
0.770 | U | | | | 1-Nov-12 | 2.300 | | 1.300 | 0.960 | | 1.400 | | 1.300 | | 2.100 | 2.500 | | 1.800 | | | 0.340 | | | | | 1-Feb-13
29-Apr-13 | 0.270
1.700 | | 0.210
1.300 | 0.220
1.300 | | 0.230
1.300 | | 0.220
1.200 | | 0.210
0.920 | 0.510
2.400 | | 0.210
1.200 | | | 0.400
0.320 | | | | | 9-Jul-13 | 0.910 | | 0.850 | 0.810 | | 0.890 | | 0.830 | | 0.770 | 0.860 | | 0.820 | | | 0.650 | | | p/m-Xylene | 220.0 | 9-Jul-13 RIDEM | NS | | NS | NS | | NS | | 0.929 | | NS | NS | | NS | | | 0.669 | | | 1 , | | 18-Oct-13
9-Jan-14 | 2.200
10.000 | | 0.270
15.000 | 0.300
0.380 | | 1.600
0.400 | | 2.300
0.420 | | 0.310
0.360 | 4.200
0.820 | | 2.700
0.430 | | | 1.300
0.330 | | | | | 24-Apr-14 | 0.220 | | 0.170 U | 0.250 | | | U | | U | 0.170 U | 0.260 | | 0.280 | | | | U | | | | 1-Aug-14 | 0.470 | | 0.410 | 0.980 | | 1.200 | | 1.300 | | 0.550 | 1.700 | | 1.400 | | | 0.990 | | | | | 12-Sept-14 resample
22-Oct-14 | NS
0.590 | | NS
0.420 | NS
0.310 | | NS
0.260 | U | NS
0.330 | | NS
0.270 | 0.330
0.300 | | NS
0.380 | | | NS
0.690 | | | | | 20-Jan-15 | 0.390 | | 0.440 | 0.360 | | 0.530 | | 0.400 | | 0.550 | 0.720 | | 0.770 | | | 0.800 | | | | | 30-Mar-15 resample | NS
1.800 | | NS
1.900 | NS
1.800 | | NS
1.600 | | NS
2.300 | | NS
1.400 | NS
1.900 | | 0.350
1.800 | | | NS
0.560 | | | | | 22-Apr-15
21-Jul-15 | 1.800 | | 0.720 ^A | 0.770 | | 0.800 | | 0.740 | | 0.750 | 0.720 | | 0.620 | | | 0.170 ^J | | | | | 23-Sept-15 resample | NS | | NS | NS | | NS | | NS | | NS | 0.150 ^J | | NS | | | NS | | | | | 29-Oct-15
4-Dec-15 resample | 0.500
NS | U | 1.900
0.400 U | 3.600
NS | | 0.470 ^J
NS | | 0.500
NS | U | 0.480
NS | 0.990
NS | U | 0.320 ^J
NS | | | 0.500
NS | U | | | | 27-Jan-16 | 0.75 | | 0.24 | 0.31 | | 0.25 | | 0.22 | | 0.38 | 0.55 | | 0.46 | | | 0.26 | | | | | 20-Apr-16 ³
20-Jul-16 | 0.26
1.5 | | 0.17
1.3 | 0.17
1.9 | U | 0.17
1.8 | U | 0.18
0.85 | | 0.17 U
1.4 | 0.17
1.6 | U | 0.17 U | | | 0.17
0.29 | U | | | | 21-Oct-16 | 1.4 | | 1.9 | 1.1 | | 2 | | 0.83 | | 0.98 | 0.44 | | 0.98 | | | 8.3 | | | | | 31-Jan-17 | 0.4 | | 0.33 | 0.45 | | 0.31 | | 0.37 | | 0.34 | 0.33 | | 0.36 | | | 0.38 | | | | | 17-Apr-17 ⁴ | 0.3 | | 0.26 U | | U | | U | | U | 0.26 U | 0.26 | U | 0.26 U | | | 1 1 | U | | | | 26-Jul-17
12-Oct-17 | 1
0.17 | U | 1.1
0.47 | 1.3
0.76 | | 1.2
0.78 | | 1.1
0.41 | | 1
0.51 | 1
0.43 | | 1
0.46 | | | 0.19
0.17 | U | | | | 12-Oct-17
10-Jan-18 | 0.17 | | 1.90 | 1.60 | | 1.80 | | 0.73 | | 0.77 | 2.0 | | 0.46 | | | | U | | | | 11-Apr-18 | 0.68 | | 0.54 | 0.49 | | 0.55 | | 0.40 | | 0.49 | 0.4 | | 0.55 | | | 0.87 ^D | U | | | | 27-Jul-18 | 0.27 | | 0.37 | 0.46 | | 0.42 | | 0.3 | | 1.2 | 0.41 | | 0.36 | | | 0.23 | | | | | 24-Oct-18
16-Jan-19 | 1.1
0.85 | | 0.44
0.7 | 0.57
0.68 | | 0.54
0.73 | | 0.36
0.71 | | 0.65
0.8 | 0.28
0.76 | | 0.21
0.35 | | | 0.34
0.26 | | | | | 12-Apr-19 | 0.37 | | 0.23 | 0.19 | | 0.73 | | 0.24 | | 0.29 | 0.26 | | 0.29 | | | 0.31 | | | | | 29-Jul-19 | 0.98 | | 0.34 | 0.46 | | 0.49 | | 0.55 | | 0.64 | 0.69 | | 0.34 | | | 0.39 | | | | | 29-Oct-19 | NS
0.58 | | 0.37 | 0.4 | | 0.41 | | 0.43 | | 0.43 | 0.44 | | NS
0.88 | | | 0.35 | Ų | | | | 1-Nov-19
21-Jan-20 | 0.58
0.57 | | NS
0.44 | NS
0.49 | | NS
0.45 | | NS
0.51 | | NS
0.46 | NS
0.44 | | 0.88
0.33 | | | NS
0.34 | 1 | | | | 22-Apr-20 | 0.22 | | 0.17 | 0.2 | | 0.21 | | | U | 0.17 | 0.17 | U | 0.17 U | | | | U | | | | 23-Jul-20 | 0.39 | | 0.24 | 0.27 | | 0.26 | | 0.35 | | 0.28 | 0.41 | | 0.35 | | | | U | | | | 29-Oct-20 | 1.2 | | 1.2 | 0.97 | | 1.3 | | 1.4 | | 1.2 | 1.6 | | 1.7 | | | 1.3 | | Page 46 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | - | Kitchen Storag
Room | e | Cafeteria | | Gymnasium | | Elevator
Hallway | | Room 118 | | Room 110 | | Media Center
(Rm 145) | | Room 152 | | Room 1 | 149 | Room 234 | | oient Outdoor
(AOA-1) | |---|---|---------------------------------|------------------------|------|---------------------|------|---------------------|--------|--------------------------|------|---------------------|------|--------------------------|--------|--------------------------|----|--------------------------|------|--------|------|----------|------|--------------------------| | | | Sample Date | | Qual | Qua | al | | Qual | | Qual | | Qual | Q | | | | 8-Feb-08
27-Mar-08 | 0.280
0.762 | | 0.270
0.718 | | 0.870
1.340 | | 0.610 | | 0.210
0.920 | | 0.170
1.060 | | 0.150 | | 0.160
0.668 | | | | | | .087 | | | | 25-Apr-08 | 0.824 | | 0.724 | | 3.480 | | 1.120
0.821 | | 0.750 | | 0.770 | | 0.640
0.786 | | 0.680 | | | | | | .087 | | | | 29-May-08 | 0.130 | | 0.120 | | 2.080 | | 1.000 | | 0.110 | | 0.180 | | 0.150 | | 0.090 | U | | | | | .090 | | | | 27-Jun-08 | 0.463 | | 0.393 | | 1.030 | | 1.030 | | 0.485 | | 0.358 | | 0.833 | | 0.339 | | | | | 0. | .332 | | | | 31-Jul-08 | 0.476 | | 0.375 | | 0.822 | | 0.371 | | 0.420 | | 0.583 | | 0.240 | | 0.207 | | | | | | .246 | | | | 28-Aug-08 | 0.779 | ** | 1.020 | ** | 2.210 | 11 | 2.160 | U | 0.683
2.200 | U | 0.787 | *** | 0.812 | | 0.702 | | | | | | .832 | | | | 30-Sep-08
27-Oct-08 | 2.200
2.200 | U | 2.200
2.200 | U | | U
U | 2.200
2.200 | U | 2.200 | U | 2.200
2.200 | U
U | 2.200 U
2.200 U | | 2.600
2.200 | U | | | | | .200 | | | | 25-Nov-08 | 2.200 | U | 2.200 | U | | U | 2.200 | U | 2.200 | U | 2.200 | U | 2.200 U | | 2.200 | U | | | | | .200 | | | | 18-Dec-08 | 2.200 | U | 2.200 | U | | U | 2.200 | U | 2.200 | U | 2.200 | U |
2.200 U | | 2.200 | U | | | | | .200 | | | | 21-Jan-09 | 2.200 | U | 2.200 | U | | U | 2.200 | U | 2.200 | U | 2.200 | U | 2.200 U | | 2.200 | U | | | | | .200 | | | | 25-Feb-09
26-Mar-09 | 2.200
1.080 | U | 2.200
0.798 | U | 2.600
1.090 | | NS
1.020 | | 2.200
0.551 | U | 2.200
0.718 | U | 2.200 U
0.824 | | 2.200
0.651 | U | | | | | .200
.826 | | | | 29-Apr-09 | 0.143 | | 0.186 | | | U | 0.442 | | 0.165 | | 0.100 | | 0.104 | | 0.108 | | | | | | .156 | | | | 22-Jul-09 | 0.347 | | 0.195 | | 0.690 | | 0.247 | | 0.555 | | 0.742 | | 0.911 | | 0.590 | | | | | | .240 | | | | 9-Oct-09 | 0.850 | | 0.724 | | 0.954 | | 0.920 | | 0.764 | | 0.764 | | 0.720 | | 0.698 | | | | | | .759 | | | | 15-Jan-10
21-Apr-10 | 0.404
0.425 | | 0.321
0.686 | | 0.356
1.260 | | 0.338
0.577 | | 0.273
0.629 | | 0.230
0.603 | | 0.256
0.564 | | 0.230
0.482 | | | | | | .087 | | | | 16-Jul-10 | 0.423 | | 0.186 | | 0.312 | | 0.304 | | ,503 | | 0.200 | | 0.703 | | 0.482 | | | | | | .126 | | | | 15-Oct-10 | 0.186 | | 0.265 | | | U | 0.130 | U | 0.139 | | 0.087 | U | 2.000 | | 0.087 | U | | | | | .104 | | | | 30-Nov-10 | NS | | 0.226 | | 0.325 | | NS | | NS | | NS | | 0.091 | | NS | | | | | | NS | | | | 26-Jan-11 | 1.000 | | 0.981 | | 1.020 | | 1.150 | | 0.948 | | 1.030 | | 0.922 | | 1.270 | | 1.000 | | 0.392 | | .280
NG | | | | 26-Jan-11**
27-Apr-11 | NS
0.133 | | 1.600
0.134 | | 1.900
0.616 | | NS
0.208 | | NS
0.824 | | NS
0.091 | | 1.900
0.152 | | NS
0.080 | II | | | | | NS
.095 | | | | 26-Jul-11 | 0.439 | | 1.520 | | 0.643 | | 2.210 | | 0.295 | | 0.395 | | 0.308 | | 0.165 | | | | | | .139 | | | | 28-Oct-11 | 0.810 | | 0.360 | | 0.440 | | 0.260 | | 0.450 | | 0.550 | | 0.660 | | 0.470 | | | | | 0. | .180 | | | | 23-Jan-12 | 0.630 | | 0.520 | | 0.530 | | 0.620 | | 0.530 | | 0.580 | | 0.580 | | 0.600 | | | | | | .590 | | | | 13-Apr-12
2-Jul-12 resample | 0.320
NS | | 0.270
NS | | 0.320
NS | | 0.270
NS | | 0.280
NS | | 0.300
NS | | 0.270
NS | | 0.220
0.130 | U | | | | | .130 | | | | 20-Jun-12 | 0.470 | | 0.056 | | 0.430 | | 0.580 | | 0.490 | | 0.460 | | 0.530 | | 0.130 | 0 | | | | | .280 | | | | 1-Nov-12 | 0.860 | | 0.480 | | 0.350 | | 0.510 | | 0.480 | | 0.780 | | 0.930 | | 0.710 | | | | | | .140 | | | | 1-Feb-13 | 0.110 | | 0.089 | | 0.087 | U | 0.087 | U | 0.092 | | 0.090 | | 0.220 | | 0.087 | U | | | | 0. | .140 | | | | 29-Apr-13 | 0.590 | | 0.460 | | 0.460 | | 0.450 | | 0.450 | | 0.330 | | 0.910 | | 0.430 | | | | | | .120 | | | | 9-Jul-13 | 0.350 | | 0.320 | | 0.300 | | 0.350 | | 0.340 | | 0.300 | | 0.330 | | 0.310 | | | | | | .290 | | o-Xylene | 220.0 | 9-Jul-13 RIDEM | NS
0.660 | | NS
0.100 | | NS
0.100 | | NS
0.500 | | 0.405 | | NS
0.110 | | NS
1.300 | | NS
0.850 | | | | | | .460 | | | | 18-Oct-13
9-Jan-14 | 4.000 | | 6.100 | | 0.100
0.160 | | 0.500
0.160 | | 0.770
0.160 | | 0.110 | | 0.330 | | 0.830 | | | | | | .140 | | | | 24-Apr-14 | 0.087 | U | 0.087 | U | 0.094 | | 0.087 | U | 0.087 | U | 0.087 | U | 0.099 | | 0.120 | | | | | | .087 | | | | 1-Aug-14 | 0.200 | | 0.160 | | 0.310 | | 0.700 | | 0.690 | | 0.230 | | 0.940 | | 0.770 | | | | | | .560 | | | | 12-Sept-14 resample | NS | | 0.130 | | NS | | | | | | NS | | | | 22-Oct-14 | 0.220 | | 0.160 | | | U | 0.130 | U | 0.130 | U | 0.130 | U | 0.130 U | | 0.160 | | | | | | .250 | | | | 20-Jan-15
30-Mar-15 resample | 0.130
NS | | 0.180
NS | | 0.140
NS | | 0.200
NS | | 0.150
NS | | 0.200
NS | | 0.260
NS | | 0.260
0.140 | | | | | | .270
NS | | | | 22-Apr-15 | 0.560 | | 0.640 | | 0.590 | | 0.560 | | 0.810 | | 0.460 | | 0.630 | | 0.620 | | | | | | .200 | | | | 21-Jul-15 | 0.660 | | 0.260 ^A | | 0.290 | | 0.330 | | 0.290 | | 0.280 | | 0.300 | | 0.220 | | | | | 0.3 | 390 ^J | | | | 23-Sept-15 resample | NS | | NS | | NS | | NS
0.120 J | | NS | | NS
0.150 J | | 0.360 3 | | NS
0.120 J | | | | | | NS | | | | 29-Oct-15
4-Dec-15 resample | 0.300
NS | U | 0.840
0.200 | U | 0.390
NS | | 0.130 ^J
NS | | 0.200
NS | U | 0.150 ^J
NS | | 0.420
NS U | | 0.130 ^J
NS | | | | | | .300
NS | | | | 27-Jan-16 | 0.17 | | 0.087 | U | 0.13 | | 0.087 | U | 0.1 | | 0.12 | | 0.17 | | 0.15 | | | | | | 0.11 | | | | 20-Apr-16 3 | 0.11 | | 0.087 | U | | U | 0.087 | U | 0.092 | | 0.087 | U | 0.087 U | | 0.087 | U | | | | | .087 | | | | 20-Jul-16 | 0.44 ^{M,W} | | 0.37 ^{M,W} | | 0.50 ^{M,W} | | 0.50 ^{M,W} | | 0.37 ^{M,W} | | 0.48 ^{M,W} | | 0.65 ^{M,W} | | 0.36 ^{M,W} | | | | | | 3 ^{M,W} | | | | 21-Oct-16
31-Jan-17 | 0.49
0.17 | | 0.64
0.15 | | 0.36
0.2 | | 0.66
0.13 | | 0.34
0.15 | | 0.35
0.13 | | 0.17
0.14 | | 0.33
0.12 | | | | | | 2.9 | | | | 17-Apr-17 ⁴ | 0.17 | U | 0.13 | U | | U | 0.13 | U | 0.13 | U | 0.13 | U | 0.14
0.13 U | | 0.12 | U | | | | | 0.13 | | | | 26-Jul-17 | 0.35 | | 0.37 | | 0.44 | | 0.41 | | 0.38 | | 0.36 | | 0.35 | | 0.35 | | | | | | 0.09 | | | | 12-Oct-17 | 0.09 | U | 0.14 | | 0.21 | | 0.23 | | 0.14 | | 0.19 | | 0.14 | | 0.16 | | | | | 0. | .087 | | | | 10-Jan-18 | 0.32 | | 0.67 | | 0.58 | | 0.64 | | 0.29 | | 0.29 | | 0.68 | | 0.37 | | | | | | .087 | | | | 11-Apr-18 | 0.24 | | 0.20 | | 0.19 | | 0.22 | | 0.16 | | 0.18 | | 0.16 | | 0.21 | | | | | | .43 ^D | | | | 27-Jul-18 | 0.12 | | 0.087 | U | 0.17 | | 0.17 | | 0.13 | U | 1 | | 0.17 | | 0.16 | | | | | | 0.12 | | | | 24-Oct-18
16-Jan-19 | 0.4
0.28 | | 0.16
0.22 | | 0.2
0.23 | | 0.22
0.24 | | 0.15
0.24 | | 0.28
0.29 | | 0.12
0.26 | | 0.087
0.13 | U | | | | | .099 | | | | 16-Jan-19
12-Apr-19 | 0.28 | | 0.22 | | 0.23 | | 0.24 | | 0.24 | | 0.29 | | 0.26 | | 0.13 | | | | | | 0.14 | | | | 29-Jul-19 | 0.35 | | 0.14 | | 0.15 | | 0.19 | | 0.21 | | 0.25 | | 0.28 | | 0.15 | | | | | | 0.15 | | | | 29-Oct-19 | NS | | 0.14 | | 0.15 | | 0.16 | | 0.17 | | 0.18 | | 0.17 | | NS | | | | | | 0.15 | | | | 1-Nov-19 | 0.2 | | NS | | 0.38 | | | | | 1 | NS | | | | 21-Jan-20 | 0.24 | | 0.18 | | 0.22 | | 0.19 | | 0.2 | | 0.2 | | 0.18 | | 0.15 | | | | | | 0.15 | | | | 22-Apr-20 | 0.087 | U | 0.087 | U | | U | 0.087 | U | 0.087 | U | 0.087 | U | 0.087 U | | 0.087 | U | | | | | .087 | | | | 23-Jul-20
29-Oct-20 | 0.15
0.48 | | 0.096
0.46 | | 0.11
0.38 | | 0.11
0.46 | | 0.15
0.53 | | 0.11
0.48 | | 0.17
0.55 | | 0.16
0.67 | | | | | | 0.55 | Page 47 of 48 Date Modified: 12/10/2020 | Volatile Organic
Compounds via TO-15 | CT Draft Proposed Indoor
Residential Target Air
Concentrations/ Interim RIDEM-
Approved Action Level | | Kitchen Storage
Room | Cafeteria | Gymnasium | Elevator
Hallway | Room 118 | Room 110 | Media Center
(Rm 145) | Room 152 | Room 149 | Room 234 | Ambient Outdoor
(AOA-1) | |---|---|-------------|-------------------------|-----------|-----------|---------------------|----------|----------|--------------------------|----------|----------|----------|----------------------------| | | | Sample Date | Lo | ual Q | al c | Qual Qua | Qua | ıl Qual | Qual | Qual | Oual | Qual | l Qual | * = Site Specific Compound of Concern per ATSDR Health Consultation, December 4, 2006. **- Analyzed by Con-Test Analytical Laboratory Elevated Data is a result of inadvertant cross-contamination at the laboratory, and not resultant from soil vapor intrusion. Media Center/Room 145 was resampled on 28 January 2008 with Tetrachloroethylene concentration not detacted by the laboratory (MDL = 0.14 ug/m³). Elevated Tetrachloroethylene and Acetone data detected on 27 March 2008 was determined to be the result of cleaning products (e.g., graffiti remover, stainless steel polish, etc.) introduced to the school in February and March, and not the result of soil vapor intrusion. 3: All samples collected on 20 April 2016 except for the Kitchen Storage Room, which was collected on 25 April 2016 due to inaccessibility of the room during spring break. All samples collected on 17 April 2017 except for the Kitchen Storage Room, which was collected on 25 April 2017 due to inaccessibility of the room during spring break. Summa canister had low pressure upon beginning sample colletion, possible interference. Re-sampling effort on 25 April 2008 indicates no exceedences of applicable Acetone and Tetrachloroethylene Action Levels. B Analyte found in associated blank as well as the sample but not excepted to affect data due to sample concentration >10x concentation found in blank. M Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the high side. Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the low side. Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side. N Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side. Estimated result as the result was between the MDL and the RDL. Initial calibration verification did not meet standard. Reported value is likely to be biased on the high side. ^D Elevated method detection limits due to failure of Con-test internal standards. Applies to Ambient Outdoor Air sample. #### NOTES All data presented in micrograms per cubic meter (ug/m³). Two values displayed with a slash indicates dilutions resulting in two different concentrations U = Designation indicates that the compound was not detected by the laboratory. Reporting limit shown in the data column. NS = Not sampled. None = No Draft Proposed CT
Residential TAC for this compound. = exceedance of interim RIDEM-approved action level Page 48 of 48 Date Modified: 12/10/2020 ## **APPENDIX C** # Subslab Vapor Analytical Summary | Volatile Organic Compounds via
TO-15 | | MP-1 | Qual | MP-2 | Qual | MP-3 | Qual | MP-4
Qual | MP-5 | Qual | MP-6 | Qual | MP-7 | Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | |---|--------------------------------|--------------------|------|-----------------|------|------------------|------|--------------------|------------------|------|-----------------------|------|-----------|------|-----------------------|------|-------------------------|------|--------------------------|------|-----------------------|------| | 10-13 | Sample Date
8-Feb-08 | 17.2 | Quai | NS | Quai | NS | Quai | NS | 4.75 | U | NS | Anyı | NS | Quai | NS | Quai | 5.62 | Agai | 11.4 | Quai | NS | Quai | | | 27-Mar-08 | NS | | 28.7 | | NS | | NS | NS | | 217 | | 12.4 | | | | 25-Apr-08 | NS | | NS | | 188 | | NS | NS | | NS | | 513 | | NS | | 34 | | NS | | 33.9 | | | | 29-May-08 | NS | | NS | | NS | | 40.9 | NS | | NS | | NS | | 92 | | 9.82 | | 16.4 | | NS | | | | 27-Jun-08 | 107 | | NS | | NS | | NS | 145 | | NS | | NS | | NS | | NS | | 20.4 | | 9.73 | | | | 31-Jul-08 | NS | | 101 | | NS | | NS | NS | | NS | | NS | | NS | | 14.4 | | NS | | 18.1 | | | | 28-Aug-08 | NS | | NS | | 1130 | | NS | NS | | NS | | 30.9 | | NS | | 46 | | 47.8 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 32.8 | NS | | NS | | NS | | 44.1 | | NS | | 9.4 | | 12.8 | | | | 27-Oct-08
25-Nov-08 | 19.6
NS | | NS
148 | | NS
NS | | NS
NS | 15
NS | | NS
183 | | NS
NS | | NS
NS | | 17.9
13 | | NS
24.7 | | 33.3
NS | | | | 18-Dec-08 | NS
NS | | NS | | 856 | | NS
NS | NS
NS | | NS | | 10.4 | | NS
NS | | NS | | 37.2 | | 22 | | | | 21-Jan-09 | NS | | NS | | NS | | 19.1 | NS | | NS | | NS | | 6.1 | | 2.4 | U | NS | | 4.8 | | | | 25-Feb-09 | 28.6 | | NS | | NS | | NS | 60.9 | | NS | | NS | | NS | | 9.5 | | 8.3 | | NS | | | | 26-Mar-09 | NS | | 102 | | NS | | NS | NS | | 47.5 | U | NS | | NS | | NS | | 50.6 | | 64.8 | | | | 29-Apr-09 | NS | | NS | | 1980 | | NS | NS | | NS | | 23.3 | | NS | | 5.15 | | NS | | 22.1 | | | | 22-Jul-09 | 58.5 | | NS | | 58,5 | | 148 | NS | | 87.8 | | NS | | NS | | 96 | | 88.1 | | NS | | | | 9-Oct-09 | NS | | 25.7 | | NS | | NS | 49.7 | | NS | | 9.2 | | 11100 | | 6.51 | | NS | | 16.8 | | | | 15-Jan-10 | 33.6 | | NS | | 90.9 | | 22.8 | NS | | 26.3 | | NS | | NS | | 12.5 | | 11.2 | | NS | | | | 21-Apr-10 | NS | | 21.9 | | NS | | NS | 206 | | NS | | 263 | | 2870 | | 72.8 | | NS | | 73.4 | | | | 16-Jul-10 | 654 | | NS | | 4800 | | 202 | NS
26 | | 11400 | | NS | | NS | | 8.34 | | 21.1 | | NS | | | | 15-Oct-10
26-Jan-11 | NS | | 11.3 | | NS
NS | | NS
54.4 | 26
NS | | NS
24.4 | | 10.2 | | 18.3 | | 7.03 | | NS
22.2 | | 21.2
NS | | | | 26-Jan-11
28-Feb-11 | 114
NS | | 26.8
NS | | NS
80.8 | | 54.4
NS | NS
NS | | 34.4
NS | | NS
NS | | 35.4
NS | | 25.3
NS | | 33.3
NS | | NS
NS | | | | 27-Apr-11 | NS
NS | | NS
106 | | 80.8
NS | | NS
NS | NS
255 | | NS
NS | | NS
220 | | NS
227 | | 17.8 | | NS
NS | | 58.2 | | | | 26-Jul-11 | 76.2 | | NS | | 120 | | 154 E | NS | | 2730 | | NS | | NS | | 12.8 | | 23.8 | | NS | | | | 28-Oct-11 | NS | | 48 | U | NS | | NS E | 48 | U | NS | | 48 | U | 48 | U | 51 | | NS | | 48 | U | | | 23-Jan-12 | 37 | | NS | | 36 | | 19 | NS | | 28 | | NS | | NS | | 38 | | 29 | | NS | | | | 13-Apr-12 | NS | | 32 | | NS | | NS | 70 | | NS | | 32 | | 83 | | 54 | | NS | | 43 | | | | 2-Jul-12 (resample) | NS | | NS | | NS | | NS | NS | | 48 | U | NS | | | | 23-Jun-12 | 21 | | NS | | 30 | | 370 | NS | | 1600 | | NS | | NS | | 43 | | 21 | | NS | | | | 1-Nov-12 | NS | | 41 | | NS | | NS | 52 | | NS | | 75 | | 44 | | 35 | | NS | | 43 | | | Acetone | 1-Feb-13 | 17 | | NS | | 12 | | 25 | NS | | 36 | | NS | | NS | | 16 | | 12 | | NS | | | Actione | 29-Apr-13 | NS | | 45 | | NS | | NS | 100 | | NS | | 68 | | 62 | | 33 | | NS | | 43 | | | | 9-Jul-13 | 100 | | NS
42 | | 170 | | 130 | NS | | 260 | | NS | | NS | | 80 | | 15
NG | | NS | | | | 18-Oct-13
9-Jan-14 | NS
250 | | 43
NG | | NS | | NS
25 | 61 | | NS | | 47 | | 57
NS | | 48 | | NS
33 | | 42
NG | | | | 9-Jan-14
24-Apr-14 | NS
NS | | NS
18 | | 16
NS | | 25
NS | NS
13 | | 11
NS | | NS
41 | | NS
15 | | 24
42 | | 33
24 | | NS
30 | | | | 1-Aug-14 | 31 ^M | | NS | | 110/99 ME | | 110/100 ME | NS | | NS
NS | | NS | | NS | | 31 ^M | | 57/50 ^{ME} | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | NS | | 210 ^E /130 | | NS | | | | 12-Sept-14 (resample) | NS | | NS | | NS | | NS | NS | | NS | | NS | | 15 | | NS | | NS | | NS | | | | 22-Oct-14 | NS | | 31 | | NS | | NS | 14 | | 5.3 | | 17 | | 3.8 | | 40 | | 19 | | NS | | | | 20-Jan-15 | 14 | | NS | | 23 | | 23 | NS | | 16 | | NS | | NS | | 39 | | 72 | | NS | | | | 30-Mar-15 (resample) | NS | | NS | | NS | | NS | NS | | 45 | | NS | | | | 22-Apr-15 | NS | | 87 ^V | | NS | | NS | 1.9 ^V | U | NS | | 43 | | 55 ^{L,V} /68 | | 42 | | NS | | 49 | | | | 21-Jul-15 | 12 | | NS | | 22 | | 20 | NS | | 9.2 | | NS | | NS | | 42 ° | | 11 ° | | NS | | | | 23-Sept-15 resample | NS | | NS | | NS | | NS | NS | | NS | | NS | | 5.0 | | NS | | NS | | NS | | | | 29-Oct-15 | NS
NG | | 4.5 | | NS | | NS
NG | 20 | | NS | | 11
NG | | 9.2 | | 11
NG | | NS | | 22
NG | | | | 4-Dec-15 resample
27-Jan-16 | NS
8.4 | | 1.9
NS | | NS
9.2 | | NS
7.2 | NS
NS | | NS
8.6 | | NS
NS | | NS
NS | | NS
49 | | NS
22 | | NS
NS | | | | 20-Apr-16 | NS | | 7.3 | | NS | | NS | 8.4 | | NS | | 11 | | 11 | | 35 | | NS | | 21 | | | | 20-Jul-16 | 37 | | NS | | 56 | | 44 | NS | | 35 | | NS | | NS | | 70 | | 51 | | NS | | | | 21-Oct-16 | NS | | 17 | | NS | | NS | 25 | | NS | | 22 | | 12 | | 29 | | NS | | 52 | | | | 31-Jan-17 | 7.4 ^{L V} | | NS LV | | 8.9 L,V | | 5.9 ^{L,V} | NS | | 6.7 ^{L,V} | | NS | | NS | | 21 ^{L,V} | | 20 ^{L,V} | | NS | | | | 17-Apr-17 | NS | | 7 | | NS | | NS | 17 | | NS | | 13 | | 7.5 | | 33 | | NS | | 49 | | | | 26-Jul-17 | 19
NC | | NS | | 15
NC | | 17
NC | NS
20 | | 11
NG | | NS
52 | | NS
29 | | 18 | | 16 | | NS | | | | 12-Oct-17
10-Jan-18 | NS
39 | | 32
NS | | NS
17 | | NS
8.1 | 20
NS | | NS
14 | | 52
NS | | NS
NS | | 22
26 | | NS
NS | | 33
28 | | | | 11-Apr-18 | NS | | 34 | | NS | | NS | 26 | | NS | | 36 | | 63 | | 38 | | NS | | 40 | | | | 23-May-18 | NS | | NS | | NS | | NS | NS | | 19 | | NS | | | | 27-Jul-18 | 73 | | NS | | 110 | | 130 | NS | | 77 | | NS | | NS | | 83 | | 63 | | NS | | | | 24-Oct-18 | NS | | 13 | | NS | | NS | 13 | | NS | | 16 | | 21 | | 30 | | NS | | 35 | | | | 16-Jan-19 | 33 | | NS | | 6.9 | | 6.1 | NS | | 6.8 | | NS | | NS | | 14 | | 21 | | NS | | | | 12-Apr-19 | NS | | 8.8 | | NS | | NS | 17 | | NS | | 9.2 | | 7.7 | | 25 | | NS | | 51 | | | | 29-Jul-19 | 130 ^E | | NS | | 92 ^E | | 130 ^E | NS | | 110 ^E | | NS | | NS | | 72 ^E | | 65 ^E | | NS | | | | 26-Sep-19 | NS | | NS | | NS | | NS | NS | | NS | | NS | | NS | | NS
25 ^D | | 68 | | NS
20 ^D | | | | 29-Oct-19
21-Jan-20 | NS
9.20 | | 9.8
NS | | NS
5.10 | | NS
8.40 | 12
NS | | NS
3.10 | | 6
NS | | 12
NS | | 35 ^D
9.50 | | 24 ^D
11.00 | | 29 ^D
NS | | | | 21-Jan-20
22-Apr-20 | 9.20
NS | | NS
15 | | 5.10
NS | | 8.40
NS | NS
25 | | 3.10
NS | | 38 | | NS
40 | | 9.30
60 ^E | | NS | | NS
40 | | | | 23-Jul-20 | 150 ^E | | NS | | 260 ^E | | 130 ^E | NS | | 210 ^E | | NS | | NS | | 120 ^E | | 92 | | NS | | | | 29-Oct-20 | NS | | 5.1 | | NS | | NS | 11 | | NS NS | | 6.6 | | 7.4 | | 25 | | NS | | 25 | | | | 1 | j | | • | | | | | | | | | | | | | | | | | , | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|--------------------------------|-------------------|------|-------------------|------|-------------------|--------|-------------------|------|-------------------|------|-------------------|------|-------------------|------|---------------------|------|-------------------|--------|-------------------|--------|-------------------|------| | TO-15 | Sample Date | | Qual | 8-Feb-08 | 1.08 | U | NS | | NS | | NS | | 1.08 | U | NS | | NS | | NS | | 1.08 | U | 1.08 | U | NS | | | ı | 27-Mar-08 | NS | | 1.08 | U | NS | 1.08 | U | 1.08 | U | | | 25-Apr-08 | NS | | NS | | 1.08 | U | NS | | NS | | NS | | 1.08 | U | NS | | 1.08 | U | NS
1.08 | ** | 1.08 | U | | 1 | 29-May-08
27-Jun-08 | NS
1.69 | U | NS
NS | | NS
NS | | 1.08
NS | U | NS
1.08 | U | NS
NS | | NS
NS | | 1.08
NS | U | 1.08
NS | U | 1.08
1.08 | U
U | NS
1.08 | U | | ı | 27-Juli-08
31-Jul-08 | NS | | 1.08 | U | NS | | NS
NS | | NS | 0 | NS
NS | | NS
NS | | NS | | 1.08 | U | NS | U | 1.08 | U | | ı | 28-Aug-08 | NS | | NS | | 1.08 | U | NS | | NS | | NS | | 1.08 | U | NS | | 1.08 | U | 1.08 | U | NS | | | ı | 30-Sep-08 | NS | | NS | | NS | | 2.2 | U | NS | | NS | | NS | _ | 2.2 | U | NS | | 2.2 | | 2.2 | U | | ı | 27-Oct-08 | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | 2.2 | U | | ı | 25-Nov-08 | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | NS | | 2.2 | U | 2.2 | U | NS | | | ı | 18-Dec-08 | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | NS | | 2.2 | U | 2.2 | U | | ı | 21-Jan-09 | NS | | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | 2.2 | U | NS | | 2.2 | U | | ı | 25-Feb-09 | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | 2.2 | U | NS | | | ı | 26-Mar-09 | NS | | 5.42 | U | NS | ** | NS | | NS | | 10.8 | U | NS | ** | NS | | NS
1 00 | ** | 1.08 | U | 1.08 | U | | ı | 29-Apr-09 | NS
5.42 | U |
NS
NS | | 1.08
5.42 | U
U | NS
10.8 | U | NS | | NS
5.42 | U | 1.08 | U | NS
NS | | 1.08 | U
U | NS
1.08 | TI. | 1.08 | U | | 1 | 22-Jul-09
9-Oct-09 | 5.42
NS | | 0.051 | U | NS | U | NS | | NS
1.08 | U | 5.42
NS | 0 | NS
1.08 | U | 226 | U | 1.08
1.08 | U | NS | U | NS
1.08 | U | | 1 | 15-Jan-10 | 1.08 | U | NS | | 1.08 | U | 1.08 | U | NS | | 1.08 | U | NS | | NS | | 1.08 | U | 1.08 | U | NS | | | 1 | 21-Apr-10 | NS | | 1.08 | U | NS | | NS | | 5.42 | U | NS | _ | 5.42 | U | 5.42 | U | 1.08 | U | NS | | 1.08 | U | | 1 | 16-Jul-10 | 1.08 | U | NS | | 1.08 | U | 1.08 | U | NS | | 8.19 | U | NS | | NS | | 1.08 | U | 1.08 | U | NS | | | ı | 15-Oct-10 | NS | | 0.108 | U | NS | | NS | | 1.08 | U | NS | | 1.08 | U | 1.08 | U | 1.08 | U | NS | | 1.08 | U | | ı | 26-Jan-11 | 10.8 | U | 1.08 | U | NS | | 1.08 | U | NS | | 5.42 | U | NS | | 5.42 | U | 5.42 | U | 5.42 | U | NS | | | 1 | 28-Feb-11 | NS | | NS | | 10.8 | U | NS | | ı | 27-Apr-11 | NS | | 1.08 | U | NS | | NS | | 1.08 | U | NS | | 1.08 | U | 1.08 | U | 1.08 | U | NS | | 1.08 | U | | ı | 26-Jul-11 | 3.62 | U | NS | | 3.62 | U | 1.08 | U | NS | | 5.42 | U | NS | | NS | | 1.08 | U | 5.42 | U | NS | | | 1 | 28-Oct-11 | NS | U | 6.2
NS | U | NS | U | NS | U | 6.2 | U | NS | U | 6.2 | U | 6.2 | U | 6.2
1.2 | U
U | NS | U | 6.2 | U | | ı | 23-Jan-12
13-Apr-12 | 1.2
NS | | 1.2 | U | 1.2
NS | U | 1.2
NS | | NS
1.2 | U | 1.2
NS | U | NS
1.2 | U | NS
1.2 | U | 1.2 | U | 1.2
NS | U | NS
1.2 | U | | ı | 2-Jul-12 (resample) | NS | 6.2 | U | NS | | | ı | 23-Jun-12 | 1.2 | U | NS | | 1.2 | U | 1.2 | U | NS | | 1.2 | U | NS | | NS | | 1.2 | U | 1.2 | U | NS | | | 1 | 1-Nov-12 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | 1 | 1-Feb-13 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | 1 | 29-Apr-13 | NS | | 0.62 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | 1 | 9-Jul-13 | 0.37 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | Acrylonitrile | 18-Oct-13 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | 1 | 9-Jan-14 | 0.25 | U | NS | ** | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS
0.25 | ** | NS | ** | 0.25 | U | 0.25 | U | NS
0.27 | U | | 1 | 24-Apr-14
1-Aug-14 | NS
0.25 | U | 0.25
NS | U | NS
0.37 | U | NS
0.37 | U | 0.25
NS | U | NS
NS | | 0.25
NS | U | 0.25
NS | U | 0.25
0.25 | U
U | 0.25
0.25 | U | 0.37
NS | 0 | | 1 | 27-Aug-14 | NS | | NS | | NS | U | NS | | NS | | 0.25 | U | NS
NS | | NS | | NS | | NS | | NS | | | 1 | 12-Sept-14 (resample) | NS | 0.37 ^{L,V} | U | NS | | NS | | NS | | | 1 | 22-Oct-14 | NS | | 0.37 ^L | U | NS | | NS | | 0.37 ^L | U | 0.50 ^L | U | NS | | | 1 | 20-Jan-15 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.37 | U | 0.25 | U | NS | | | 1 | 30-Mar-15 (resample) | NS | 0.28 | U | NS | | | 1 | 22-Apr-15 | NS | | 0.26 ^L | U | NS | | NS | | 0.25 ^L | U | NS | | 0.25 ^L | U | 0.50 | U | 0.25 ^L | U | NS | | 0.29 ^L | U | | 1 | 21-Jul-15 | 0.1 | U | NS | | 0.4 | U | 2 | U | NS | | 0.1 | U | NS | | NS | | 0.1 ^o | U | 0.1 ^o | U | NS | | | 1 | 23-Sept-15 resample | NS | | NS | TI | NS | | NS | | NS | II | NS | | NS | IJ | 0.1 | U | NS | U | NS | | NS | U | | 1 | 29-Oct-15
4-Dec-15 resample | NS
NS | | 0.1
0.1 | U | NS
NS | | NS
NS | | 0.1
NS | U | NS
NS | | 0.2
NS | U | 0.1
NS | U | 0.1
NS | U | NS
NS | | 0.1
NS | 0 | | 1 | 27-Jan-16 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS
NS | | NS | | 0.25 | U | 0.25 | U | NS | | | 1 | 20-Apr-16 | NS | | 0.25 | U | NS | Ü | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | 1 | 20-Jul-16 | 1.3 | U | NS | | 1.3 MW | | 1.3 | U | NS | | 1.3 | U | NS | | NS | | 1.3 | U | 1.3 | U | NS | | | 1 | 21-Oct-16 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | 1 | 31-Jan-17 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | 1 | 17-Apr-17
26-Jul-17 | NS
0.25 | U | 0.38
NS | U | NS
0.25 | U | NS
0.25 | U | 0.38
NS | U | NS
0.25 | U | 0.38
NS | U | 0.38
NS | U | 0.38
0.25 | U
U | NS
0.25 | U | 0.38
NS | U | | 1 | 12-Oct-17 | NS | | 0.25 | U | NS | U | NS | | 0.25 | U | NS | 0 | 0.76 | U | 0.63 | U | 0.23 | U | NS | U | 0.63 | U | | 1 | 10-Jan-18 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | | 1 | 11-Apr-18 | NS | | 0.25 | U | NS | | NS | | 2.5 | U | NS | | 2.5 | U | 2.5 | U | 0.25 | U | NS | | 2.5 | U | | 1 | 23-May-18
27-Jul-18 | NS
1.3 | U | NS
NS | | NS
1.3 | U | NS
1.3 | U | NS
NS | | NS
1.3 | U | NS
NS | | NS
NS | | NS
1.3 | U | 0.38
1.3 | U | NS
NS | | | 1 | 24-Oct-18 | NS | | 1.2 | U | NS | C | NS | | 1.2 | U | NS | | 1.2 | U | 1.2 | U | 1.2 | U | NS | | 1.2 | U | | | 16-Jan-19 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | | 12-Apr-19 | NS | | 0.25 | U | NS | | NS
0.25 | | 0.25 | U | NS
0.25 | | 0.31 | U | 0.38 | U | 0.38 | U | NS
0.25 | | 0.38 | U | | 1 | 29-Jul-19
26-Sep-19 | 0.38
NS | U | NS
NS | | 0.38
NS | U | 0.25
NS | U | NS
NS | | 0.25
NS | U | NS
NS | | NS
NS | | 0.25
NS | U | 0.25
<0.38 | U
U | NS
NS | | | | 29-Oct-19 | NS | | 0.25 | U | NS | | NS
NS | | 0.25 | U | NS
NS | | 0.25 | U | 0.25 | U | 1.3 ^D | U | 1.3 ^D | U | 1.3 ^D | | | 1 | 21-Jan-20 | 0.25 ^W | U | NS | | 0.25 ^W | U | 0.25 ^W | U | NS | | 0.25 ^w | U | NS | | NS | | 0.25 ^w | U | 0.25 ^W | U | NS | | | 1 | 22-Apr-20 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 23-Jul-20 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.5 | U | NS | | NS | | 0.5 | U | 0.5 | U | NS | | | | 29-Oct-20 | NS | 1 1 | 0.25 | U | NS | 1 | NS | 1 1 | 0.25 | U | NS | 1 | 0.25 | U | 0.25 | U | 0.25 | U | NS | 1 | 0.25 | U | | Volatile Organic Compounds via | | MP-1 | | MP-2 | Overal | MP-3 | 01 | MP-4 | Owell | MP-5 | | MP-6 | 02 | MP-7 | Owil | MP-8 | 01 | IMP-1 | 01 | IMP-2 | 01 | IMP-3 | 01 | |--------------------------------|----------------------------------|-------------|------|-------------------------|--------|--------------------|------|-------------|-------|-------------|------|--------------|------|-------------------------|------|--------------|------|-------------------|--------|-------------------|------|-------------------|------| | TO-15 | Sample Date
8-Feb-08 | 0.92 | Qual | NS | Qual | NS | Qual | NS | Qual | 0.98 | Qual | NS | Qual | NS | Qual | NS | Qual | 0.54 | Qual | 0.85 | Qual | NS | Qual | | | 27-Mar-08 | NS | | 0.54 | | NS | | NS | | NS | | 0.462 | | NS | | NS | | NS | | 0.788 | | 0.635 | | | | 25-Apr-08 | NS | | NS | | 0.584 | | NS | | NS | | NS | | 0.745 | | NS | | 0.428 | | NS | | 0.536 | | | | 29-May-08
27-Jun-08 | NS
0.626 | | NS
NS | | NS
NS | | 0.73
NS | | NS
0.468 | | NS
NS | | NS
NS | | 1.03
NS | | 1.12
NS | | 0.61
0.499 | | NS
0.399 | | | | 31-Jul-08 | NS | | 0.418 | | NS | | 0.358 | | NS | | 0.265 | | | | 28-Aug-08 | NS | | NS | | 1.02 | | NS | | NS | | NS | | 0.537 | | NS | | 0.815 | | 0.692 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 1.6 | U | NS | | NS | | NS | | 1.6 | U | NS | | 1.6 | U | 1.6 | U | | | 27-Oct-08
25-Nov-08 | 1.6
NS | U | NS
1.6 | U | NS
NS | | NS
NS | | 1.6
NS | U | NS
1.6 | U | NS
NS | | NS
NS | | 1.6
1.6 | U
U | NS
1.6 | U | 1.6
NS | U | | | 18-Dec-08 | NS | | NS | 0 | 1.6 | U | NS | | NS | | NS | | 1.6 | U | NS | | NS | | 1.6 | U | 1.6 | U | | | 21-Jan-09 | NS | | NS | | NS | | 1.6 | U | NS | | NS | | NS | | 1.6 | U | 1.6 | U | NS | | 1.6 | U | | | 25-Feb-09 | 1.6 | U | NS | | NS | | NS | | 1.6 | U | NS | | NS | | NS | | 1.6 | U | 1.6 | U | NS | | | | 26-Mar-09 | NS
NE | | 2.1
NS | | NS
0.603 | | NS
NS | | NS
NS | | 2.23
NS | U | NS
0.246 | | NS
NS | | NS
0.223 | U | 0.945
NS | | 1.48
0.367 | | | | 29-Apr-09
22-Jul-09 | NS
1.12 | U | NS
NS | | 0.603
56 | | 2.23 | IJ | NS
NS | | 1.45 | | 0.246
NS | | NS
NS | | 4.27 | U | 0.629 | | 0.367
NS | | | | 9-Oct-09 | NS | | 1.15 | | NS | | NS | | 0.974 | | NS | | 0.431 | | 46.6 | U | 0.619 | | NS | | 0.824 | | | | 15-Jan-10 | 0.763 | | NS | | 0.887 | | 0.98 | | NS | | 1.26 | | NS | | NS | | 0.964 | | 0.964 | | NS | | | | 21-Apr-10 | NS
0.222 | | 0.373 | | NS | | NS | | 0.16 | U | NS | ** | 1.6 | U | 1.61 | | 0.635 | ** | NS | T. | 1.26 | | | | 16-Jul-10
15-Oct-10 | 0.332
NS | | NS
0.319 | U | 1.53
NS | | 0.689
NS | | NS
0.319 | U | 2.41
NS | U | NS
0.319 | U | NS
0.319 | U | 0.319
0.319 | U
U | 0.319
NS | U | NS
0.319 | U | | | 26-Jan-11 | 3.19 | U | 2.49 | | NS | | 2.46 | | NS | | 1.6 | U | NS
NS | | 1.85 | | 1.8 | | 1.9 | | NS | | | | 28-Feb-11 | NS | | NS | | 3.19 | U | NS | | | 27-Apr-11 | NS | | 0.319 | U | NS | | NS | | 0.319 | U | NS | | 0.319 | U | 0.354 | | 0.319 | U | NS | | 0.319 | | | | 26-Jul-11 | 1.06 | U | NS
1.6 | U | 1.06
NS | U | 0.434 | | NS
1.6 | U | 1.6
NS | U | NS
1.6 | U | NS | U | 0.319 | U
U | 1.6
NS | U | NS
1.6 | U | | | 28-Oct-11
23-Jan-12 | NS
0.84 | | NS | 0 | 1.2 | | NS
0.98 | | 1.6
NS | | 0.81 | | 1.6
NS | | 1.6
NS | | 1.6
1.4 | | 1.5 | | 1.6
NS | | | | 13-Apr-12 | NS | | 0.32 | U | NS | | NS | | 0.32 | U | NS | | 0.32 | U | 0.32 | U | 0.32 | U | NS | | 0.32 | U | | | 2-Jul-12 (resample) | NS | 1.6 | U | NS | | | | 23-Jun-12 | 0.45 | | NS | | 0.61 | | 0.88 | | NS
0.42 | | 0.43 | | NS
0.40 | | NS | |
0.42 | | 0.4 | | NS | | | | 1-Nov-12
1-Feb-13 | NS
0.33 | | 0.45
NS | | NS
0.45 | | NS
0.47 | | 0.43
NS | | NS
0.35 | | 0.49
NS | | 0.56
NS | | 0.61
0.45 | | NS
0.46 | | 1
NS | | | | 29-Apr-13 | NS | | 0.41 | | NS | | NS | | 0.38 | | NS | | 0.41 | | 0.47 | | 0.63 | | NS | | 0.67 | | | | 9-Jul-13 | 0.64 | | NS | | 0.93 | | 0.76 | | NS | | 0.70 | | NS | | NS | | 0.65 | | 0.42 | | NS | | | Benzene | 18-Oct-13 | NS | | 0.66 | | NS | | NS | | 0.63 | | NS | | 0.86 | | 1.0 | | 0.28 | | NS | | 0.92 | | | | 9-Jan-14
24-Apr-14 | 1.2
NS | | NS
0.3 | | 1.1
NS | | 0.97
NS | | NS
0.22 | | 1.1
NS | | NS
0.32 | | NS
0.23 | | 1.5
0.39 | | 1.5
0.34 | | NS
0.35 | | | | 1-Aug-14 | 0.49 | | NS | | 0.79/0.76 | | 0.68/0.69 | | NS | | NS | | NS | | NS | | 0.34 | | 0.43 | | NS | | | | 27-Aug-14 | NS | | 0.69 | | NS | | | | 12-Sept-14 (resample) | NS | 0.43 | | NS | | NS | U | NS | | | | 22-Oct-14
20-Jan-15 | NS
0.42 | | 0.28
NS | | NS
0.33 | | NS
0.45 | | 0.21
NS | | 0.19
0.31 | | 0.34
NS | | 0.14
NS | | 0.36
0.63 | | 0.32
0.46 | | NS
NS | | | | 30-Mar-15 (resample) | NS | 0.41 | | NS | | | | 22-Apr-15 | NS | | 0.48 | | NS | | NS | | 0.35 | | NS | | 0.46 | | 0.57/0.60 | | 0.84 | | NS | | 0.93 | | | | 21-Jul-15 | 0.35 | | NS | | 0.520 ^J | | 3 | U | NS | | 0.29 | | NS | | NS | | 0.29 ° | | 0.41 ° | | NS | | | | 23-Sept-15 resample
29-Oct-15 | NS
NE | | NS
0.15 ^J | | NS
NS | | NS
NS | | NS
0.19 | | NS
NS | | NS
0.26 ^J | | 0.28
0.27 | | NS
0.24 | | NS
NS | | NS
0.23 | | | | 4-Dec-15 resample | NS
NS | | 0.11 | | NS
NS | | NS
NS | | NS | | NS
NS | | NS | | | | 27-Jan-16 | 0.32 | | NS | | 0.5 | | 0.53 | | NS | | 0.43 | | NS | | NS | | 0.72 | | 0.69 | | NS | | | | 20-Apr-16 | NS | | 0.21 | | NS | | NS | | 0.27 | | NS | | 0.27 | | 0.32 | | 0.73 | | NS | | 0.47 | | | | 20-Jul-16 | 0.32 | U | NS
0.25 | | 0.7 | | 0.41 | | NS
0.84 | | 0.68 | | NS
0.58 | | NS | | 0.43 | | 0.85 | | NS
0.064 | U | | | 21-Oct-16
31-Jan-17 | NS
0.24 | | 0.35
NS | | NS
0.43 | | NS
0.37 | | 0.84
NS | | NS
0.37 | | 0.58
NS | | 1.3
NS | | 0.39
0.66 | | NS
0.49 | | 0.064
NS | U | | | 17-Apr-17 | NS | | 0.25 | | NS | | NS | | 0.26 | | NS | | 0.24 | | 0.33 | | 0.29 | | NS | | 0.39 | | | | 26-Jul-17
12-Oct-17 | 0.2
NS | | NS
0.18 | | 0.41
NS | | 0.36
NS | | NS
0.17 | | 0.37
NS | | NS
0.23 | | NS
0.4 | | 0.4
0.37 | | 0.5
NS | | NS
0.32 | | | | 10-Jan-18 | 0.26 | | NS | | 0.46 | | 0.46 | | NS | | 0.44 | | NS | | NS | | 0.73 | | NS | | 0.35 | | | | 11-Apr-18 | NS | | 0.36 | | NS | | NS | | 0.64 | U | NS | | 0.64 | U | 0.64 | U | 0.99 | | NS | | 0.81 | | | | 23-May-18
27-Jul-18 | NS
0.32 | U | NS
NS | | NS
0.6 | | NS
0.39 | | NS
NS | | NS
0.43 | | NS
NS | | NS
NS | | NS
0.37 | | 0.3
0.38 | | NS
NS | | | | 24-Oct-18 | NS | | 0.32 | U | NS | | NS | | 0.32 | U | NS | | 0.32 | U | 0.32 | U | 0.32 | U | NS | | 0.47 | | | | 16-Jan-19 | 0.55 | | NS | | 0.5 | | 0.64 | | NS | | 0.48 | | NS | | NS | | 1 | | 0.75 | | NS | | | | 12-Apr-19 | NS | | 0.44 | | NS | | NS | | 0.37 | | NS | | 0.18 | | 0.71 | | 0.67 | | NS | | 0.54 | | | | 29-Jul-19 | 0.6 | | NS | | 0.73 | | 0.88 | | NS | | 1.3 | | NS | | NS | | 0.34 | | 1.1 | | NS | | | | 26-Sep-19 | NS | 0.58 | | NS | | | | 29-Oct-19 | NS
0.20 | | 0.29
NS | | NS
0.34 | | NS
0.38 | | 0.28 | | NS
0.35 | | 0.25 | | 0.37 | | 0.42 ^D | | 0.54 ^D | | 0.47 ^D | | | | 21-Jan-20
22-Apr-20 | 0.20
NS | | NS
0.12 | | 0.34
NS | | 0.38
NS | | NS
0.18 | | 0.35
NS | | NS
0.064 | U | NS
0.14 | | 0.69
0.21 | | 0.61
NS | | NS
0.21 | | | | 23-Jul-20 | 0.66 | | NS | | 0.66 | | 0.49 | | NS | | 0.91 | | NS | | NS | | 0.43 | | 0.13 | U | NS | | | | 29-Oct-20 | NS | | 0.48 | | NS | | NS | | 0.6 | | NS | | 0.35 | | 0.77 | | 0.73 | | NS | | 0.064 | U | | Volotile Organic Company | | MD 1 | | MP 2 | | MD 2 | | MP 4 | | MD 5 | | MD C | | MD 7 | MD 0 | | IMD 1 | | IMP 1 | T T | IMD 2 | | |---|-----------------------------------|-------------|------|-------------|------|-------------|------|-------------|------|-------------|------|-------------|------|---------------|-------------|------|-------------------------|--------|----------------------------|--------|-------------------------|--------| | Volatile Organic Compounds via
TO-15 | Sample Date | MP-1 | Qual | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Qual | MP-6 | Qual | MP-7 Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | | 8-Feb-08 | 0.13 | U | NS | | NS | | NS | | 0.13 | U | NS | | NS | NS | | 0.13 | U | 0.13 | U | NS | | | | 27-Mar-08 | NS | | 0.134 | U | NS | | NS | | NS | | 0.134 | U | NS | NS | | NS | | 0.134 | U | 0.134 | U | | | 25-Apr-08 | NS | | NS | | 0.134 | U | NS | | NS | | NS | | 0.134 U | NS | | 0.134 | U | NS | | 0.134 | U | | | 29-May-08 | NS
0.200 | ** | NS | | NS | | 0.13 | U | NS
0.124 | *** | NS | | NS
NG | 0.13 | U | 0.13 | U | 0.13 | U | NS
0.124 | ** | | | 27-Jun-08
31-Jul-08 | 0.209
NS | U | NS
0.134 | U | NS
NS | | NS
NS | | 0.134
NS | U | NS
NS | | NS
NS | NS
NS | | NS
0.134 | U | 0.134
NS | U | 0.134
0.134 | U
U | | | 28-Aug-08 | NS
NS | | NS | U | 0.134 | U | NS | | NS
NS | | NS
NS | | 0.134 U | NS | | 0.134 | U | 0.134 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 0.52 | | NS | | NS | | NS | 0.13 | U | NS | | 0.23 | | 0.13 | U | | | 27-Oct-08 | 0.13 | U | NS | | NS | | NS | | 1.07 | | NS | | NS | NS | | 0.13 | U | NS | | 0.13 | U | | | 25-Nov-08 | NS | | 0.13 | U | NS | | NS | | NS | | 0.13 | U | NS | NS | | 0.13 | U | 3 | | NS | | | | 18-Dec-08
21-Jan-09 | NS
NS | | NS
NS | | 0.13
NS | U | NS
0.13 | U | NS
NS | | NS
NS | | 0.13 U
NS | NS
0.13 | U | NS
0.13 | U | 0.13
NS | U | 0.13
0.13 | U
U | | | 25-Feb-09 | 0.13 | U | NS | | NS | | NS | | 0.13 | U | NS | | NS | NS | 0 | 0.13 | U | 0.13 | U | NS | | | | 26-Mar-09 | NS | | 0.67 | U | NS | | NS | | NS | | 1.34 | U | NS | NS | | NS | | 0.134 | U | 0.134 | U | | | 29-Apr-09 | NS | | NS | | 0.134 | U | NS | | NS | | NS | | 0.134 U | NS | | 0.134 | U | NS | | 0.134 | U | | | 22-Jul-09 | 0.67 | U | NS | | 27.3 | U | 1.34 | U | NS | | 0.67 | U | NS | NS | | 0.134 | U | 0.134 | U | NS | | | | 9-Oct-09 | NS
0.124 | U | 0.134 | U | NS
0.124 | U | NS
0.124 | U | 0.134 | U | NS
0.124 | U | 0.134 U | 28
NS | U | 0.134 | U
U | NS | U | 0.134 | U | | | 15-Jan-10
21-Apr-10 | 0.134
NS | U | NS
0.134 | U | 0.134
NS | U | 0.134
NS | U | NS
0.67 | U | 0.134
NS | 0 | NS
0.67 U | 0.67 | U | 0.134
0.134 | U | 0.134
NS | U | NS
0.134 | U | | | 16-Jul-10 | 0.134 | U | NS | | 0.134 | U | 0.134 | U | NS | | 1.01 | U | NS | NS | | 0.134 | | 0.134 | U | NS | | | | 15-Oct-10 | NS | | 0.134 | U | NS | | NS | | 0.134 | U | NS | | 0.134 U | 0.134 | U | 0.134 | U | NS | | 0.134 | U | | | 26-Jan-11 | 1.34 | U | 0.134 | U | NS | | 0.134 | U | NS | | 0.67 | U | NS | 0.67 | U | 0.67 | U | 0.67 | U | NS | | | | 28-Feb-11 | NS | | NS
0.124 | ,, | 1.34 | U | NS | | NS
0.124 | ** | NS | | NS
0.134 U | NS
0.124 | | NS
0.124 | *** | NS | | NS
0.124 | | | | 27-Apr-11
26-Jul-11 | NS
0.447 | U | 0.134
NS | U | NS
0.447 | U | NS
0.134 | U | 0.134
NS | U | NS
0.67 | U | 0.134 U
NS | 0.134
NS | U | 0.134
0.134 | U | NS
0.67 | U | 0.134
NS | U | | | 28-Oct-11 | NS | | 3.4 | U | NS | 0 | 0.134
NS | | 3.4 | U | NS | | 3.4 U | 3.4 | U | 3.4 | U | NS | | 3.4 | U | | | 23-Jan-12 | 0.67 | U | NS | | 0.67 | U | 0.67 | U | NS | | 0.67 | U | NS | NS | | 0.67 | U | 0.67 | U | NS | | | | 13-Apr-12 | NS | | 0.34 | U | NS | | NS | | 0.34 | U | NS | | 0.34 U | 0.34 | U | 0.34 | U | NS | | 0.34 | U | | | 2-Jul-12 (resample) | NS | NS | | NS | | 1.7 | U | NS | | | | 23-Jun-12
1-Nov-12 | 0.67
NS | U | NS
0.067 | U | 0.67
NS | U | 0.67
NS | U | NS
0.067 | U | 0.67
NS | U | NS
0.067 U | NS
0.067 | U | 0.67
0.067 | U
U | 0.67
NS | U | NS
0.067 | U | | | 1-Nov-12
1-Feb-13 | 0.067 | U | NS | U | 0.067 | U | 0.067 | U | NS | 0 | 0.067 | U | NS | 0.067
NS | U | 0.067 | U | 0.067 | U | 0.067
NS | | | | 29-Apr-13 | NS | | 0.16 | U | NS | | NS | | 0.067 | U | NS | | 0.67 U | 0.067 | U | 0.067 | U | NS | | 0.067 | U | | Bromodichloromethane | 9-Jul-13 | 0.1 | U | NS | | 0.067 | U | 0.067 | U | NS | | 0.067 | U | NS | NS | | 0.067 | U | 0.23 | | NS | | | Bromodicinoromethane | 18-Oct-13 | NS | | 0.13 | U | NS | | NS | | 0.13 | U | NS | | 0.13 U | 0.13 | U | 0.13 | U | NS | | 0.13 | | | | 9-Jan-14 | 0.13
NS | U | NS
0.13 | U | 0.13
NS | U | 0.13
NS | U | NS
0.13 | U | 0.13
NS | U | NS
0.13 U | NS
0.13 | U | 0.13
0.13 | U
U | 0.13 | U
U | NS
0.20 | U | | | 24-Apr-14
1-Aug-14 | 0.13 | U | NS
NS | U | 0.20 | U | 0.20 | U | NS | 0 | NS
NS | | NS U | 0.13
NS | U | 0.13 | U | 0.13
0.13 | U | NS | 0 | | | 27-Aug-14 | NS | | 0.067 | U | NS | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 0.1 | | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.10 | U | NS | | NS | | 0.10 | U | 0.10 | U | 0.10 U | 0.10 | U | 0.10 | U | 0.13 | U | NS | | | | 20-Jan-15 | 0.067 | U | NS
NG | | 0.067 | U | 0.067 | U | NS | | 0.067 | U | NS
NG | NS | | 0.1 | U | 0.067 | U
U | NS | | | | 30-Mar-15 (resample)
22-Apr-15 | NS
NS | | NS
0.069 | U | NS
NS | | NS
NS | | NS
0.067 | U | NS
NS | | NS
0.067 U | NS
0.097 | U | NS
0.067 | U | 0.075
NS | U | NS
0.077 | U | | | 21-Jul-15 | 0.3 | U | NS | Ü | NS | U | 7 | U | NS | | 0.4 | U | NS | NS | | 0.30 ° | U | 0.40 ° | U | NS | | | | 23-Sept-15 resample | NS | 0.3 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.4 | U | NS | | NS | | 0.4 | U | NS | | 0.6
U | 0.3 | U | 0.3 | U | NS | | 0.3 | U | | | 4-Dec-15 resample
27-Jan-16 | NS
0.067 | U | 0.3
NS | U | NS
0.067 | U | NS
0.067 | U | NS
NS | | NS
0.067 | U | NS
NS | NS
NS | | NS
0.067 | U | NS
0.42 | | NS
NS | | | | 20-Apr-16 | NS | | 0.067 | U | NS | | NS | | 0.83 | | NS | | 0.067 U | 0.067 | U | 0.067 | U | NS | | 0.12 | | | | 20-Jul-16 | 0.34 | U | NS | | 0.34 | | 0.34 | U | NS | | 0.38 | | NS | NS | | 0.43 | | 0.34 | U | NS | | | | 21-Oct-16 | NS | | 0.067 | U | NS | | NS | | 0.067 | U | NS | | 0.067 U | 0.067 | U | 0.067 | U | NS | | 0.067 | U | | | 31-Jan-17
17-Apr-17 | 0.067
NS | U | NS
0.10 | U | 0.067
NS | U | 0.067
NS | U | NS
0.10 | U | 0.067
NS | U | NS
0.10 U | NS
0.1 | U | 0.067
0.10 | U
U | 0.067
NS | U | NS
0.1 | U | | | 26-Jul-17 | 0.067 | U | NS | 0 | 0.067 | U | 0.067 | U | NS | | 0.067 | U | NS | NS | 0 | 0.067 | U | 0.067 | U | NS | | | | 12-Oct-17 | NS | | 0.067 | U | NS | | NS | | 0.067 | U | NS | | 0.2 U | 0.17 | U | 0.19 | U | NS | | 0.17 | U | | | 10-Jan-18
11-Apr-18 | 0.067
NS | U | NS
0.13 | U | 0.067
NS | U | 0.067
NS | U | NS
1.3 | U | 0.067
NS | U | NS
1.3 U | NS
1.3 | U | 0.067
0.13 | U
U | NS
NS | | 0.067
1.3 | U | | | 23-May-18 | NS | | NS | 0 | NS | | NS | | NS | | NS | | NS NS | NS | 0 | NS
NS | | 0.1 | U | NS | | | | 27-Jul-18 | 0.34 | U | NS
0.24 | ** | 0.34 | U | 0.34 | U | NS
0.24 | ** | 0.34 | U | NS
0.24 | NS
0.24 | *** | 0.34 | U | 0.34 | U | NS
0.24 | | | | 24-Oct-18
16-Jan-19 | NS
0.067 | U | 0.34
NS | U | NS
0.067 | U | NS
0.067 | U | 0.34
NS | U | NS
0.067 | U | 0.34 U
NS | 0.34
NS | U | 0.34
0.067 | U
U | NS
0.067 | U | 0.34
NS | U | | | 12-Apr-19 | NS | | 0.067 | U | NS | | NS | | 0.067 | U | NS | | 0.084 U | 0.1 | U | 0.1 | U | NS | | 0.1 | U | | | 29-Jul-19 | 0.1 | U | NS
NC | | 0.1 | U | 0.067 | U | NS
NE | | 0.067 | U | NS
NC | NS
NS | | 0.067 | U | 1.6 | , , , | NS | | | | 26-Sep-19
29-Oct-19 | NS
NS | | NS
0.067 | U | NS
NS | | NS
NS | | NS
0.067 | U | NS
NS | | NS
0.067 U | NS
0.067 | U | NS
0.34 ^D | U | <0.10
0.34 ^D | U
U | NS
0.34 ^D | | | | 29-Oct-19
21-Jan-20 | 0.07 | U | NS | " | 0.07 | U | 0.07 | U | NS | | 0.07 | U | 0.067
NS | 0.067
NS | 0 | 0.07 | U | 0.07 | U | NS | | | | 22-Apr-20 | NS | | 0.067 | U | NS | | NS | | 0.067 | U | NS | | 0.067 U | 0.067 | U | 0.067 | U | NS | | 0.067 | U | | | 23-Jul-20
29-Oct-20 | 0.067
NS | U | NS
0.067 | U | 0.067
NS | U | 0.067
NS | U | NS
0.067 | U | 0.13
NS | U | NS
0.067 U | NS
0.067 | U | 0.13
0.067 | U | 0.13
NS | U | NS
0.067 | U | | | 27 001-20 | 110 | | 0.007 | | 140 | | 110 | | 5.007 | U | 140 | | 0.007 | 0.007 | | 0.007 | 5 | 110 | | 0.007 | | | Volatile Organic Compounds via | 1 | MP-1 | | MP-2 | 1 | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------------------|-------------|------|-------------|------|-------------|------|-------------|------|------------------|------|------------|------|------------------|------|------------------|------|-------------------------|--------|-------------------------|------|----------------------|------| | TO-15 | Sample Date | MIP-I | Qual | NIP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Qual | MIP-0 | Qual | MIP-/ | Qual | MIP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | | 8-Feb-08 | 0.21 | U | NS | | NS | | NS | | 0.21 | U | NS | | NS | | NS | | 0.21 | U | 0.21 | U | NS | | | | 27-Mar-08 | NS | | 0.206 | U | NS | | NS | | NS | | 0.206 | U | NS | | NS | | NS | | 0.206 | U | 0.206 | U | | | 25-Apr-08 | NS | | NS | | 0.206 | U | NS | | NS | | NS | | 0.206 | U | NS | | 0.206 | U | NS | | 0.206 | U | | | 29-May-08 | NS
0.222 | IJ | NS
NS | | NS
NS | | 0.21
NS | U | NS
0.206 | U | NS
NS | | NS
NS | | 0.21
NS | U | 0.21
NS | U | 0.21
0.206 | U | NS
0.206 | U | | | 27-Jun-08
31-Jul-08 | 0.322
NS | 0 | 0.206 | U | NS
NS | | NS
NS | | 0.200
NS | | NS
NS | | NS
NS | | NS | | 0.206 | U | 0.206
NS | U | 0.206 | U | | | 28-Aug-08 | NS | | NS | | 0.206 | U | NS | | NS | | NS | | 0.206 | U | NS | | 0.206 | U | 0.206 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 0.41 | U | NS | | NS | | NS | | 0.41 | U | NS | | 0.41 | U | 0.41 | U | | | 27-Oct-08 | 0.41 | U | NS | | NS | | NS | | 0.41 | U | NS | | NS | | NS | | 0.41 | U | NS | | 0.41 | U | | | 25-Nov-08 | NS | | 0.14 | U | NS | | NS | | NS | | 0.41 | U | NS | | NS | | 0.41 | U | 0.41 | U | NS | | | | 18-Dec-08
21-Jan-09 | NS
NS | | NS
NS | | 0.41
NS | U | NS
0.41 | U | NS
NS | | NS
NS | | 0.41
NS | U | NS
0.41 | U | NS
0.41 | U | 0.41
NS | U | 0.41
0.41 | U | | | 21-Jan-09
25-Feb-09 | 0.41 | U | NS | | NS
NS | | NS | 0 | 0.14 | U | NS
NS | | NS
NS | | NS | U | 0.41 | U | 0.41 | II | NS | 0 | | | 26-Mar-09 | NS | | 1.03 | U | NS | | NS | | NS | | 2.06 | U | NS | | NS | | NS | | 0.206 | U | 0.206 | U | | | 29-Apr-09 | NS | | NS | | 0.206 | U | NS | | NS | | NS | | 0.206 | U | NS | | 0.206 | U | NS | | 0.206 | U | | | 22-Jul-09 | 1.03 | U | NS | | 42 | U | 2.06 | U | NS | | 1.03 | U | NS | | NS | | 0.206 | U | 0.206 | U | NS | | | | 9-Oct-09 | NS | | 0.206 | U | NS | | NS | | 0.206 | U | NS | | 0.206 | U | 43.1 | U | 0.206 | U | NS | | 0.206 | U | | | 15-Jan-10 | 0.206 | U | NS | ** | 0.206 | U | 0.206 | U | NS | | 0.206 | | NS | | NS | ** | 0.206 | U | 0.206 | U | NS | ** | | | 21-Apr-10
16-Jul-10 | NS
0.206 | U | 0.206
NS | U | NS
0.206 | U | NS
0.206 | U | 1.03
NS | U | NS
1.56 | U | 1.03
NS | U | 1.03
NS | U | 0.206
0.206 | U
U | NS
0.206 | U | 0.206
NS | U | | | 15-Oct-10 | 0.206
NS | | 0.206 | U | 0.206
NS | | 0.206
NS | | 0.206 | U | NS | | 0.206 | U | 0.206 | U | 0.206 | U | 0.206
NS | | 0.206 | U | | | 26-Jan-11 | 2.06 | U | 0.206 | U | NS | | 0.206 | U | NS | | 1.03 | U | NS | | 1.03 | U | 1.03 | U | 1.03 | U | NS | | | | 28-Feb-11 | NS | | NS | | 2.06 | U | NS | | | 27-Apr-11 | NS | | 0.206 | U | NS | | NS | | 0.206 | U | NS | | 0.206 | U | 0.206 | U | 0.206 | U | NS | | 0.206 | U | | | 26-Jul-11 | 0.69 | U | NS
5.2 | U | 0.69 | U | 0.207 | U | NS
5.2 | U | 1.03 | U | NS
5.2 | U | NS
5.2 | U | 0.207 | U | 1.03 | U | NS
5.2 | U | | | 28-Oct-11
23-Jan-12 | NS
1 | U | 5.2
NS | U | NS
1 | U | NS
1 | U | 5.2
NS | 0 | NS
1 | U | 5.2
NS | U | 5.2
NS | U | 5.2 | U
U | NS
1 | II | 5.2
NS | U | | | 13-Apr-12 | NS | | 1 | U | NS | | NS | | 1 | U | NS | | 1 | U | 1 | U | 1 | U | NS | | 1 | U | | | 2-Jul-12 (resample) | NS | 5.2 | U | NS | | | | 23-Jun-12 | 1 | U | NS | | 1 | U | 1 | U | NS | | 1 | U | NS | | NS | | 1 | U | 1 | U | NS | | | | 1-Nov-12 | NS | | 0.21 | U | NS | | NS | | 0.21 | U | NS | | 0.21 | U | 0.21 | U | 0.21 | U | NS | | 0.21 | U | | | 1-Feb-13 | 0.21 | U | NS | U | 0.21
NS | U | 0.21 | U | NS
0.21 | U | 0.21
NS | U | NS
0.21 | U | NS
0.21 | U | 0.21 | U
U | 0.21
NS | U | NS
0.21 | U | | | 29-Apr-13
9-Jul-13 | NS
0.31 | U | 0.52
NS | U | 0.21 | U | NS
0.21 | U | NS | | 0.21 | U | 0.21
NS | 0 | NS | U | 0.21
0.21 | U | 0.21 | U | 0.21
NS | 0 | | Bromoform | 18-Oct-13 | NS | | 0.21 | U | NS | | NS | | 0.21 | U | NS | | 0.21 | U | 0.21 | U | 0.21 | U | NS | | 0.21 | U | | | 9-Jan-14 | 0.21 | U | NS | | 0.21 | U | 0.21 | U | NS | | 0.21 | U | NS | | NS | | 0.21 | U | 0.21 | U | NS | | | | 24-Apr-14 | NS | | 0.21 | U | NS | | NS | | 0.21 | U | NS | | 0.21 | U | 0.21 | U | 0.21 | U | 0.21 | U | 0.31 | U | | | 1-Aug-14 | 0.21 | U | NS | | 0.31 | U | 0.31 | U | NS | | NS | U | NS | | NS | | 0.21 | U | 0.21 | U | NS | | | | 27-Aug-14
12-Sept-14 (resample) | NS
NS | | 0.21
NS | U | NS
NS | | NS
0.13 | U | NS
NS | | NS
NS | U | NS
NS | | | | 22-Oct-14 | NS | | 0.31 | U | NS | | NS | | 0.31 | U | 0.41 | U | NS | | | | 20-Jan-15 | 0.21 | U | NS | | 0.21 | U | 0.21 | U | NS | | 0.21 | U | NS | | NS | | 0.31 | U | 0.21 | U | NS | | | | 30-Mar-15 (resample) | NS | 0.23 | U | NS | | | | 22-Apr-15 | NS | | 0.21 | U | NS | | NS | | 0.21 | U | NS | | 0.21 | U | 0.03 | U | 0.21 | U | NS | | 0.24 | U | | | 21-Jul-15
23-Sept-15 resample | 0.5
NS | U | NS
NS | | 2
NS | U | 10
NS | U | NS
NS | | 0.6
NS | U | NS
NS | | NS
0.5 | U | 0.50 ⁰
NS | U | 0.60 °
NS | U | NS
NS | | | | 29-Oct-15 | NS
NS | | 0.6 | U | NS
NS | | NS
NS | | 0.6 | U | NS
NS | | 0.9 | U | 0.5 | U | 0.5 | U | NS
NS | | 0.5 | U | | | 4-Dec-15 resample | NS | | 0.5 | U | NS | | | 27-Jan-16 | 0.21 | U | NS | | 0.21 | U | 0.21 | U | NS | | 0.21 | U | NS | | NS | | 0.21 | U | 0.21 | U | NS | | | | 20-Apr-16 | NS | | 0.21 | U | NS | | NS | | 0.21 | U | NS | | 0.21 | U | 0.21 | U | 0.21 | U | NS | | 0.21 | U | | | 20-Jul-16 | 1.0 | U | NS | | 1.0 | U | 1.0 | U | NS | | 1.0 | U | NS | | NS | | 1.0 | U | 1.0 | U | NS | | | | 21-Oct-16
31-Jan-17 | NS
0.21 | U | 0.21
NS | U | NS
0.21 | U | NS
0.21 | U | 0.21
NS | U | NS
0.21 | U | 0.21
NS | U | 0.21
NS | U | 0.2
0.21 | U
U | NS
0.21 | II. | 0.21
NS | U | | | 17-Apr-17 | NS | | 0.310 | U | NS | | NS | | 0.310 | U | NS | | 0.310 | U | 0.310 | U | 0.310 | U | NS | 0 | 0.310 | U | | | 26-Jul-17 | 0.21 | U | NS | | 0.21 | U | 0.21 | U | NS | | 0.21 | U | NS | | NS | | 0.210 | U | 0.21 | U | NS | | | | 12-Oct-17
10-Jan-18 | NS
0.21 | U | 0.21
NS | U | NS
0.21 | U | NS
0.21 | U | 0.21
NS | U | NS
0.21 | U | 0.63
NS | U | 0.52
NS | U | 0.590
0.210 | U
U | NS
NS | | 0.52
0.21 | U | | | 10-Jan-18
11-Apr-18 | NS | | 0.21 | U | NS | 0 | NS | 0 | 2.1 ^D | U | NS | 0 | 2.1 ^D | U | 2.1 ^D | U | 0.210 | U | NS
NS | | 2.1 ^D | U | | | 23-May-18 | NS | | NS
NS | | NS
 | NS
NS | | 0.31 | U | NS | | | | 27-Jul-18 | 1.0 | U | NS | | 1.0 | U | 1.0 | U | NS | | 1.0 | U | NS | | NS | | 1.0 | U | 1.0 | U | NS | | | | 24-Oct-18
16-Jan-19 | NS
0.2 | U | 1
NS | U | NS
0.2 | U | NS
0.2 | U | 1
NS | U | NS
0.2 | U | 1
NS | U | 1
NS | U | 1.0
0.2 | U
U | NS
0.2 | U | 1
NS | U | | | 10-Jan-19
12-Apr-19 | NS | | 0.1 | U | NS | | NS | | 0.1 | U | NS | | 0.13 | U | 0.16 | U | 0.16 | U | NS | | 0.16 | U | | | 29-Jul-19 | 0.31 | U | NS | | 0.31 | U | 0.21 | U | NS | | 0.21 | U | NS | | NS | | 0.21 | U | 3.1 | | NS | | | | 26-Sep-19
29-Oct-19 | NS
NS | | NS
0.21 | U | NS
NS | | NS
NS | | NS
0.21 | 11 | NS
NS | | NS
0.21 | U | NS
0.21 | U | NS
1 ^D | U | <0.31
1 ^D | U | NS
1 ^D | | | | 29-Oct-19
21-Jan-20 | NS
0.21 | U | 0.21
NS | | NS
0.21 | U | NS
0.21 | | 0.21
NS | U | NS
0.21 | U | 0.21
NS | | 0.21
NS | U | 0.21 | U | 0.21 | U | NS | | | | 22-Apr-20 | NS | | 0.21 | U | NS | | NS | | 0.21 | U | NS | | 0.21 | U | 0.21 | U | 0.21 | U | NS | | 0.21 | U | | | 23-Jul-20
29-Oct-20 | 0.21
NS | U | NS
0.21 | U | 0.21
NS | U | 0.21
NS | U | NS
0.21 | U | 0.41
NS | U | NS
0.21 | U | NS
0.21 | U | 0.41
0.21 | U
U | 0.41
NS | U | NS
0.21 | U | | | 27-UCI-20 | IND | | 0.41 | U | 119 | | CNI | | 0.21 | U | 119 | | 0.21 | U | 0.21 | U | V.Z1 | U | IND | | 0.21 | | | Secondary Seco | Wildia o | | l Mari | | 1000 | | Mr. a | | 100.4 | | Wh 7 | | 100 c | | 100 | | MD 2 | 1 | n. | | DAD 2 | | II ED A | | |--|------------|-----------------------|--------|------|------|------|-------|------|-------|------|------|------|-------|------|------|------|------|------|-------|------|-------|------|---------|------| | | 9 1 | | MP-1 | Oual | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Oual | MP-6 | Qual | MP-7 | Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | West See | | | 126 | | NS | | NS | | NS | | 1.47 | _ | NS | | NS | | NS | | 3.08 | | 10.6 | | NS | | | War 10 Will Wil | The column | | - | U | | Label | Subject Subj | | | | | | | | | | | | | 145 | | | | | | | | | | | | | 2004 | | | | | | | | | | | | | NS | | | | | | | | | | | | | Description Section | | 30-Sep-08 | | | NS | | NS | | 101 | | NS | | NS | | NS | | | | NS | | | | | U | | Bin-Series Series | Second S | 22 com 35 | IJ | | | | II | | Declarate 195 | U | | | | Company Comp | | | NS | | 926 | | NS | | NS | | | | | | | | NS | | NS | | | | | | | Color | | - | | | | | | | | | | | | | | | | | | U | | | | | | 22 July 23 | 201-per 201- | | | | | | | | | | | | U | | | | | | | | | | | | | | Main 19 | | | | | | | | | | | | U | | | | | | | | | | | | | | Definition 1960 1 | | - | 25-Sub-1 | 22-deal | | | | | | | | | | | | | | U | | | | | | U | | U | | | | 2 | Principal Prin | | | | E | | | | | | | | | | | | | | | | | | U | | | | 2.5.mar2 | | | | | | U | | | | | | U | | | | U | | U | | U | | | | U | | 2 2 2 2 2 2 2 2 2 2 | | 23-Jan-12 | 110 | | NS | | 70 | | 12 | U | | | | | NS | | NS | | 12 | U | | U | | | | 25-liment | | - | | | | | | | | | | | | | | U | | U | | U | | | | U | *** | | _ | | | | 11th 1 55 | U | | U | | | | 29-Agr-13 SS | U | | | | 2 Optimization 15-Out-14 1050 NS 11 NS NS NS 22 NS NS 42 NS 64 | Solution 1900 | | 9-Jul-13 | 98 | | NS | | 130 | | 79 | | NS | | 370 | | NS | | NS | | 6.8 | | 2.4 | U | NS | | | 14-4pc-14 | 2-Butanone | 1-dug-14 | 11 | | 27-dag-14 NS | | - | 22-0cs-14 | | _ | 20 20 20 20 20 20 20 20 | | 12-Sept-14 (resample) | NS | 7.0 | | NS | | NS | | NS | | | 39-44se-15 (conseque) | | | | | | | | | | | | | | | | | | U | | | | U | | | | 22-Apr-15 | | | | | | | | | | | | | | U | | | | | | | | | | | | 21-lul-15 | 10 10 10 10 10 10 10 10 | 4-De-15 resumple | | | | | NS | 27-Jun-16 | 20-Apr-16 | | - | | 11 | | | | | | II | | | | II | | | | | | | | | | | | 20-Jul-16 36 NS 37 NS 12 U NS 46 NS 32 12 U NS 83 37 NS 12 U NS 83 33 NS 12 NS 33 NS 12 NS 83 33 NS 13 14 NS 15 | | | | | | | | | | U | | | | | | | | | | | | | | | | 21-Oct-1-16 NS 31-Inn-17 2.4 U 31-Inn-18 | | - | | | | | | | | U | | | | | | | | | | | | U | | | | 17-Apr-17 | NS | | | | | 26-jul-17 29 | | | | U | | | | | | U | | | | U | | | | | - | | | | | | | 10-Jan-18 | 11-Apr-18 | | 12-Oct-17 | | | 8.3 | | NS | | | | | | | | 7.1 | U | | U | 6.7 | U | NS | | | U | | NS | | | | | | | | | | U | | * * | | | | | | | | | | | | ** | | 27-Jul-18 22 | | | | | | | | | | | | U | | | | " | | U | | | | U | | U | | 16-Jan-19 | | 27-Jul-18 | 22 | | NS | | 24 | | 12 | U | NS | | 12 | U | NS | | NS | | 20 | | 12 | | NS | | | 12-Apr-19 | | | | | | U | | | | 11 | | U | | 17 | | U | | U | | U | | | | U | | 29-Jul-19 6.4 NS 25 12 NS NS NS NS NS NS NS N | | | | | | | | | | U | | | | U | | U | | U | | | | | | | | $ \begin{bmatrix} 29 - Oct - 19 & NS & 9 & NS & V & NS & V & A.2 & NS & V & A.2 A.2 & V & A.2 & V & A.2 & V & A.2 &$ | | 29-Jul-19 | 6.4 | | NS | | 25 | | 12 | | NS | | 11 | | NS | | NS | _ | 9.7 | | 3.2 | | NS | | | 21-Jan-20 9.00 NS 2.40 U 2.40 U NS 2.40 U NS 2.44 U NS 2.44 U NS 2.44 U NS 2.45 U NS 2.45 U NS 2.46 U NS 2.46 U NS 2.46 U NS 2.47 U NS NS 33 11 NS NS 2.66 NS 23-Jul-20 94 ^E NS 7.1 7 NS NS 2.47 U NS NS 33 11 NS NS | | _ | 22-Apr-20 NS 2.4 U NS NS 2.4 U NS NS 2.4 U NS NS 2.6 23-Jul-20 94 ^E NS 7.1 7 NS
4.7 U NS NS 33 11 NS NS | | | | | | | | II | | П | | | | II | | U | | U | | | | | | | | 23-Jul-20 94 ^E NS 7.1 7 NS 4.7 U NS NS 33 11 NS | | | | | | U | | | | | | U | | | | U | | U | | | | | | | | 29-Oct-20 NS 5.4 NS NS 3.3 NS 2.4 U 2.4 U 7.3 NS 2.6 | | 23-Jul-20 | | | | | | | | | | | | U | | | | | | | | | | | | | | 29-Oct-20 | NS | | 5.4 | | NS | | NS | | 3.3 | | NS | | 2.4 | U | 2.4 | U | 7.3 | | NS | | 2.6 | | | [|--------------------------------|------------------------|------------|-----------|------------|--------|--------------|--------|-------------------|------|------------|------|------------|------|------------|------|------------|------|--------------------------|--------|------------------|--------|------------------------|------| | Volatile Organic Compounds via | 0 15 | MP-1 | | MP-2 | 0:1 | MP-3 | 01 | MP-4 | 01 | MP-5 | 6 : | MP-6 | 01 | MP-7 | Oucl | MP-8 | 01 | IMP-1 | 01 | IMP-2 | 01 | IMP-3 | 01 | | TO-15 | Sample Date | 2.74 | Qual
U | NIC | Qual | NIC | Qual | NIC | Qual | 2.74 | Qual | NIC | Qual | | Qual | NIC | Qual | 2.74 | Qual | 2.74 | Qual | NIC | Qual | | | 8-Feb-08
27-Mar-08 | 2.74
NS | U | NS
2.74 | U | NS
NS | | NS
NS | | 2.74
NS | U | NS
NS | | NS
NS | | NS
NS | | 2.74
NS | U | 2.74
2.74 | U | NS
2.74 | U | | | 25-Apr-08 | NS | | NS | | 2.74 | U | NS | | NS | | NS | | 2.74 | U | NS | | 2.74 | U | NS | 0 | 2.74 | U | | | 29-May-08 | NS | | NS | | NS | | 2.74 | U | NS | | NS | | NS | | 2.74 | U | 2.74 | U | 2.74 | U | NS | | | | 27-Jun-08 | 4.27 | U | NS | | NS | | NS | | 2.74 | U | NS | | NS | | NS | _ | NS | | 2.74 | U | 2.74 | U | | | 31-Jul-08 | NS | | 2.74 | U | NS | | 2.74 | U | NS | | 2.74 | U | | | 28-Aug-08 | NS | | NS | | 2.74 | U | NS | | NS | | NS | | 2.74 | U | NS | | 2.74 | U | 2.74 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 5.5 | U | NS | | NS | | NS | | 5.5 | U | NS | | 5.5 | U | 5.5 | U | | | 27-Oct-08 | 22.1 | | NS | | NS | | NS | | 5.5 | U | NS | | NS | | NS | | 12.8 | | NS | | 5.5 | U | | | 25-Nov-08 | NS | | 5.5 | U | NS | | NS | | NS | | 5.5 | U | NS | | NS | | 5.5 | U | 11.5 | | NS | | | | 18-Dec-08 | NS | | NS | | 5.5 | U | NS | | NS | | NS | | 5.5 | U | NS | | NS | | 5.5 | U | 5.5 | U | | | 21-Jan-09 | NS | | NS | | NS | | 5.5 | U | NS | | NS | | NS | | 5.5 | U | 5.5 | U | NS | | 5.5 | U | | | 25-Feb-09 | 5.5 | U | NS | | NS | | NS | | 5.5 | U | NS | | NS | | NS | | 5.5 | U | 5.5 | U | NS | | | | 26-Mar-09 | NS | | 13.7 | U | NS | *** | NS | | NS | | 27.4 | U | NS
2.74 | U | NS | | NS
2.74 | | 2.74 | U | 2.74 | U | | | 29-Apr-09 | NS
13.7 | U | NS
NS | | 2.74
13.7 | U
U | NS
27.4 | U | NS
NS | | NS
13.7 | U | 2.74
NS | U | NS
NS | | 2.74
2.74 | U
U | NS
2.74 | U | 2.74
NS | U | | | 22-Jul-09
9-Oct-09 | NS | 0 | 1.08 | U | NS | 0 | NS | U | 2.74 | U | NS | U | 2.74 | U | 573 | U | 2.74 | U | NS | U | 2.74 | U | | | 15-Jan-10 | 2.74 | U | NS | U | 2.74 | U | 2.74 | U | NS | U | 2.74 | U | NS
NS | 0 | NS | 0 | 2.74 | U | 2.74 | U | NS | | | | 21-Apr-10 | 2.74
NS | | 2.74 | U | 2.74
NS | | 2.74
NS | | 13.7 | U | NS | J | 13.7 | U | 13.7 | U | 2.74 | U | 2.74
NS | | 2.74 | U | | | 16-Jul-10 | 2.74 | U | NS | | 2.74 | U | 2.74 | U | NS | | 20.7 | U | NS | ~ | NS | | 2.74 | U | 2.74 | U | NS | " | | | 15-Oct-10 | NS | | 2.74 | U | NS | | NS | | 2.74 | U | NS | | 2.74 | U | 2.74 | U | 2.74 | U | NS | | 2.74 | U | | | 26-Jan-11 | 27.4 | U | 2.74 | U | NS | | 2.74 | U | NS | | 13.7 | U | NS NS | - | 13.7 | U | 13.7 | U | 13.7 | U | NS | | | | 28-Feb-11 | NS | | | 27-Apr-11 | NS | | 2.745 | U | NS | | NS | | 2.74 | U | NS | | 2.74 | U | 2.74 | U | 2.74 | U | NS | | 2.74 | U | | | 26-Jul-11 | 9.17 | U | NS | | 9.17 | | 2.74 | U | NS | | 13.7 | U | NS | | NS | | 2.74 | U | 13.7 | U | NS | | | | 28-Oct-11 | NS | | 7.9 | U | NS | | NS | | 7.9 | U | NS | | 7.9 | U | 7.9 | U | 7.9 | U | NS | | 7.9 | U | | | 23-Jan-12 | 1.6 | U | NS | | 1.6 | U | 1.6 | U | NS | | 1.6 | U | NS | | NS | | 1.6 | U | 1.6 | U | NS | | | | 13-Apr-12 | NS | | 1.6 | U | NS | | NS | | 1.6 | U | NS | | 1.6 | U | 1.6 | U | 1.6 | U | NS | | 1.6 | U | | | 2-Jul-12 (resample) | NS | 7.9 | U | NS | | | | 23-Jun-12 | 1.6 | U | NS | | 1.6 | U | 1.6 | U | NS | | 1.6 | U | NS | | NS | | 1.6 | U | 1.6 | U | NS | | | | 1-Nov-12 | NS | | 0.32 | U | NS | | NS | | 0.32 | U | NS | | 0.44 | | 0.35 | | 0.38 | | NS | | 0.32 | U | | n-Butylbenzene | 1-Feb-13 | 0.32 | U | NS | | 0.32 | U | 0.32 | U | NS | | 0.32 | U | NS | | NS | | 0.32 | U | 0.32 | U | NS | | | n-Butylochzene | 29-Apr-13 | NS | | 0.79 | U | NS | | NS | | 0.32 | U | NS | | 0.32 | U | 0.32 | U | 0.32 | U | NS | | 0.32 | U | | | 9-Jul-13 | 0.47 | U | NS
0.54 | | 0.32 | U | 0.32 | U | NS | | 0.32 | U | NS
0.74 | | NS | | 0.32 | U | 0.32 | U | NS | | | | 18-Oct-13 | NS
0.32 | U | 0.54 | | NS
0.32 | U | NS
0.22 | U | 0.52 | | NS
0.32 | U | 0.74 | | 0.65
NS | | 0.68
0.32 | U | NS
0.32 | U | 0.87 | | | | 9-Jan-14
24-Apr-14 | 0.32
NS | 0 | NS
0.32 | U | NS | 0 | 0.32
NS | U | NS
0.32 | U | NS | U | NS
0.32 | U | 0.32 | U | 0.32 | U | 0.32
0.32 | U | NS
0.47 | U | | | 24-Apr-14
1-Aug-14 | 0.32 | U | NS | U | 0.63 | | 0.47 ^L | U | NS | U | NS
NS | | NS | 0 | NS | 0 | 0.32 | U | 0.56 | U | NS | | | | 27-Aug-14 | NS | | 0.32 | U | NS | | | | 12-Sept-14 (resample) | NS | 0.47 | U | NS | | NS | | NS | | | | 22-Oct-14 | NS | | 0.47 | U | NS | | NS | | 0.47 | U | 0.63 | U | NS | | | | 20-Jan-15 | 0.32 | U | NS | | 0.32 | U | 0.32 | U | NS | | 0.32 | U | NS | | NS | | 0.47 | U | 0.032 | U | NS | | | | 30-Mar-15 (resample) | NS | 0.36 | U | NS | | | | 22-Apr-15 | NS | | 0.32 | U | NS | | NS | | 0.32 | U | NS | | 0.32 | U | 0.46 | U | 0.32 | U | NS | | 0.36 | U | | | 27-Jan-16 | 0.32 | U | NS | | 0.32 | U | 0.32 | U | NS | | 0.32 | U | NS | | NS | | 0.32 | U | 0.32 | U | NS | 1 | | | 20-Apr-16 | NS | | 0.32 | U | NS | | NS | | 0.32 | U | NS | | 0.32 | U | 0.32 | U | 0.32 | U | NS | | 0.32 | U | | | 20-Jul-16 | 1.6 | U | NS | | 1.6 MV | U | 1.6 | U | NS | | 1.6 | U | NS | | NS | | 1.6 | U | 1.6 | U | NS | | | | 21-Oct-16 | NS | | 0.32 | U | NS | | NS | | 0.32 | U | NS | | | U | 0.32 | U | 0.32 | U | NS | | 0.32 | U | | | 31-Jan-17 | 0.32 | U | NS
0.47 | U | 0.32 | U | 0.32 | U | NS
0.47 | U | 0.32 | U | NS
0.47 | U | NS
0.47 | 11 | 0.32 | U | 0.32 | U | NS
0.47 | | | | 17-Apr-17
26-Jul-17 | NS
0.32 | U | 0.47
NS | " | NS
0.32 | U | NS
0.32 | U | 0.47
NS | " | NS
0.32 | U | 0.47
NS | U | 0.47
NS | U | 0.47
0.32 | U
U | NS
0.32 | U | 0.47
NS | U | | | 12-Oct-17 | NS | | 0.32 | U | NS | | NS | | 0.32 | U | NS | | | U | 0.79 | U | 0.9 | U | NS | | 0.79 | U | | | 10-Jan-18 | 0.32 | U | NS | | 0.32 | U | 0.32 | U | NS | | 0.32 | U | NS | | NS | | 0.32 | U | NS | | 0.32 | U | | | 11-Apr-18 | NS | | 0.32 | U | NS | | NS | | 3.2 | U | NS | | | U | 3.2 | U | 0.32 | U | NS
0.47 | ,, | 3.2 | U | | | 23-May-18
27-Jul-18 | NS
1.6 | U | NS
NS | | NS
1.6 | U | NS
1.6 | U | NS
NS | | NS
1.6 | U | NS
NS | | NS
NS | | NS
1.6 | U | 0.47
1.6 | U
U | NS
NS | 1 | | | 24-Oct-18 | NS | | 1.6 | U | NS | | NS | | 1.6 | U | NS | U | | U | 1.6 | U | 1.6 | U | NS | 0 | NS
1.6 | U | | | 16-Jan-19 | 0.32 | U | NS | ~ | 0.32 | U | 0.32 | U | NS | | 0.32 | U | NS | - | NS | | 0.32 | U | 0.32 | U | NS | | | | 12-Apr-19 | NS | | 0.32 | U | NS | | NS | | 0.32 | U | NS | | 0.4 | U | 0.47 | U | 0.47 | U | NS | | 0.47 | U | | | 29-Jul-19 | 0.47 | U | NS | | 0.47 | U | 0.32 | U | NS | | 0.32 | U | NS | | NS | | 0.32 | U | 0.32 | U | NS | 1 | | | 26-Sep-19 | NS | | NS
0.22 | ļ ,. l | NS | | NS | | NS | | NS | | NS
0.22 | ,, | NS
0.22 | | NS | | <0.47 | U | NS | 1 | | | 29-Oct-19
21-Jan-20 | NS
0.32 | U | 0.32
NS | U | NS
0.32 | U | NS
0.32 | U | 0.32
NS | U | NS
0.32 | U | 0.32
NS | U | 0.32
NS | U | 1.6 ^D
0.32 | U
U | 1.6 ^D | U
U | 1.6 ^D
NS | 1 | | | 21-Jan-20
22-Apr-20 | 0.32
NS | | NS
0.32 | U | 0.32
NS | " | 0.32
NS | U | 0.32 | U | 0.32
NS | U | | U | NS
0.32 | U | 0.32 | U | 0.32
NS | U | 0.32 | U | | | 23-Jul-20 | 0.32 | U | NS | | 0.32 | U | 0.32 | U | NS | | 0.63 | U | NS | - | NS | | 0.63 | U | 0.63 | U | NS | | | | 29-Oct-20 | NS | | 0.32 | U | NS | | NS | | 0.32 | U | NS | | 0.32 | U | 0.32 | U | 0.32 | U | NS | | 0.32 | U | | | | | 1 | I | 1 | | | | 1 | | 1 | | | | | | 1 | l | | | 1 | | | | I |--------------------------------|------------------------|------------|------|------------|------|-------------------|------|------------|------|------------|------|------------|------|------------|------|------------|------|------------------|------|------------------|----------|------------------|--------| | Volatile Organic Compounds via | | MP-1 | ļ | MP-2 | 0.1 | MP-3 | 0.1 | MP-4 | 0.1 | MP-5 | | MP-6 | 0.1 | MP-7 | 0.1 | MP-8 | 0.1 | IMP-1 | 0.1 | IMP-2 | 0.1 | IMP-3 | 0.1 | | TO-15 | Sample Date | 2.51 | Qual | 270 | Qual | 210 | Qual | 270 | Qual | 2.51 | Qual | 270 | Qual | 270 | Qual | 210 | Qual | 0.74 | Qual | 2.71 | Qual | 110 | Qual | | | 8-Feb-08 | 2.74 | U | NS | | NS | | NS | | 2.74 | U | NS | | NS | | NS | | 2.74 | U | 2.74 | U | NS | | | | 27-Mar-08 | NS | | 2.74 | U | NS | 2.74 | U | 2.74 | U | | | 25-Apr-08 | NS | | NS | | 2.74 | U | NS
2.74 | ** | NS | | NS | | 2.74 | U | NS | ** | 2.74 | U | NS | | 2.74 | U | | | 29-May-08 | NS | | NS | | NS | | 2.74 | U | NS
2.74 | U | NS | | NS | | 2.74 | U | 2.74 | U | 2.74 | U | NS | | | | 27-Jun-08 | 4.27 | U | NS
2.74 | U | NS | | NS | | 2.74 | U | NS | | NS | | NS | | NS
2.74 | U | 2.74 | U | 2.74 | U
U | | | 31-Jul-08 | NS | | 2.74 | U | NS | U | NS | | NS
NS | | NS
NS | | NS
2.74 | U | NS | | 2.74 | l l | NS | | 2.74 | U | | | 28-Aug-08 | NS
NS | | NS
NS | |
2.74
NS | U | NS
5.5 | U | NS
NS | | NS
NS | | 2.74
NS | 0 | NS
5.5 | U | 2.74
NS | U | 2.74
5.5 | U
U | NS
5.5 | U | | | 27-Oct-08
27-Oct-08 | 5.5 | U | NS
NS | | NS
NS | | NS | 0 | 5.5 | U | NS
NS | | NS
NS | | NS | U | 5.5 | U | NS | U | 5.5 | U | | | 25-Nov-08 | NS | 0 | 5.5 | U | NS | | NS | | NS | 0 | 5.5 | U | NS | | NS | | 5.5 | U | 5.5 | U | NS | | | | 18-Dec-08 | NS | | NS | | 5.5 | U | NS | | NS | | NS | 0 | 5.5 | U | NS | | NS | | 5.5 | U | 5.5 | U | | | 21-Jan-09 | NS | | NS | | NS | | 5.5 | U | NS | | NS | | NS | | 5.5 | U | 5.5 | U | NS | U | 5.5 | U | | | 25-Feb-09 | 5.5 | U | NS | | NS | | NS | | 5.5 | U | NS | | NS | | NS | | 5.5 | U | 5.5 | U | NS | | | | 26-Mar-09 | NS | | 13.7 | U | NS | | NS | | NS | | 27.4 | U | NS | | NS | | NS | | 2.74 | U | 2.74 | U | | | 29-Apr-09 | NS | | NS | | 2.74 | U | NS | | NS | | NS | | 2.74 | U | NS | | 2.74 | U | NS | | 2.74 | U | | | 22-Jul-09 | 13.7 | U | NS | | 13.7 | U | 27.4 | U | NS | | 13.7 | U | NS | | NS | | 2.74 | U | 2.74 | U | NS | | | | 9-Oct-09 | NS | | 2.74 | U | NS | | NS | | 2.74 | | NS | | 2.74 | U | 573 | U | 2.74 | U | NS | | 2.74 | U | | | 15-Jan-10 | 2.74 | U | NS | | 2.74 | U | 2.74 | U | NS | | 2.74 | U | NS | | NS | | 2.74 | U | 2.74 | U | NS | | | | 21-Apr-10 | NS | | 2.74 | U | NS | | NS | | 13.7 | U | NS | | 13.7 | U | 13.7 | U | 2.74 | U | NS | | 2.74 | U | | | 16-Jul-10 | 2.74 | U | NS | | 2,74 | U | 2.74 | U | NS | " | 20.7 | U | 2.74 | U | NS | | 2.74 | U | 2.74 | U | NS | | | | 15-Oct-10 | NS | | 2.74 | U | NS | " | NS | | 2.74 | U | NS | | 2.74 | | 2.74 | U | 2.74 | U | NS | | 2.74 | U | | | 26-Jan-11 | 27.4 | U | 2.74 | U | NS | | 2.74 | U | NS | | 13.7 | U | NS | | 13.7 | U | 13.7 | U | 13.7 | U | NS | Ĭ | | | 28-Feb-11 | NS | | NS | | 27.4 | U | NS | | | 27-Apr-11 | NS | | 2.74 | U | NS | _ | NS | | 2.74 | U | NS | | 2.74 | U | 2.74 | U | 2.74 | U | NS | | 2.47 | U | | | 26-Jul-11 | 9.17 | U | NS | _ | 9.17 | U | 2.74 | U | NS | _ | 13.7 | U | NS | | NS | _ | 2.74 | U | 13.7 | U | NS | | | | 28-Oct-11 | NS | | 6.3 | U | NS | | NS | | 6.3 | U | NS | | 6.3 | U | 6.3 | U | 6.3 | U | NS | | 6.3 | U | | | 23-Jan-12 | 1.3 | U | NS | | 1.3 | U | 1.3 | U | NS | | 1.3 | U | NS | | NS | | 1.3 | U | 1.3 | U | NS | | | sec-Butylbenzene | 13-Apr-12 | NS | | 1.3 | U | NS | | NS | | 1.3 | U | NS | | 1.3 | U | 1.3 | U | 1.3 | U | NS | | 1.3 | U | | | 2-Jul-12 (resample) | NS | 6.3 | U | NS | | | | 23-Jun-12 | 1.3 | U | NS | | 1.3 | U | 1.3 | U | NS | | 1.3 | U | NS | | NS | | 1.3 | U | 1.3 | U | NS | | | | 1-Nov-12 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 1-Feb-13 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | | 29-Apr-13 | NS | | 0.63 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 9-Jul-13 | 0.38 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | | 18-Oct-13 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 9-Jan-14 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | | 24-Apr-14 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | 0.38 | U | | | 1-Aug-14 | 0.25 | U | NS | | 0.38 | U | 0.38 | U | NS | | NS | | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | | 27-Aug-14 | NS | | 0.25 | U | NS | | | | 12-Sept-14 (resample) | NS | 0.38 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.38 | U | NS | | NS | | 0.38 | U | 0.50 | U | NS | | | | 20-Jan-15 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.38 | U | 0.25 | U | NS | | | | 30-Mar-15 (resample) | NS | 0.28 | U | NS | | | | 22-Apr-15 | NS | | 0.26 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.36 | U | 0.25 | U | NS | | 0.29 | U | | | 27-Jan-16 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | | 20-Apr-16 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 20-Jul-16 | 1.3 | U | NS | | 1.3 ^{MW} | U | 1.3 | U | NS | | 1.3 | U | NS | | NS | | 1.3 | U | 1.3 | U | NS | | | | 21-Oct-16 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 31-Jan-17 | 0.25 | U | NS | ** | 0.25 | U | 0.25 | U | NS
0.28 | | 0.25 | U | NS
0.28 | | NS
0.28 | ., | 0.25 | U | 0.25 | U | NS
0.28 | | | | 17-Apr-17
26-Jul-17 | NS
0.25 | U | 0.38
NS | U | NS
0.25 | U | NS
0.25 | U | 0.38
NS | U | NS
0.25 | U | 0.38
NS | U | 0.38
NS | U | 0.38
0.25 | U | NS
0.25 | U | 0.38
NS | U | | | 12-Oct-17 | NS | 0 | 0.25 | U | NS | | NS | | 0.25 | U | NS | 0 | 0.76 | U | 0.63 | U | 0.23 | U | NS | U | 0.63 | U | | | 10-Jan-18 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | Ü | | | 11-Apr-18 | NS | | 0.25 | U | NS | | NS | | 2.5 | U | NS | | 2.5 | U | 2.5 | U | 0.25 | U | NS | | 2.5 | U | | | 23-May-18 | NS | 1 | NS | | NS | | NS | | NS | 1 | NS | | NS | | NS | | NS | | 0.38 | U | NS | | | | 27-Jul-18 | 1.3 | U | NS | | 1.3 | U | 1.3 | U | NS | | 1.3 | U | NS | 1 | NS | 1 | 1.3 | U | 1.3 | U | NS | | | | 24-Oct-18 | NS
0.25 | U | 1.3 | U | NS
0.25 | 11 | NS
0.25 | 11 | 1.3
NS | U | NS
0.25 | 11 | 1.3
NC | U | 1.3 | U | 1.3 | U | NS
0.25 | 1 1 | 1.3 | U | | | 16-Jan-19
12-Apr-19 | 0.25
NS | " | NS
0.25 | U | 0.25
NS | U | 0.25
NS | U | 0.25 | U | 0.25
NS | U | NS
0.31 | U | NS
0.38 | U | 0.25
0.38 | U | 0.25
NS | U | NS
0.38 | U | | | 29-Jul-19 | 0.38 | U | NS | U | 0.38 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | U | | | 26-Sep-19 | NS | < 0.38 | U | NS | | | | 29-Oct-19 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 1.3 ^D | U | 1.3 ^D | U | 1.3 ^D | | | | 21-Jan-20 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | | 22-Apr-20 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 23-Jul-20 | 0.25 | U | NS
0.25 | ** | 0.25 | U | 0.25 | U | NS
0.25 | | 0.5 | U | NS
0.25 | | NS
0.25 | | 0.5 | U | 0.5 | U | NS | *** | | | 29-Oct-20 | NS | 1 | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | <u> </u> | 0.25 | U | | | | | | | | | | | | | | | | | • | | | | | | | | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------------------|--------------------|------|----------------|------|-------------|------|-------------|------|-------------------------|------|-------------|------|-------------------------|------|--|------|-------------------------|------|---------------------|--------|-------------------------|------| | TO-15 | Sample Date | | Qual | 8-Feb-08 | 0.44 | | NS | | NS | | NS | | 0.46 | | NS | | NS | | NS | | 0.53 | | 0.45 | | NS | | | | 27-Mar-08 | NS | | 0.539 | | NS | | NS | | NS | | 0.477 | | NS | | NS | | NS | | 0.576 | | 0.574 | | | | 25-Apr-08 | NS | | NS
NS | | 0.417
NS | | NS
0.46 | | NS
NS | | NS | | 0.448 | | NS
0.46 | | 0.459
0.47 | | NS
0.46 | | 0.448 | | | | 29-May-08
27-Jun-08 | NS
0.478 | | NS
NS | | NS
NS | | 0.46
NS | | 0.506 | | NS
NS | | NS
NS | | 0.46
NS | | NS | | 0.46
0.533 | | NS
0.553 | | | | 31-Jul-08 | NS | | 0.576 | | NS | | 0.548 | | NS | | 0.495 | | | | 28-Aug-08 | NS | | NS | | 0.515 | | NS | | NS | | NS | | 0.549 | | NS | | 0.567 | | 0.563 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 0.511 | | NS | | NS | | NS | | 0.577 | | NS | | 0.451 | | 0.469 | | | | 27-Oct-08 | 0.48 | | NS | | NS | | NS | | 0.36 | | NS | | NS | | NS | | 0.41 | | NS | | 0.56 | | | | 25-Nov-08 | NS | | 0.5 | | NS | | NS | | NS | | 0.42 | | NS | | NS | | 0.3 | | 0.44 | | NS | | | | 18-Dec-08 | NS | | NS | | 0.23 | | NS
0.26 | | NS | | NS | | 0.28 | | NS | | NS
0.27 | | 0.48 | | 0.46 | | | | 21-Jan-09
25-Feb-09 | NS
0.39 | | NS
NS | | NS
NS | | 0.36
NS | | NS
0.36 | | NS
NS | | NS
NS | | 0.47
NS | | 0.27
0.37 | | NS
0.36 | | 0.67
NS | | | | 26-Mar-09 | NS | | 0.629 | U | NS | | NS | | NS | | 1.26 | U | NS | | NS
NS | | NS | | 0.601 | | 0.565 | | | | 29-Apr-09 | NS | | NS | | 0.484 | | NS | | NS | | NS | | 0.528 | | NS | | 0.522 | | NS | | 0.654 | | | | 22-Jul-09 | 0.629 | U | NS | | 25.6 | U | 1.26 | U | NS | | 0.629 | U | NS | | NS | | 0.515 | | 0.503 | | NS | | | | 9-Oct-09 | NS | | 0.691 | | NS | | NS | | 0.666 | | NS | | 0.465 | | 26.2 | U | 0.71 | | NS | | 0.691 | | | | 15-Jan-10 | 0.427 | | NS | | 0.647 | | 0.509 | | NS | | 0.541 | | NS | | NS | | 0.541 | | 0.528 | | NS | | | | 21-Apr-10 | NS | | 0.126 | | NS | | NS | | 0.629 | U | NS | | 0.629 | U | 0.629 | U | 0.61 | | NS | | 0.503 | | | | 16-Jul-10 | 0.459 | | NS
0.500 | | 0.478 | | 0.515 | | NS
0.424 | | 0.95 | U | NS
0.282 | | NS
0.402 | | 0.559 | | 0.509 | | NS
0.44 | | | | 15-Oct-10
26-Jan-11 | NS
1.26 | U | 0.509
0.415 | | NS
NS | | NS
0.415 | | 0.434
NS | | NS
0.629 | U | 0.383
NS | | 0.402
0.629 | U | 0.421
0.629 | U | NS
0.629 | U | 0.44
NS | | | | 28-Feb-11 | NS | | 0.413
NS | | 1.26 | U | 0.413
NS | | NS | | 0.029
NS | | NS | | 0.029
NS | | 0.629
NS | | 0.029
NS | | NS | | | | 27-Apr-11 | NS | | 0.339 | | NS | | NS | | 0.339 | | NS | | 0.33 | | 0.364 | | 0.339 | | NS | | 0.327 | | | | 26-Jul-11 | 0.44 | | NS | | 0.42 | U | 0.409 | | NS | | 0.629 | U | NS | | NS | | 0.402 | | 0.629 | U | NS | | | | 28-Oct-11 | NS | | 3.1 | U | NS | | NS | | 3.1 | U | NS | | 3.1 |
U | 3.1 | U | 3.1 | U | NS | | 3.1 | U | | | 23-Jan-12 | 0.63 | U | NS | | 0.63 | U | 0.63 | U | NS | | 0.63 | U | NS | | NS | | 0.63 | U | 0.63 | U | NS | | | | 13-Apr-12 | NS | | 0.31 | U | NS | | NS | | 0.31 | U | NS | | 0.31 | U | 0.31 | U | 0.31 | U | NS | | 0.31 | U | | | 2-Jul-12 (resample) | NS
0.62 | ** | NS | | NS | ** | NS | ** | NS | | NS | U | NS | | NS | | NS
0.62 | ** | 1.6 | U
U | NS | | | | 23-Jun-12
1-Nov-12 | 0.63
NS | U | NS
0.48 | | 0.63
NS | U | 0.63
NS | U | NS
0.46 | | 0.63
NS | U | NS
0.46 | | NS
0.45 | | 0.63
0.47 | U | 0.63
NS | U | NS
0.43 | | | | 1-Feb-13 | 0.44 | | NS | | 0.43 | | 0.39 | | NS | | 0.42 | | NS | | NS | | 0.49 | | 0.5 | | NS | | | | 29-Apr-13 | NS | | 0.42 | | NS | | NS | | 0.44 | | NS | | 0.42 | | 0.48 | | 0.48 | | NS | | 0.46 | | | | 9-Jul-13 | 0.52 | | NS | | 0.52 | | 0.46 | | NS | | 0.48 | | NS | | NS | | 0.45 | | 0.47 | | NS | | | Carbon tetrachloride | 18-Oct-13 | NS | | 0.45 | | NS | | NS | | 0.41 | | NS | | 0.4 | | 0.45 | | 0.44 | | NS | | 0.47 | | | | 9-Jan-14 | 0.40 | | NS | | 0.45 | | 0.40 | | NS | | 0.43 | | NS | | NS | | 0.43 | | 0.43 | | NS | | | | 24-Apr-14 | NS | | 0.48 | | NS | | NS | | 0.45 | | NS | | 0.42 | | 0.47 | | 0.47 | | 0.47 | | 0.48 | | | | 1-Aug-14 | 0.30 | | NS
NS | | 0.44
NS | | 0.43 | | NS | | NS
0.45 | | NS | | NS | | 0.56 | | 0.43 | | NS | | | | 27-Aug-14
12-Sept-14 (resample) | NS
NS | | 0.45
NS | | NS
NS | | NS
0.43 | | NS
NS | | NS
NS | U | NS
NS | | | | 22-Oct-14 | NS | | 0.45 | | NS | | NS | | 0.42 | | 0.43 | | 0.42 | | 0.45 | | 0.43 | | 0.44 | | NS | | | | 20-Jan-15 | 0.45 | | NS | | 0.49 | | 0.42 | | NS | | 0.44 | | NS | | NS | | 0.48 | | 0.48 | | NS | | | | 30-Mar-15 (resample) | NS | 0.43 | | NS | | | | 22-Apr-15 | NS | | 0.28 | | NS | | NS | | 0.29 | | NS . | | 0.34 | | 0.34/0.36 | | 0.33 | | NS | | 0.33 | | | | 21-Jul-15 | 0.270 ¹ | | NS | | 1 | U | 6 | U | NS | | 0.28 | | NS | | NS | | 0.25 ^{J,O} | | 0.24 ^{J,O} | | NS | | | | 23-Sept-15 resample | NS
NS | | NS
0.35 | | NS
NS | | NS
NS | | NS
0.29 ^J | | NS | | NS
0.27 ^J | | 0.29 ^J
0.28 ^J | | NS
0.27 ^J | | NS
NS | | NS
0.27 ^J | | | | 29-Oct-15
4-Dec-15 resample | NS
NS | | 0.33 J | | NS | | NS
NS | | NS | | NS
NS | | NS | | | | 27-Jan-16 | 0.57 | | NS | | 0.59 | | 0.53 | | NS | | 0.56 | | NS | | NS | | 0.57 | | 0.59 | | NS | | | | 20-Apr-16 | NS | | 0.65 | | NS | | NS | | 0.61 | | NS | | 0.62 | | 0.65 | | 0.64 | | NS | | 0.67 | | | | 20-Jul-16 | 0.42 | | NS | | 0.58 | | 0.59 | | NS | | 0.64 | | NS | | NS | | 0.63 | | 0.55 | | NS | | | | 21-Oct-16 | NS | | 0.49 | | NS | | NS | | 0.45 | | NS | | 0.44 | | 0.46 | | 0.48 | | NS | | 0.47 | | | | 31-Jan-17
17-Apr-17 | 0.41
NS | | NS
0.49 | | 0.38
NS | | 0.39
NS | | NS
0.44 | | 0.4
NS | | NS
0.43 | | NS
0.49 | | 0.45
0.44 | | 0.48
NS | | NS
0.48 | | | | 26-Jul-17 | 0.4 | | NS | | 0.44 | | 0.41 | | NS | | 0.4 | | NS | | NS | | 0.39 | | 0.39 | | NS | | | | 12-Oct-17 | NS | | 0.38 | | NS | | NS | | 0.37 | | NS | | 0.43 | | 0.62 | | 0.47 | | NS | | 0.41 | | | | 10-Jan-18 | 0.34 | | NS
0.40 | | 0.35 | | 0.36 | | NS
1.2 ^D | | 0.35 | | NS | | NS | | 0.37 | | NS | | 0.37 | ,, | | | 11-Apr-18
23-May-18 | NS
NS | | 0.49
NS | | NS
NS | | NS
NS | | 1.3 ^D
NS | U | NS
NS | | 1.3 ^D
NS | U | 1.3 ^D
NS | U | 0.55
NS | | NS
0.45 | | 1.3 ^D
NS | U | | | 27-Jul-18 | 0.31 | U | NS
NS | | 0.31 | U | 0.31 | U | NS
NS | | 0.31 | U | NS | | NS
NS | | 0.31 | U | 0.43 | U | NS | | | | 24-Oct-18 | NS | | 0.31 | U | NS | | NS | | 0.31 | U | NS | | 0.31 | U | 0.31 | U | 0.31 | U | NS | | 0.31 | U | | | 16-Jan-19 | 0.4 | | NS
0.47 | | 0.39 | | 0.39 | | NS
0.44 | | 0.4 | | NS
0.20 | | NS
0.42 | | 0.44 | | 0.44
NC | | NS
0.42 | | | | 12-Apr-19
29-Jul-19 | NS
0.37 | | 0.47
NS | | NS
0.44 | | NS
0.47 | | 0.44
NS | | NS
0.49 | | 0.39
NS | | 0.42
NS | | 0.45
0.46 | | NS
1.8 | | 0.43
NS | | | | 26-Sep-19 | NS | < 0.094 | U | NS | | | | 29-Oct-19 | NS | | 0.063 | U | NS | | NS | | 0.49 | | NS | | 0.46 | | 0.45 | | 0.43 ^D | | 0.5 ^D | | 0.44^{D} | | | | 21-Jan-20 | 0.42 | | NS
0.27 | | 0.40 | | 0.41 | | NS
0.4 | | 0.40 | | NS
0.28 | | NS
0.28 | | 0.43 | | 0.44 | | NS
0.20 | | | | 22-Apr-20
23-Jul-20 | NS
0.39 | | 0.37
NS | | NS
0.43 | | NS
0.44 | | 0.4
NS | | NS
0.62 | | 0.38
NS | | 0.38
NS | | 0.39
0.5 | | NS
0.53 | | 0.39
NS | | | | 29-Oct-20 | NS | | 0.44 | | NS | | NS | | 0.46 | | NS | | 0.42 | | 0.51 | | 0.47 | | NS | | 0.47 | | | | | | | | | | | | | | | | | | | 1 | | | | | 1 | _ | | | | | | | |---|--------------------------------|-------------|------|-------------|--------|-------------|------|-------------|------|-------------|------|-------------|------|---------------|-------------|------|-------------------------|--------|---------------------------|--------|-------------------------|------| | Volatile Organic Compounds via
TO-15 | Sample Date | MP-1 | Qual | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Qual | MP-6 | Qual | MP-7
Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | 10-13 | 8-Feb-08 | 0.09 | U | NS | Quai | NS | Quai | NS | Quai | 0.09 | U | NS | Quai | NS | NS | Quai | 0.09 | U | 0.09 | U | NS | Quai | | | 27-Mar-08 | NS | | 0.052 | U | NS | | NS | | NS | | 0.092 | U | NS | NS | | NS | | 0.092 | U | 0.092 | U | | | 25-Apr-08 | NS | | NS | | 0.092 | U | NS | | NS | | NS | | 0.092 U | NS | | 0.092 | U | NS | | 0.092 | U | | | 29-May-08 | NS | | NS | | NS | | 0.09 | U | NS | | NS | | NS | 0.09 | U | 0.09 | U | 0.09 | U | NS | | | | 27-Jun-08 | 0.207 | | NS | | NS | | NS | | 0.092 | U | NS | | NS | NS | | NS | | 0.092 | U | 0.092 | U | | | 31-Jul-08 | NS | | 0.092 | U | NS | NS | | 0.092 | U | NS | | 0.092 | U | | | 28-Aug-08 | NS | | NS | | 0.092 | U | NS | | NS | | NS | | 0.092 U | NS | | 0.092 | U | 0.092 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 2.3 | U | NS | | NS | | NS | 2.3 | U | NS | | 2.3 | U | 2.3 | U | | | 27-Oct-08 | 2.3 | U | NS | ** | NS | | NS | | 2.3 | U | NS | | NS | NS | | 2.3 | U | NS | ** | 2.3 | U | | | 25-Nov-08
18-Dec-08 | NS
NS | | 2.3
NS | U | NS
2.3 | U | NS
NS | | NS
NS | | 2.3
NS | U | NS
2.3 U | NS
NS | | 2.3
NS | U | 2.3
2.3 | U
U | NS
2.3 | U | | | 21-Jan-09 | NS | | NS | | NS | · · | 2.3 | U | NS
NS | | NS
NS | | NS U | 2.3 | U | 2.3 | U | NS | 0 | 2.3 | U | | | 25-Feb-09 | 2.3 | U | NS | | NS | | NS | | 2.3 | U | NS | | NS | NS | | 2.3 | U | 2.3 | U | NS | | | | 26-Mar-09 | NS | _ | 0.46 | U | NS | | NS | | NS | | 0.92 | U | NS | NS | | NS | | 0.092 | U | 0.092 | U | | | 29-Apr-09 | NS | | NS | | 0.092 | U | NS | | NS | | NS | | 0.092 U | NS | | 0.092 | U | NS | | 0.092 | U | | | 22-Jul-09 | 0.46 | U | NS | | 18.8 | U | 0.92 | U | NS | | 0.46 | U | NS | NS | | 0.092 | U | 0.092 | U | NS | | | | 9-Oct-09 | NS | | 0.092 | U | NS | | NS | | 0.092 | U | NS | | 0.092 U | 19.2 | U | 0.092 | U | NS | | 0.092 | U | | | 15-Jan-10 | 0.092 | U | NS | | 0.092 | U | 0.092 | U | NS | | 0.092 | | NS | NS | | 0.092 | U | 0.092 | U | NS | | | | 21-Apr-10 | NS | | 0.092 | U | NS | | NS | | 0.46 | U | NS | | 0.46 U | 0.46 | U | 0.092 | U | NS | | 0.092 | U | | | 16-Jul-10 | 0.092 | U | NS | _ | 0.092 | U | 0.212 | | NS | 1 | 0.695 | U | NS | NS | | 0.092 | U | 0.092 | U | NS | 1 | | | 15-Oct-10 | NS
0.02 | | 0.092 | U | NS | | NS | | 0.129 | | NS | | 0.106 | 0.101 | | 0.092 | U | NS
0.46 | | 0.101 | | | | 26-Jan-11 | 0.92 | U | 0.092 | U | NS
0.02 | U | 0.092 | U | NS
NE | | 0.46 | U | NS
NC | 0.46 | U | 0.46 | U | 0.46 | U | NS
NC | | | | 28-Feb-11 | NS
NS | | NS
0.002 | U | 0.92 | U | NS
NC | | NS
0.002 | U | NS
NS | | NS
0.092 U | NS
0.002 | U | NS
0.002 | U | NS
NS | | NS
0.002 | U | | | 27-Apr-11
26-Jul-11 | NS
0.307 | U | 0.092
NS | 0 | NS
0.307 | U | NS
0.092 | U | 0.092
NS | | NS
0.46 | U | 0.092 U
NS | 0.092
NS | U | 0.092
0.092 | U | NS
0.46 | U | 0.092
NS | U | | | 28-Oct-11 | NS | | 2.3 | U | NS | | NS | | 2.3 | U | NS | 0 | 2.3 U | 2.3 | U | 2.3 | U | NS | | 2.3 | U | | | 23-Jan-12 | 0.46 | U | NS | | 0.46 | U | 0.46 | U | NS | | 0.46 | U | NS S | NS | | 0.46 | U | 12 | | NS | | | | 13-Apr-12 | NS | | 0.46 | U | NS | | NS | | 0.46 | U | NS | | 0.46 U | 0.46 | U | 0.46 | U | NS | | 0.46 | U | | | 2-Jul-12 (resample) | NS | NS | | NS | | 2.3 | U | NS | | | | 23-Jun-12 | 0.46 | U | NS | | 0.46 | U | 0.46 | U | NS | | 0.46 | U | NS | NS | | 0.46 | U | 0.46 | U | NS | | | | 1-Nov-12 | NS | | 0.092 | U | NS | | NS | | 0.092 | U | NS | | 0.16 | 0.092 | U | 0.092 | U | NS | | 0.092 | U | | | 1-Feb-13 | 0.092 | U | NS | | 0.092 | U | 0.092 | U | NS | | 0.092 | U | NS | NS | | 0.092 | U | 0.092 | U | NS | | | | 29-Apr-13 | NS | | 0.12 | U | NS | | NS | | 0.046 | U | NS | | 0.046 U | 0.046 | U | 0.046 | U | NS | | 0.046 | U | | Chlorobenzene | 9-Jul-13 | 0.18 | | NS | | 0.14 | | 0.15 | | NS | | 0.15 | | NS | NS | | 0.092 | U | 0.092 | U | NS | | | | 18-Oct-13 | NS | ** | 0.092 | U | NS | | NS | ** | 0.092 | U | NS
0.002 | | 0.092 U | 0.092 | U | 0.092 | U | NS
0.002 | ** | 0.092 | U | | | 9-Jan-14 | 0.092
NS | U | NS
0.046 | U | 0.092
NS | U | 0.092
NS | U | NS
0.046 | U | 0.092
NS | U | NS
0.046 U | NS
0.046 | U | 0.092
0.046 | U
U | 0.092
0.046 | U
U | NS
0.14 | U | | | 24-Apr-14
1-Aug-14 | 0.092 | U | 0.046
NS | | 0.14 | U | 0.25 | | 0.046
NS | 0 | NS
NS | | 0.046 U | 0.046
NS | 0 | 0.046 | U | 0.046 | U | NS | | | | 27-Aug-14 | NS | | 0.092 | U | NS | NS | | NS | Ü | NS | | NS | | | | 12-Sept-14 (resample) | NS | _ | NS | 0.14 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.14 | U | NS | | NS | | 0.14
| U | 0.14 | U | 0.14 U | 0.14 | U | 0.14 | U | 0.18 | U | NS | | | | 20-Jan-15 | 0.092 | U | NS | | 0.092 | U | 0.092 | U | NS | | 0.092 | U | NS | NS | | 0.14 | U | 0.092 | U | NS | | | | 30-Mar-15 (resample) | NS | NS | | NS | | 0.10 | U | NS | | | | 22-Apr-15 | NS | | 0.094 | U | NS | | NS | | 0.092 | U | NS | | 0.092 U | 0.13 | U | 0.092 | U | NS | | 0.11 | U | | | 21-Jul-15 | 0.2 | U | NS | | 0.9 | U | 5 | U | NS | | 0.3 | U | NS | NS | | 0.2 ° | U | 0.2 ° | U | NS | | | | 23-Sept-15 resample | NS | 0.2 | U | NS
0.2 | | NS | | NS | 1 | | | 29-Oct-15 | NS | | 0.3 | U
U | NS | | NS | | 0.3 | U | NS
NC | | 0.4 U | 0.2 | U | 0.2 | U | NS | | 0.2 | U | | | 4-Dec-15 resample
27-Jan-16 | NS
0.092 | U | 0.2
NS | U | NS
0.092 | U | NS
0.092 | U | NS
NS | | NS
0.092 | U | NS
NS | NS
NS | | NS
0.092 | U | NS
0.092 | U | NS
NS | | | | 27-Jan-16
20-Apr-16 | 0.092
NS | | 0.092 | U | 0.092
NS | | 0.092
NS | | 0.092 | U | 0.092
NS | | 0.092 U | 0.092 | U | 0.092 | U | 0.092
NS | 0 | 0.092 | U | | | 20-Jul-16 | 0.46 | U | NS | | 0.46 | U | 0.46 | U | NS | | 0.46 | U | NS | NS | | 0.46 | U | 0.46 | U | NS | | | | 21-Oct-16 | NS | | 0.092 | U | NS | | NS | | 0.092 | U | NS | | 0.092 U | 0.092 | U | 0.092 | U | NS | | 0.092 | U | | | 31-Jan-17 | 0.092 | U | NS | | 0.092 | U | 0.092 | U | NS | | 0.092 | U | NS | NS | | 0.092 | U | 0.092 | U | NS | | | | 17-Apr-17 | NS
0.002 | 17 | 0.14
NS | U | NS
0.002 | T.T | NS
0.002 | 17 | 0.14
NS | U | NS
0.002 | 17 | 0.14 U | 0.14
NS | U | 0.14 | U | NS
0.002 | 11 | 0.14
NS | U | | | 26-Jul-17
12-Oct-17 | 0.092
NS | U | NS
0.092 | U | 0.092
NS | U | 0.092
NS | U | NS
0.092 | U | 0.092
NS | U | NS
0.28 U | NS
0.23 | U | 0.092
0.26 | U
U | 0.092
NS | U | NS
0.23 | U | | | 10-Jan-18 | 0.092 | U | NS | | 0.092 | U | 0.092 | U | NS | | 0.092 | U | NS | NS | | 0.092 | U | NS | | 0.092 | U | | | 11-Apr-18 | NS | | 0.092 | U | NS | | NS | | 0.92 | U | NS | | 0.92 U | 0.92 | U | 0.092 | U | NS | | 0.92 | U | | | 23-May-18 | NS
0.46 | ** | NS
NC | | NS
0.46 | *** | NS
0.46 | ** | NS
NC | 1 | NS
0.46 | ** | NS
NC | NS
NC | | NS
0.46 | # T | 0.14 | U | NS | 1 | | | 27-Jul-18
24-Oct-18 | 0.46
NS | U | NS
0.46 | U | 0.46
NS | U | 0.46
NS | U | NS
0.46 | U | 0.46
NS | U | NS
0.46 U | NS
0.46 | U | 0.46
0.46 | U
U | 0.46
NS | U | NS
0.46 | U | | | 16-Jan-19 | 0.092 | U | NS | | 0.092 | U | 0.092 | U | NS | | 0.092 | U | NS | NS | | 0.092 | U | 0.092 | U | NS | | | | 12-Apr-19 | NS | | 0.092 | U | NS | | NS | | 0.092 | U | NS | | 0.12 U | 0.14 | U | 0.14 | U | NS | | 0.14 | U | | | 29-Jul-19 | 0.14 | U | NS | | 0.14 | U | 0.092 | U | NS | 1 | 0.092 | U | NS | NS | | 0.092 | U | 0.092 | U | NS | 1 | | | 26-Sep-19 | NS | | NS
0.002 | | NS | | NS | | NS
0.002 | | NS | | NS | NS
0.002 | | NS
0.46 ^D | | <0.14 | U | NS
0.46 ^D | | | | 29-Oct-19
21-Jan-20 | NS
0.09 | U | 0.092
NS | U | NS
0.09 | U | NS
0.09 | U | 0.092
NS | U | NS
0.09 | U | 0.092 U
NS | 0.092
NS | U | 0.46 | U
U | 0.46 ^D
0.09 | U
U | 0.46°
NS | | | | 21-Jan-20
22-Apr-20 | NS | | 0.092 | U | NS | | NS | | 0.092 | U | NS | | 0.092 U | 0.092 | U | 0.092 | U | NS | | 0.092 | U | | | 23-Jul-20 | 0.092 | U | NS | | 0.092 | U | 0.092 | U | NS | | 0.18 | U | NS | NS | | 0.18 | U | 0.18 | U | NS | | | | 29-Oct-20 | NS | | 0.092 | U | NS | 1 | NS | i | 0.092 | U | NS | | 0.092 U | 0.092 | U | 0.092 | U | NS | | 0.092 | U | | | | | | | | | | | | ary 2008 - C | | | | | | | | | | | | | | |--------------------------------|----------------------------------|--------------------------|-----------|--------------------------|------|--------------------------|------|--------------------------|------|--------------------------|-----------|----------------------------|------|--------------------------|------|--------------------------|------|-----------------------------|------------------|-------------------------------|------------------|---------------------------|--------| | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | 0.1 | MP-4 | | MP-5 | | MP-6 | 0.1 | MP-7 | | MP-8 | 0.1 | IMP-1 | 0.1 | IMP-2 | | IMP-3 | | | TO-15 | Sample Date
8-Feb-08 | 0.05 | Qual
U | NS | Qual | NS | Qual | NS | Qual | 0.05 | Qual
U | NS | Qual | NS | Qual | NS | Qual | 0.05 | Qual
U | 0.05 | Qual
U | NS | Qual | | | 27-Mar-08 | NS | | 0.053 | U | NS | | NS | | NS | | 0.053 | U | NS | | NS | | NS | | 0.053 | U | 0.053 | U | | | 25-Apr-08 | NS | | NS | | 0.053 | U | NS | | NS | | NS | | 0.139 | | NS | | 0.053 | U | NS | | 0.053 | U | | | 29-May-08 | NS
0.002 | ** | NS | | NS | | 0.11 | | NS
0.122 | | NS | | NS | | 0.1 | | 0.07 | | 0.05 | U | NS
0.052 | | | | 27-Jun-08
31-Jul-08 | 0.082
NS | U | NS
0.053 | U | NS
NS | | NS
NS | | 0.132
NS | | NS
NS | | NS
NS | | NS
NS | | NS
0.053 | U | 0.053
NS | U | 0.053
0.053 | U
U | | | 28-Aug-08 | NS | | NS | | 0.053 | U | NS | | NS | | NS | | 0.153 | | NS | | 0.053 | U | 0.075 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 1.3 | U | NS | | NS | | NS | | 1.3 | U | NS | | 1.3 | U | 1.3 | U | | | 27-Oct-08 | 1.3 | U | NS | | NS | | NS | | 1.3 | U | NS | | NS | | NS | | 1.3 | U | NS | | 1.6 | | | | 25-Nov-08
18-Dec-08 | NS
NS | | 1.3
NS | U | NS
1.3 | U | NS
NS | | NS
NS | | 1.3
NS | U | NS
1.3 | U | NS
NS | | 1.3
NS | U | 1.3
1.3 | U
U | NS
1.3 | U | | | 21-Jan-09 | NS | | NS | | NS | | 1.3 | U | NS | | NS | | NS | | 1.3 | U | 1.3 | U | NS | | 1.3 | U | | | 25-Feb-09 | 1.3 | U | NS | | NS | | NS | | 1.3 | U | NS | | NS | | NS | | 1.3 | U | 1.3 | U | NS | | | | 26-Mar-09 | NS | | 0.264 | U | NS | | NS | | NS | | 0.527 | U | NS | | NS | | NS | | 0.1212 | | 0.063 | | | | 29-Apr-09
22-Jul-09 | NS
0.264 | U | NS
NS | | 0.137
10.8 | U | NS
0.527 | U | NS
NS | | NS
0.277 | | 0.063
NS | | NS
NS | | 0.053
0.053 | U
U | NS
0.061 | | 0.053
NS | U | | | 9-Oct-09 | 0.204
NS | | 0.053 | U | NS | | NS | | 0.058 | | NS | | 0.406 | | 11 | U | 0.053 | U | NS | | 0.053 | U | | | 15-Jan-10 | 0.053 | U | NS | | 0.074 | | 0.066 | | NS | | 0.053 | | NS | | NS | | 0.053 | U | 0.053 | | NS | | | | 21-Apr-10 | NS | | 0.074 | | NS | | NS | | 0.264 | | NS | | 0.303 | | 0.303 | | 0.053 | U | NS | | 0.116 | | | | 16-Jul-10
15-Oct-10 | 0.1
NS | | NS
0.053 | U | 2.55
NS | | 0.166
NS | | NS
0.082 | | 0.398
NS | U | NS
0.071 | | NS
0.053 | U | 0.053
0.053 | U | 0.087
NS | | NS
0.053 | U | | | 26-Jan-11 | 0.527 | U | 0.053 | U | NS
NS | | 0.077 | | 0.082
NS | | 0.264 | U | 0.071
NS | | 0.053 | U | 0.053 | U | 0.264 | U | 0.053
NS | 0 | | | 28-Feb-11 | NS | | NS | | ,527 | U | NS | | | 27-Apr-11 | NS | | 0.053 | U | NS | | NS | | 0.079 | | NS` | | 0.082 | | 0.053 | U | 0.053 | U | NS | | 0.053 | U | | | 26-Jul-11
28-Oct-11 | 0.176
NS | U | NS
1.3 | U | 0.176
NS | U | 0.116
NS | | NS
1.3 | U | 0.264
NS | U | NS
1.3 | U | NS
1.3 | U | 0.053
1.3 | U
U | 0.264
NS | | NS
1.3 | U | | | 28-Oct-11
23-Jan-12 | 0.26 | U | NS | 0 | 0.26 | U | 0.26 | U | NS | U | 0.26 | U | NS | U | NS | U | 0.26 | U | 0.26 | U | NS | U | | | 13-Apr-12 | NS | | 0.26 | U | NS | | NS | | 0.26 | U | NS | | 0.26 | U | 0.26 | U | 0.26 | U | NS | | 0.26 | U | | | 2-Jul-12 (resample) | NS | 1.3 | U | NS | | | | 23-Jun-12 | 0.26 | U | NS
0.052 | U | 0.26 | U | 0.26 | U | NS
0.085 | | 0.26 | U | NS
0.08 | | NS
0.052 | | 0.26 | U | 0.26 | U | NS
0.097 | | | | 1-Nov-12
1-Feb-13 | NS
0.082 | | 0.053
NS | 0 | NS
0.053 | U | NS
0.11 | | 0.085
NS | | NS
0.053 | U | 0.08
NS | | 0.053
NS | U | 0.053
0.053 | U
U | NS
0.053 | U | 0.087
NS | | | | 29-Apr-13 | NS | | 0.4 | | NS | | NS | | 0.11 | U | NS | | 0.11 | | 0.11 | U | 0.11 | U | NS | | 0.11 | U | | Chlorothon | 9-Jul-13 | 0.11 | | NS | | 0.12 | | 0.31 | | NS | | 0.091 | | NS | | NS | | 0.11 | | 0.053 | U | NS | | | Chloroethane | 18-Oct-13 | NS | | 0.053 | U | NS | ** | NS | | 0.11 | | NS | U | 0.091 | | 0.053 | U | 0.053 | U | NS
0.052 | II II | 0.053 | U | | | 9-Jan-14
24-Apr-14 | 0.084
NS | | NS
0.026 | U | 0.053
NS | U | 0.11
NS | | NS
0.026 | U | 0.053
NS | U | NS
0.13 | | NS
0.026 | U | 0.053
0.026 | U
U | 0.053
0.026 | U | NS
0.079 | U | | | 1-Aug-14 | 0.23 | | NS | | 0.43 | | 0.53 | | NS | | NS | | NS | | NS | | 0.059 | | 0.053 | U | NS | | | | 27-Aug-14 | NS | | 0.072 | | NS | | | | 12-Sept-14 (resample) | NS | | NS
0.070 | | NS | | NS | | NS
0.070 | | NS
0.070 | | NS
0.25 | | 0.079 | U | NS
0.070 | | NS | U | NS | | | | 22-Oct-14
20-Jan-15 | NS
0.069 ^V | | 0.079
NS | U | NS
0.094 | | NS
0.062 | | 0.079
NS | U | 0.079
0.24 ^V | U | 0.35
NS | | 0.079
NS | U | 0.079
0.079 ^V | U
U | 0.11
0.053 ^V | U | NS
NS | | | | 30-Mar-15 (resample) | NS | 0.059 | U | NS | | | | 22-Apr-15 | NS | | 0.20^{V} | | NS | | NS | | 0.19 ^V | | N | | 0.16 | | 0.077 | U | 0.72 | | NS | | 0.061 | U | | | 21-Jul-15 | 0.1
NS | U | NS
NS | | 0.5
NS | U | 3
NS | U | NS
NS | | 0.21
NS | | NS
NS | | NS
0.1 | U | 0.1 °
NS | U | 0.1 °
NS | U | NS
NS | | | | 23-Sept-15 resample
29-Oct-15 | NS
NS | | 0.1 | U | NS
NS | | NS
NS | | 0.1 | U | NS
NS | | 0.2 | U | 0.1 | U | 0.1 | U | NS
NS | | 0.1 | U | | | 4-Dec-15 resample | NS | | 0.1 | U | NS | | | 27-Jan-16 | 0.1 | | NS | | 0.11 | | 0.12 | | NS | | 0.11 | | NS | | NS | | 0.053 | U | 0.053 | U | NS | | | | 20-Apr-16
20-Jul-16 | NS
0.26 ^{LV} | U | 0.14
NS | | NS
0.26 ^{LV} | U | NS
0.26 ^{LV} | U | 0.053
NS | U | NS
0.77 ^{LV} | | 0.073
NS | | 0.053
NS | U | 0.053
0.26 ^{LV} | U
U | NS
0.26 ^{LV} |
U | 0.053
NS | U | | | 21-Oct-16 | NS | | 0.16 | | NS | | NS | | 0.069 | | NS | | 0.088 | | 0.053 | U | 0.053 | U | NS | | 0.053 | U | | | 31-Jan-17 | 0.053 | U | NS | | 0.14 | | 0.053 | U | NS | | 0.053 | U | NS | | NS | | 0.053 | U | 0.053 | U | NS | | | | 17-Apr-17 | NS
0.052 | 11 | 0.16 | | NS
0.18 | | NS
0.12 | | 0.079 | U | NS
0.052 | U | 0.079 | U | 0.079 | U | 0.079
0.053 ^L | U | NS
0.053 ^L | п | 0.079 | U | | | 26-Jul-17
12-Oct-17 | 0.053
NS | U | NS
0.15 | | 0.18
NS | | 0.12
NS | | NS
0.066 | | 0.053
NS | | NS
0.16 | U | NS
0.13 | U | 0.053 | U
U | 0.053
NS | " | NS
0.13 | U | | | 10-Jan-18 | 0.13 | | NS | | 0.17 | | 0.07 | | NS
0.52 | | 0.36 | | NS | | NS | | 0.053 | U | NS | | 0.084 | | | | 11-Apr-18
23-May-18 | NS
NS | | 0.053
NS | U | NS
NS | | NS
NS | | 0.53
NS | U | NS
NS | | 0.53
NS | U | 0.53
NS | U | 0.053
NS | U | NS
0.079 | U | 0.53
NS | U | | | 27-Jul-18 | 0.26 | U | NS | | 0.26 | U | 0.26 | U | NS | | 0.26 | U | NS | | NS | | 0.26 | U | 0.26 | Ü | NS | | | | 24-Oct-18
16-Jan-19 | NS
0.053 | U | 0.26
NS | U | NS
0.053 | U | NS
0.053 | U | 0.26
NS | U | NS
0.29 | | 0.26
NS | U | 0.26
NS | U | 0.26
0.053 | U
U | NS
0.053 | U | 0.26
NS | U | | | 10-Jan-19
12-Apr-19 | 0.033
NS | | 0.053 | U | NS | | 0.033
NS | | 0.053 | U | NS | | 0.066 | U | 0.079 | U | 0.033 | U | 0.033
NS | | 0.079 | U | | | 29-Jul-19 | 0.079 | U | NS
NS | | 0.079 | U | 0.053 | U | NS
NS | | 0.053 | U | NS
NS | | NS
NS | | 0.053 | U | 0.75 | 11 | NS
NS | | | | 26-Sep-19
29-Oct-19 | NS
NS | | NS
0.053 ^L | U | NS
NS | | NS
NS | | NS
0.053 ^L | U | NS
NS | | NS
0.053 ^L | U | NS
0.053 ^L | U | NS
0.26 ^{L,D} | U | <0.079
0.26 ^{L,D} | U | NS
0.26 ^{L,D} | | | | 21-Jan-20 | 0.05 | U | NS | | 0.05 | U | 0.05 | U | NS | | 0.05 | U | NS | | NS | | 0.05 | U | 0.05 | U | NS | | | | 22-Apr-20
23-Jul-20 | NS
0.053 | U | 0.053
NS | U | NS
0.053 | U | NS
0.053 | U | 0.053
NS | U | NS
0.11 | U | 0.053
NS | U | 0.053
NS | U | 0.053
0.11 | U
U | NS
0.11 | U | 0.053
NS | U | | | 23-Jul-20
29-Oct-20 | 0.053
NS | | NS
0.053 | U | 0.053
NS | | 0.053
NS | U | NS
0.053 | U | NS | | 0.053 | U | NS
0.053 | U | 0.11 | U | 0.11
NS | 0 | 0.053 | U | | | - | | | | | | | | | | | | 1 | | | | | | | | | | | | W1.22.0 | - | 100 | | 150.6 | | 100 - | | 350.4 | | 3 CD C | | 100 | |) m = | 100 | | T **** | | TP 470 4 | , , | r. en e | | |---|------------------------------------|--------------------|------------------|-------------------|---|---------------|--------|-------------|------|-------------------|-----------|-------------|------|--------------|---------------|------|----------------------|------|-------------------|--------|-------------------|------| | Volatile Organic Compounds via
TO-15 | Comula Data | MP-1 | Onal | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Onal | MP-6 | Qual | MP-7 Qua | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | 10-13 | Sample Date
8-Feb-08 | 0.1 | Qual
U | NS | Quai | NS | Quai | NS | Quai | NS | Qual
U | NS | Quai | NS | NS | Quai | 0.12 | Quai | 0.12 | Quai | NS | Quai | | | 27-Mar-08 | NS | | 0.098 | U | NS | | NS | | NS | | 0.125 | | NS
NS | NS
NS | | NS | | 0.453 | | 0.847 | | | | 25-Apr-08 | NS | | NS | | 0.231 | | NS | | NS | | NS | | 0.203 | NS | | 0.134 | | NS | | 0.265 | | | | 29-May-08 | NS | | NS | | NS | | 0.14 | | NS | | NS | | NS | 0.1 | U | 0.11 | | 0.14 | | NS | | | | 27-Jun-08 | 0.263 | | NS | | NS | | NS | | 0.623 | | NS | | NS | NS | | NS | | 0.305 | | 0.395 | | | | 31-Jul-08 | NS | | 0.145 | | NS | NS | | 0.13 | | NS | | 0.124 | | | | 28-Aug-08 | NS | | NS | | 0.098 | U | NS | | NS | | NS | | 1.2 | NS | | 0.331 | | 0.386 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 0.49 | U | NS | | NS | | NS | 0.49 | U | NS | | 0.49 | U | 0.49 | U | | | 27-Oct-08 | 0.49 | U | NS | | NS | | NS | | 0.49 | U | NS | | NS | NS | | 0.49 | U | NS | | 0.49 | U | | | 25-Nov-08 | NS | | 0.24 | U | NS | | NS | | NS | | 0.24 | U | NS | NS | | 0.24 | U | 0.24 | U | NS | | | | 18-Dec-08 | NS | | NS | | 0.24 | U | NS | | NS | | NS | | 0.24 U | NS | | NS | | 0.24 | U | 0.24 | U | | | 21-Jan-09 | NS | | NS | | NS | | 0.24 | U | NS | | NS | | NS | 0.24 | U | 0.24 | U | NS | | 0.24 | U | | | 25-Feb-09 | 0.24 | U | NS | | NS | | NS | | 0.24 | U | NS | | NS | NS | | 0.24 | U | 0.24 | U | NS | | | | 26-Mar-09 | NS | | 0.488 | U | NS | | NS | | NS | | 1.29 | | NS
0.126 | NS | | NS | | 0.265 | | 0.2 | | | | 29-Apr-09 | NS
0.488 | U | NS
NS | | 0.098
19.9 | U
U | NS
0.976 | U | NS
NS | | NS
0.488 | U | 0.136 | NS
NS | | 0.098 | U | NS
0.22 | | 1.34
NS | | | | 22-Jul-09
9-Oct-09 | 0.488
NS | 0 | 0.205 | | 19.9
NS | U | 0.976
NS | U | 0.263 | | 0.488
NS | U | NS
0.268 | 20.4 | U | 0.429
0.317 | | 0.22
NS | | 0.312 | | | | 15-Jan-10 | 0.176 | | 0.203
NS | | 7.22 | | 0.146 | | 0.203
NS | | 0.19 | | 0.208
NS | NS | | 0.098 | U | 0.185 | | 0.312
NS | | | | 21-Apr-10 | NS | | 0.098 | U | NS | | NS | | 0.488 | U | NS | | 0.488 U | 0.488 | U | 0.22 | | NS | | 0.2 | | | | 16-Jul-10 | 0.361 | | NS | | 0.098 | U | 0.215 | | NS | | 0.737 | U | NS | NS | | 0.205 | U | 0.346 | | NS | | | | 15-Oct-10 | NS | | 0.171 | | NS | | NS | | 0.366 | | NS | | 0.654 | 0.117 | | 0.102 | | NS | | 0.166 | | | | 26-Jan-11 | 2.78 | | 0.122 | | NS | | 0.161 | | NS | | 0.488 | U | NS | 0.488 | U | 0.488 | U | 0.488 | U | NS | | | | 28-Feb-11 | NS | | NS | | 0.976 | U | NS | | NS | | NS | | NS | NS | | NS | | NS | | NS | | | | 27-Apr-11 | NS | | 0.136 | | NS | | NS | | 0.185 | | NS | | 0.117 | 0.273 | | 0.098 | U | NS | | 0.122 | | | | 26-Jul-11 | 0.326 | U | NS | | 0.326 | U | 0.239 | | NS | | 1.37 | | NS | NS | | 0.244 | | 0.488 | U | NS | | | | 28-Oct-11 | NS | | 2.4 | U | NS | | NS | | 2.4 | U | NS | | 2.4 U | 2.4 | U | 2.4 | U | NS | | 2.4 | U | | | 23-Jan-12 | 0.49 | U | NS | | 0.84 | | 0.49 | U | NS | | 0.49 | U | NS | NS | | 0.49 | U | 0.84 | | NS | | | | 13-Apr-12 | NS | | 0.24 | U | NS | | NS | | 0.24 | U | NS | | 0.24 U | 0.24 | U | 0.24 | U | NS | | 0.24 | U | | | 2-Jul-12 (resample) | NS
0.40 | | NS | | NS
0.40 | U | NS
0.40 | | NS | | NS
0.40 | | NS
NG | NS | | NS
0.40 | | 1.2 | U | NS | | | | 23-Jun-12
1-Nov-12 | 0.49
NS | U | NS
0.088 | | 0.49
NS | U | 0.49
NS | U | NS
0.28 | | 0.49
NS | U | NS
0.12 | NS
0.076 | | 0.49
0.092 | U | 0.58
NS | | NS
0.17 | | | | 1-Nov-12
1-Feb-13 | 0.14 | | NS | | 0.46 | | 0.15 | | NS | | 0.19 | | NS | NS | | 0.092 | | 0.18 | | NS | | | | 29-Apr-13 | NS | | 0.15 | | NS | | NS | | 0.19 | | NS | | 0.13 | 0.13 | | 0.16 | | NS | | 0.41 | | | | 9-Jul-13 | 0.34 | | NS | | 0.63 | | 0.33 | | NS | | 0.27 | | NS | NS | | 0.24 | | 0.27 | | NS | | | Chloroform | 18-Oct-13 | NS | | 0.098 | U | NS | | NS | | 0.29 | | NS | | 0.12 | 0.11 | | 0.11 | | NS | | 0.31 | | | | 9-Jan-14 | 0.12 | | NS | | 0.94 | | 0.18 | | NS | | 0.27 | | NS | NS | | 0.16 | | 0.25 | | NS | | | | 24-Apr-14 | NS | | 0.049 | U | NS | | NS | | 0.21 | | NS | | 0.11 | 0.049 | U | 0.16 | | 0.16 | | 0.32 | | | | 1-Aug-14 | 1.0 | | NS | | 2.7/3.6 | | 0.32 | | NS | | NS | | NS | NS | | 2.1 | | 0.55 | | NS | | | | 27-Aug-14 | NS | | 0.19 | | NS | NS
0.12 | | NS | | NS | | NS | | | | 12-Sept-14 (resample)
22-Oct-14 | NS
NS | | NS
0.073 | U | NS
NS | | NS
NS | | NS
0.24 | | NS
0.15 | | NS
0.16 | 0.12
0.073 | U | NS
0.073 | U | NS
0.098 | U
U | NS
NS | | | | 22-Oct-14
20-Jan-15 | 0.049 | U | 0.073
NS | U | 1.4 | | 0.14 | | NS | | 0.13 | | NS | 0.073
NS | 0 | 0.073 | U | 0.14 | U | NS
NS | | | | 30-Mar-15 (resample) | NS | NS | | NS | | 0.15 | | NS | | | | 22-Apr-15 | NS | | 0.17 ^V | | NS | | NS | | 0.21 ^V | | NS | | 0.13 | 0.071 | U | 0.17 | | NS | | 0.17 | | | | 21-Jul-15 | 0.130 ^J | | NS | | 1 | U | 5 | U | NS | | 0.21 J | | NS | NS | | 0.14 ^{J, O} | | 0.17 J, O | | NS | | | | 23-Sept-15 resample | NS | 0.2 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.16 ^J | | NS | | NS | | 0.16 ^J | | NS | | 0.4 U | 0.2 | U | 0.2 | U | NS | | 0.28 | | | | 4-Dec-15 resample | NS | | 0.2 | U | NS | NS | | NS | | NS | | NS | | | | 27-Jan-16 | 0.086 | | NS | | 1 | | 0.13 | | NS | | 0.11 | | NS | NS | | 0.094 | | 0.16 | | NS | | | | 20-Apr-16 | NS | | 0.08 | | NS | | NS | | 0.18 | | NS | | 0.1 | 0.096 | | 0.1 | | NS | | 0.13 | | | | 20-Jul-16 | 0.24 | U | NS
0.12 | | 0.69 | | 0.38 | | NS
0.27 | | 0.47 | | NS
0.12 | NS
0.22 | | 0.35 | | 0.44 | | NS
0.2 | | | | 21-Oct-16
31-Jan-17 | NS
0.078 | | 0.13
NS | | NS
0.56 | | NS
0.2 | | 0.27
NS | | NS
0.13 | | 0.12
NS | 0.23
NS | | 0.1
0.094 | | NS
0.41 | | 0.2
NS | | | | 17-Apr-17 | NS | | 0.11 | | NS | | NS | | 0.20 | | NS | | 0.073 U | 0.11 | | 0.073 | U | NS | | 0.18 | 1 | | | 26-Jul-17 | 0.13 | | NS | | 0.62 | | 0.24 | | NS | | 0.13 | | NS | NS | | 0.14 | | 0.33 | | NS | 1 | | | 12-Oct-17 | NS | | 0.18 | | NS | | NS | | 0.28 | | NS | | 0.15 U | 0.4 | | 0.14 | U | NS | | 0.12 | U | | | 10-Jan-18 | 0.1 | | NS
0.14 | | 0.68 | | 0.14 | | NS
0.08 | * * | 0.18 | | NS
0.08 | NS
0.08 | *** | 0.12 | | NS | | 0.3 | | | | 11-Apr-18
23-May-18 | NS
NS | | 0.14
NS | | NS
NS | | NS
NS | | 0.98
NS | U | NS
NS | | 0.98 U
NS | 0.98
NS | U | 0.13
NS | | NS
0.073 | U | 0.98
NS | U | | | 27-Jul-18 | 0.24 | U | NS | | 0.24 | U | 0.24 | U | NS | | 0.24 | U | NS | NS | | 3.2 | | 0.24 | U | NS | | | | 24-Oct-18 | NS | | 0.24 | U | NS | | NS | | 0.24 | U | NS | | 0.24 U | 0.24 | U | 0.24 | U | NS | | 0.24 | U | | | 16-Jan-19 | 0.1 | | NS | | 0.14 | | 0.26 | | NS | | 0.12 | | NS | NS | | 0.049 | U | 0.15 | |
NS | | | | 12-Apr-19 | NS
0.072 | U | 0.12 | | NS
0.60 | | NS
0.21 | | 0.15 | | NS
0.2 | | 0.061 U | 0.073 | U | 0.073 | U | NS | | 0.21 | 1 | | | 29-Jul-19
26-Sep-19 | 0.073
NS | U | NS
NS | | 0.69
NS | | 0.31
NS | | NS
NS | | 0.3
NS | | NS
NS | NS
NS | | 0.2
NS | | 1.6
<0.073 | U | NS
NS | 1 | | | 29-Oct-19 | NS
NS | | 0.049 | U | NS | | NS | | 0.33 | | NS | | 0.14 | 0.13 | | 0.24 ^D | U | 0.24 ^D | U | 0.24 ^D | | | | 21-Jan-20 | 0.05 | U | NS | | 0.13 | | 0.05 | U | NS | | 0.18 | | NS | NS
NS | | 0.10 | | 0.05 | U | NS | | | | 22-Apr-20 | NS | | 0.12 | | NS | | NS | | 0.16 | | NS | | 0.049 U | 0.049 | U | 0.049 | U | NS | | 0.13 | | | | 23-Jul-20 | 0.049 | U | NS | | 0.14 | | 0.19 | | NS | | 15 | | NS | NS | | 0.098 | U | 0.29 | | NS | | | | 29-Oct-20 | NS | 1 | 0.26 | <u> </u> | NS | | NS | | 0.35 | | NS | | 0.17 | 0.28 | | 0.3 | | NS | | 0.33 | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------------------|-------------------------|------|--------------------|------|----------------|------|-------------|------|--------------------|------|--------------------|------|------------------|------|---------------------------|------|--------------------------|--------|----------------------------|--------|-------------------------|------| | TO-15 | Sample Date | | Qual i i | Qual | | Qual | | Qual | | | 8-Feb-08 | 2.44 | U | NS | | NS | | NS | | 2.44 | U | NS | | NS | | NS | | 2.44 | U | 2.44 | U | NS | | | | 27-Mar-08
25-Apr-08 | NS
NS | | 2.67
NS | | NS
2.44 | U | NS
NS | | NS
NS | | 3.24
NS | | NS
2.44 | U | NS
NS | | NS
2.44 | U | 2.44
NS | U | 2.44
2.44 | U | | | 29-May-08 | NS | | NS
NS | | 2.44
NS | U | 2.44 | U | NS
NS | | NS | | NS | 0 | 2.44 | U | 2.44 | U | 2.44 | U | 2.44
NS | 0 | | | 27-Jun-08 | 3.8 | U | NS | | NS | | NS | | 2.44 | U | NS | | NS | | NS | | NS | | 2.44 | U | 2.44 | U | | | 31-Jul-08 | NS | | 4.64 | | NS | | 2.44 | U | NS | | 2.44 | U | | | 28-Aug-08 | NS | | NS | | 2.44 | U | NS | | NS | | NS | | 2.44 | U | NS | | 2.44 | U | 2.44 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 1 | U | NS | | NS | | NS | | 1 | U | NS | | 1 | U | 1 | U | | | 27-Oct-08
25-Nov-08 | l
Ne | U | NS
1 | U | NS
NS | | NS
NC | | 1
NS | U | NS
1 | U | NS | | NS
NS | | 1.1 | U | NS
1 | U | 3.5
NS | | | | 18-Dec-08 | NS
NS | | NS | U | NS
1 | U | NS
NS | | NS
NS | | NS | 0 | NS
1 | U | NS
NS | | NS | 0 | 1.4 | | 1 | U | | | 21-Jan-09 | NS | | NS | | NS | | 1 | U | NS | | NS | | NS | | 3.1 | | 1 | U | NS | | 1 | U | | | 25-Feb-09 | 1 | | NS | | NS | | NS | | 1 | U | NS | | NS | | NS | | 1 | U | 1.2 | | NS | | | | 26-Mar-09 | NS | | 12.2 | U | NS | | NS | | NS | | 24.4 | U | NS | | NS | | NS | | 4.58 | | 2.44 | U | | | 29-Apr-09 | NS | | NS | | 22.4 | | NS | | NS | | NS | | 19.4 | | NS | | 2.44 | U | NS | | 2.44 | U | | | 22-Jul-09 | 18.5 | | NS | ** | 497 | U | 32 | | NS | U | 41.9 | | NS | | NS | | 2.44 | U | 6.29 | | NS | ** | | | 9-Oct-09
15-Jan-10 | NS
2.44 | U | 2.44
NS | U | NS
2.78 | | NS
2.44 | U | 2.44
NS | 0 | NS
2.44 | | 2.44
NS | U | 509
NS | U | 2.44
2.44 | U
U | NS
2.44 | | 2.44
NS | U | | | 21-Apr-10 | NS | | 3.25 | | NS | | NS | | 12.2 | U | NS | | 12.2 | U | 12.2 | U | 2.44 | U | NS | | 2.44 | U | | | 16-Jul-10 | 1.32 | | NS | | 62.8 | | 1.48 | | NS | | 7.79 | U | NS | | NS | | 1.03 | U | 1.03 | U | NS | | | | 15-Oct-10 | NS | | 1.03 | U | NS | | NS | | 1.03 | U | NS | | 1.03 | U | 1.03 | U | 1.03 | U | NS | | 1.03 | U | | | 26-Jan-11 | 10.3 | U | 1.03 | U | NS | | 1.03 | U | NS | | 5.16 | U | NS | | 5.16 | U | 5.16 | U | 5.16 | U | NS | | | | 28-Feb-11 | NS | | NS | | 10.3 | U | NS | | | 27-Apr-11
26-Jul-11 | NS | U | 1.23 | | NS | U | NS | U | 1.03 | U | NS
5.16 | 11 | 1.03 | U | 1.18 | | 1.03 | U | NS
5.16 | U | 1.29 | | | | 28-Oct-11 | 3.45
NS | | NS
1 | U | 3.45
NS | U | 1.03
NS | | NS
1 | U | 5.16
NS | U | NS
1 | U | NS
1 | U | 1.03 | 0 | 5.16
NS | | NS
1.2 | | | | 23-Jan-12 | 0.21 | U | NS | | 0.21 | U | 0.21 | U | NS | | 0.21 | U | NS | | NS | | 1.2 | | 0.21 | U | NS | | | | 13-Apr-12 | NS | | 0.21 | U | NS | | NS | | 0.21 | U | NS | | 0.21 | U | 0.21 | U | 1.2 | | NS | | 0.97 | | | | 2-Jul-12 (resample) | NS | 1.1 | | NS | | | | 23-Jun-12 | 0.21 | U | NS | | 0.21 | U | 0.21 | U | NS | | 2.1 | | NS | | NS | | 0.21 | U | 0.21 | U | NS | | | | 1-Nov-12
1-Feb-13 | NS | | 0.041 | U | NS | | NS
2.1 | | 0.041 | U | NS | | 0.041 | U | 0.041 | U | 0.37 | | NS
0.72 | | 1.1 | | | | 29-Apr-13 | 0.5
NS | | NS
0.21 | U | 1.8
NS | | 2.1
NS | | NS
0.083 | U | 0.19
NS | | NS
0.083 | U | NS
0.083 | U | 0.71
0.73 | | 0.72
NS | | NS
1.2 | | | | 9-Jul-13 | 0.12 | U | NS | | 0.083 | U | 0.083 | U | NS | | 0.083 | U | NS | | NS | | 1.0 | | 0.083 | U | NS | | | Chloromethane | 18-Oct-13 | NS | | 0.083 | U | NS | | NS | | 0.083 | U | NS | | 0.083 | U | 0.083 | U | 0.40 | | NS | | 1.1 | | | | 9-Jan-14 | 3.2 | | NS | | 1.5 | | 0.083 | U | NS | | 0.053 | U | NS | | NS | | 0.64 | | 0.083 | U | NS | | | | 24-Apr-14 | NS | | 4.6 | | NS | | NS | | 4.5 | | NS | | 3.5 | | 1.2 | | 0.47 | | 1.0 | | 1.0 | | | | 1-Aug-14 | 0.083 | U | NS | | 0.12 | U | 0.12 | U | NS | | NS | | NS | | NS | | 0.083 | U | 0.083 | U | NS | | | | 27-Aug-14
12-Sept-14 (resample) | NS
NS | | 1.7
NS | | NS
NS | | NS
0.12 ^{L,V} | U | NS
NS | | NS
NS | U | NS
NS | | | | 22-Oct-14 | NS | | 1.3 | | NS | | NS | | 0.12 | U | 0.74 | | 0.12 | U | 1.30 | | 0.74 | | 1.1 | | NS | | | | 20-Jan-15 | 0.083 $^{\mathrm{V}}$ | U | NS | | 3 ^V | | 0.083 | U | NS | | 0.083 ^V | U | NS | | NS | | 0.69 ^V | | 1.2 ^v | U | NS | | | | 30-Mar-15 (resample) | NS | 0.093 | U | NS | | | | 22-Apr-15 | NS | | 0.085 V | U | NS | | NS | | 0.083 ^v | U | NS | | 0.083 | U | 1.7/1.6 | | 0.72 | | NS | | 1.4 | | | | 21-Jul-15 | 0.69 | | NS | | 6.9 | | 2 | U | NS | | 2.6 | | NS | | NS | | 0.11 | | 0.1 ° | U | NS | | | | 23-Sept-15 resample
29-Oct-15 | NS
NS | | NS
11 | | NS
NS | | NS
NS | | NS
6.5 | | NS
NS | | NS
3.6 | | 0.09
1.5 | U | NS
0.73 | | NS
NS | | NS
0.84 | | | | 4-Dec-15 resample | NS | | 0.1 | U | NS | NS
NS | | NS | | | | 27-Jan-16 | 0.083 | U | NS | | 3.9 | | 0.083 | U | NS | | 2.1 | | NS | | NS | | 1.4 | | 1 | | NS | | | | 20-Apr-16 | NS | | 7.7 | | NS | | NS | | < 0.083 | | NS | | 2.4 | | 1.4 | | 1.1 | | NS | | 1 | | | | 20-Jul-16 | 0.41 | U | NS | | 4.3 | | 0.41 | U | NS | | 5 | | NS | | NS | | 1.1 | | 1.6 | | NS | | | | 21-Oct-16
31-Jan-17 | NS
0.083 | U | 0.083
NS | U | NS
3.8 | | NS
0.96 | | 0.083
NS | U | NS
1.4 | | 0.083
NS | U | 1.4
NS | | 0.9
1.1 | | NS
0.99 | | 0.82
NS | | | | 17-Apr-17 | NS | | 0.12 | U | NS | | NS | | 0.12 | U | NS | | 1.7 | | 1.4 | | 1.2 | | NS | | 1.1 | | | | 26-Jul-17 | 0.083 | U | NS | | 0.083 | U | 0.083 | U | NS | | 0.083 | U | NS | | NS | | 0.71 | | 0.56 | | NS | | | | 12-Oct-17
10-Jan-18 | NS
5.3 | | 0.083
NS | U | NS
3.8 | | NS
1.4 | | 0.083
NS | U | NS
2.8 | | 0.25
NS | U | 1.5
NS | | 1.5
0.99 | | NS
NS | | 1.2
1.1 | | | | 10-Jan-18
11-Apr-18 | NS | | 0.083 | U | NS | | NS | | 0.83 | U | NS | | 3.4 | | 1.8 | | 1.4 | | NS
NS | | 0.83 | U | | | 23-May-18 | NS | 0.99 | | NS | | | | 27-Jul-18 | 4.5 | | NS
0.41 | 11 | 3.4 | | 5.5 | | NS
0.41 | | 2.6 | | NS
0.41 | U | NS
0.41 | | <0.41 | U | 2.8 | | NS
1.2 | | | | 24-Oct-18
16-Jan-19 | NS
0.083 | U | 0.41
NS | U | NS
2 | | NS
0.083 | U | 0.41
NS | U | NS
0.083 | U | 0.41
NS | | 0.41
NS | U | 1 | | NS
0.083 | U | 1.2
NS | | | | 12-Apr-19 | NS | | 0.083 ^V | U | NS | | NS | | 0.083 ^V | U | NS | | 0.1 ^V | U | 0.12 ^V | U | 1.1 ^v | | NS | | 0.12 ^V | U | | | 29-Jul-19 | 0.12 | U | NS | | 0.12 | U | 0.083 | U | NS | | 0.083 | U | NS | | NS | | 0.083 | U | 0.083 | U | NS | | | | 26-Sep-19 | NS | ,, | NS | | NS
1 1 ^D | | <0.12
0.41 ^D | U | NS
0.41 ^D | | | | 29-Oct-19
21-Jan-20 | NS
0.08 | U | 0.083
NS | U | NS
0.08 | U | NS
0.08 | U | 0.083
NS | U | NS
0.08 | U | 0.083
NS | U | 0.083
NS | U | 1.1 ^D
0.08 | U | 0.41 | U
U | 0.41"
NS | | | | 22-Apr-20 | NS | | 0.083 | U | NS | | NS | | 0.083 | U | NS | | 0.083 | U | 0.083 | U | 0.92 | | NS | | 1.1 | | | | 23-Jul-20 | 0.083 | U | NS | ** | 0.083 | U | 0.083 | U | NS
0.082 | | 0.17 | U | NS
0.082 | ,, | NS
0.082 | ** | 0.17 | U | 0.17 | U | NS | | | | 29-Oct-20 | NS | | 0.083 | U | NS | | NS | | 0.083 | U | NS | | 0.083 | U | 0.083 | U | 0.083 | U | NS | | 0.083 | U | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | $\overline{}$ | |--------------------------------|-----------------------------------|-------------|------|-------------------|------|-------------|------|-------------|------|-------------------|------|-------------|------|-------------------|------|-------------------|------|-------------------|--------|-------------------|------|-------------------|---------------| | TO-15 | Sample Date | 1411 - 1 | Qual | 1411 -2 | Qual | 711-5 | Qual | 1711 -4 | Qual | 1411 -3 | Qual | 1711 -0 | Qual | | Qual | | Qual | 11711 -1 | Qual | 11111-2 | Qual | 21711 -3 | Qual | | | 8-Feb-08 | 0.1 | U | NS | | NS | | NS | | 0.1 | U | NS | | NS | | NS | | 0.1 | U | 0.1 | U | NS | T | | | 27-Mar-08 | NS | | 0.096 | U | NS | | NS | | NS | | 0.096 | U | NS | | NS | | NS | | 0.096 | U | 0.096 | U | | | 25-Apr-08 | NS | | NS | | 0.096 | U | NS | | NS | | NS | | 0.096 | U | NS | | 0.096 | U | NS | | 0.096 | U | | | 29-May-08 | NS | ** | NS | | NS | | 0.1 | U | NS | ** | NS | | NS | | 0.1 | U | 0.1 | U | 0.1 | U |
NS | ** | | | 27-Jun-08
31-Jul-08 | 0.15
NS | U | NS
0.096 | U | NS
NS | | NS
NS | | 0.096
NS | U | NS
NS | | NS
NS | | NS
NS | | NS
0.096 | U | 0.096
NS | U | 0.096
0.096 | U
U | | | 28-Aug-08 | NS | | NS | U | 0.096 | U | NS | | NS | | NS | | 0.096 | U | NS | | 0.096 | U | 0.096 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | Ü | 4.2 | U | NS | | NS | | NS | | 4.2 | U | NS | | 4.2 | U | 4.2 | U | | | 27-Oct-08 | 4.2 | U | NS | | NS | | NS | | 4.2 | U | NS | | NS | | NS | | 4.2 | U | NS | | 4.2 | U | | | 25-Nov-08 | NS | | 4.2 | U | NS | | NS | | NS | | 4.2 | U | NS | | NS | | 4.2 | U | 4.2 | U | NS | | | | 18-Dec-08 | NS | | NS | | 4.2 | U | NS | | NS | | NS | | 4.2 | U | NS | | NS | | 4.2 | U | 4.2 | U | | | 21-Jan-09 | NS | | NS | | NS | | 4.2 | U | NS | | NS | | NS | | 4.2 | U | 4.2 | U | NS | | 4.2 | U | | | 25-Feb-09 | 4.2 | U | NS
0.40 | ** | NS | | NS | | 4.2 | U | NS | | NS | | NS | | 4.2 | U | 4.2 | U | NS | *** | | | 26-Mar-09 | NS
NS | | 0.48
NS | U | NS
0.096 | U | NS
NS | | NS
NS | | 0.96
NS | | NS
0.096 | U | NS
NS | | NS
0.096 | U | 0.096
NS | U | 0.096
0.096 | U
U | | | 29-Apr-09
22-Jul-09 | 0.48 | U | NS
NS | | 19.6 | U | 0.96 | U | NS
NS | | 0.48 | U | 0.096
NS | U | NS
NS | | 0.096 | U | 0.096 | U | 0.096
NS | | | | 9-Oct-09 | NS | | 0.096 | U | NS | Ü | NS | | NS | U | NS | | 0.096 | U | 20 | U | 0.096 | U | NS | | 0.096 | U | | | 15-Jan-10 | 0.096 | U | NS | - | 0.096 | U | 0.096 | U | NS | - | 0.096 | U | NS | - | NS | 1 - | 0.096 | U | 0.096 | U | NS | | | | 21-Apr-10 | NS | | 0.096 | U | NS | | NS | | 0.48 | U | NS | | 0.48 | U | 0.48 | U | 0.096 | U | NS | | 0.096 | U | | | 16-Jul-10 | 0.17 | U | NS | | 0.17 | U | 0.17 | U | NS | | 1.28 | U | NS | | NS | | 0.17 | U | 0.17 | U | NS | ' | | | 15-Oct-10 | NS | | 0.17 | U | NS | | NS | | 0.17 | U | NS | | 0.17 | U | 0.17 | U | 0.17 | U | NS | | 0.17 | U | | | 26-Jan-11 | 1.7 | U | 0.17 | U | NS | | 0.17 | U | NS | | 0.851 | U | NS | | 0.851 | U | 0.851 | U | 0.851 | U | NS | 1 ' | | | 28-Feb-11 | NS
NE | | NS
0.17 | 11 | 1.7 | U | NS
NC | | NS
0.17 | | NS | | NS
0.17 | 1, | NS
0.17 | *** | NS
0.17 | 1. | NS | | NS
0.17 | ., | | | 27-Apr-11 | NS
0.568 | U | 0.17
NS | U | NS
0.568 | U | NS
0.17 | U | 0.17
NS | U | NS
0.852 | U | 0.17
NS | U | 0.17
NS | U | 0.17
0.17 | U
U | NS
0.852 | U | 0.17
NS | U | | | 26-Jul-11
28-Oct-11 | 0.568
NS | 0 | NS
4.3 | U | 0.568
NS | U | 0.17
NS | | NS
4.3 | U | 0.852
NS | | NS
4.3 | U | NS
4.3 | U | 4.3 | U | 0.852
NS | | NS
4.3 | U | | | 23-Jan-12 | 0.85 | U | NS | Ü | 0.85 | U | 0.85 | U | NS | Ü | 0.85 | U | NS | | NS | | 0.85 | U | 0.85 | U | NS | | | | 13-Apr-12 | NS | | 0.85 | U | NS | | NS | | 0.85 | U | NS | | 0.85 | U | 0.85 | U | 0.85 | U | NS | | 0.85 | U | | | 2-Jul-12 (resample) | NS | 2.1 | U | NS | | | | 23-Jun-12 | 0.85 | U | NS | | 0.85 | U | 0.85 | U | NS | | 0.85 | U | NS | | NS | | 0.85 | U | 0.85 | U | NS | | | | 1-Nov-12 | NS | | 0.085 | U | NS | | NS | | 0.085 | U | NS | | 0.085 | U | 0.085 | U | 0.085 | U | NS | | 0.085 | U | | | 1-Feb-13 | 0.17 | U | NS | | 0.17 | U | 0.17 | U | NS
0.005 | | 0.17 | U | NS | ,. | NS | | 0.17 | U | 0.17 | U | NS | | | | 29-Apr-13 | NS
0.26 | 11 | 0.21 | U | NS
0.17 | 11 | NS
0.17 | 11 | 0.085 | U | NS
0.17 | U | 0.085 | U | 0.085 | U | 0.085 | U | NS
0.17 | U | 0.085 | U | | Dibromochloromethane | 9-Jul-13
18-Oct-13 | 0.26
NS | U | NS
0.17 | U | 0.17
NS | U | 0.17
NS | U | NS
0.17 | U | 0.17
NS | U | NS
0.17 | U | NS
0.17 | U | 0.17
0.17 | U
U | 0.17
NS | 0 | NS
0.17 | U | | | 9-Jan-14 | 0.17 | U | NS | 0 | 0.17 | U | 0.17 | U | NS | | 0.17 | U | NS | | NS | | 0.17 | U | 0.17 | U | NS | | | | 24-Apr-14 | NS | - | 0.085 | U | NS | _ | NS | - | 0.085 | U | NS | - | 0.085 | U | 0.085 | U | 0.085 | U | 0.085 | U | 0.26 | U | | | 1-Aug-14 | 0.17 | U | NS | | 0.26 | U | 0.26 | U | NS | | NS | | NS | | NS | | 0.17 | U | 0.17 | U | NS | ' | | | 27-Aug-14 | NS | | 0.085 | U | NS | ' | | | 12-Sept-14 (resample) | NS | 0.13 | U | NS | | NS | U | NS | 1 ' | | | 22-Oct-14 | NS | | 0.13 | U | NS | | NS | | 0.13 | U | 0.17 | U | NS | 1 ' | | | 20-Jan-15 | 0.085 | U | NS
NC | | 0.085 | U | 0.085 | U | NS | | 0.085 | U | NS | | NS | | 0.13 | U | 0.085 | U | NS
NC | ' | | | 30-Mar-15 (resample)
22-Apr-15 | NS
NS | | NS
0.087 | U | NS
NS | | NS
NS | | NS
0.085 | U | NS
NS | | NS
0.083 | U | NS
0.12 | U | NS
0.085 | U | 0.096
NS | U | NS
0.098 | U | | | 22-Apr-15
21-Jul-15 | 0.4 | U | 0.087
NS | U | 2 | U | 8 | U | 0.085
NS | 0 | 0.5 | U | 0.083
NS | U | NS | | 0.085
0.4 ° | U | 0.5 ° | U | 0.098
NS | | | | 23-Sept-15 resample | NS | 0.4 | U | NS | | NS | | NS | 1 | | | 29-Oct-15 | NS | | 0.5 | U | NS | | NS | | 0.5 | U | NS | | 0.7 | U | 0.4 | U | 0.4 | U | NS | | 0.4 | U | | | 4-Dec-15 resample | NS | | 0.4 | U | NS | 1 | | | 27-Jan-16 | 0.085 | U | NS | | 0.085 | U | 0.085 | U | NS | | 0.085 | U | NS | | NS | | 0.085 | U | 0.085 | U | NS | 1 ' | | | 20-Apr-16 | NS | | 0.085 | U | NS | | NS | | 0.085 | U | NS | | 0.085 | U | 0.085 | U | 0.085 | U | NS | 1 | 0.085 | U | | | 20-Jul-16 | 0.43 | U | NS
0.085 | 11 | 0.43 | U | 0.43 | U | NS
0.085 | | 0.43 | U | NS
0.085 | 1, | NS
0.085 | U | 0.43 | U | 0.43 | U | NS | ** | | | 21-Oct-16
31-Jan-17 | NS
0.085 | U | 0.085
NS | U | NS
0.085 | U | NS
0.085 | U | 0.085
NS | U | NS
0.085 | U | 0.085
NS | U | 0.085
NS | | 0.085
0.085 | U
U | NS
0.085 | U | 0.085
NS | U | | | 17-Apr-17 | NS | | 0.13 ^V | U | NS | ٦ | NS | | 0.13 ^V | U | NS | | 0.13 ^V | U | 0.13 ^V | U | 0.13 ^V | U | NS | | 0.13 ^V | U | | | 26-Jul-17 | 0.085 | U | NS | | 0.085 | U | 0.085 | U | NS | | 0.085 | U | NS | | NS | | 0.085 | U | 0.085 | U | NS | 1 ' | | | 12-Oct-17 | NS | | 0.085 | U | NS
0.005 | | NS | | 0.085 | U | NS | | 0.26 | U | 0.21 | U | 0.24 | U | NS | | 0.21 | U | | | 10-Jan-18
11-Apr-18 | 0.085
NS | U | NS
0.17 | U | 0.085
NS | U | 0.085
NS | U | NS
1.7 | U | 0.085
NS | U | NS
1.7 | U | NS
1.7 | U | 0.085
0.17 | U
U | NS
NS | | 0.085
1.7 | U
U | | | 23-May-18 | NS | 0.13 | U | NS | | | | 27-Jul-18 | 0.43 | U | NS | | 0.43 | U | 0.43 | U | NS | | 0.43 | U | NS | | NS | | 0.43 | U | 0.43 | U | NS | | | | 24-Oct-18 | NS | 1 | 0.43 | U | NS
0.005 | | NS | | 0.43 | U | NS | | 0.43 | U | 0.43 | U | 0.43 | U | NS
0.005 | 1 | 0.43 | U | | | 16-Jan-19
12-Apr-19 | 0.085
NS | U | NS
0.085 | U | 0.085
NS | U | 0.085
NS | U | NS
0.085 | U | 0.085
NS | U | NS
0.11 | U | NS
0.13 | U | 0.085
0.13 | U
U | 0.085
NS | U | NS
0.13 | U | | | 29-Jul-19 | 0.13 | U | 0.083
NS | 0 | 0.13 | U | 0.085 | U | NS | | 0.12 | | NS | | NS
NS | | 0.13 | | 2.3 | | NS
NS | | | | 26-Sep-19 | NS | < 0.13 | U | NS | | | | 29-Oct-19 | NS | | 0.085 | U | NS | | NS | | 0.085 | U | NS | | 0.085 | U | 0.085 | U | 0.43 ^D | U | 0.43 ^D | U | 0.43 ^D | | | | 21-Jan-20 | 0.09
NS | U | NS
0.085 | U | 0.09
NS | U | 0.09 | U | NS
0.085 | U | 0.09
NS | U | NS
0.085 | U | NS
0.085 | U | 0.09
0.085 | U
U | 0.09 | U | NS
0.085 | U | | | 22-Apr-20
23-Jul-20 | NS
0.085 | U | 0.085
NS | U | NS
0.085 | U | NS
0.085 | U | 0.085
NS | U | NS
0.17 | U | 0.085
NS | U | 0.085
NS | | 0.085 | U | NS
0.17 | U | 0.085
NS | U | | | 29-Oct-20 | NS | - | 0.085 | U | NS | _ | NS | - | 0.085 | U | NS | - | 0.085 | U | 0.085 | U | 0.085 | U | NS | - | 0.085 | U | | | | | | İ | | | | | | | | | | | | l | 1 | | | | | | | | | - | | | 1 | 1 1 | | | | | | | | _ | | | | 1 | | | | | | |---|----------------------------------|-------------|------------------|-------------|------|---------------|--------|-------------|------|-------------|-----------|-------------|------|---------------|-------------|------|---------------------------|--------|---------------------------|-----------|-------------------------|--------| | Volatile Organic Compounds via
TO-15 | Comml. D.4. | MP-1 | 01 | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | 01 | MP-6 | Qual | MP-7 Qua | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | 10-13 | Sample Date
8-Feb-08 | 0.15 | Qual
U | NS | Qual | NS | Qual | NS | Quai | 0.15 | Qual
U | NS | Quai | NS Qua | NS | Quai | 0.15 | U | 0.15 | Qual
U | NS | Quai | | 1 | 27-Mar-08 | NS | | 0.154 | U | NS | | NS | | NS | | 0.154 | U | NS
NS | NS | | NS | | 0.154 | U | 0.154 | U | | " | 25-Apr-08 | NS | | NS | | 0.154 | U | NS | | NS | | NS | | 0.154 U | NS | | 0.154 | U | NS | | 0.154 | U | | 1 | 29-May-08 | NS | | NS | | NS | | 0.15 | U | NS | | NS | | NS C | 0.15 | | 0.15 | U | 0.15 | U | NS | | | | 27-Jun-08 | 0.239 | U | NS | | NS | | NS | | 0.154 | U | NS | | NS | NS | | NS | | 0.154 | U | 0.154 | U | | 'l | 31-Jul-08 | NS | | 0.154 | U | NS | | NS | | NS | | NS | | NS | NS | | 0.154 | U | NS | | 0.154 | U | | ' | 28-Aug-08 | NS | | NS | | 0.154 | U | NS | | NS | | NS | | 0.154 U | NS | | 0.154 | U | 0.154 | U | NS | | | ' | 30-Sep-08 | NS | | NS | | NS | | 0.15 | U | NS | | NS | | NS | 0.15 | U | NS | | 0.15 | U | 0.15 | U | | ' | 27-Oct-08 | 0.15 | U | NS | | NS | | NS | | 0.15 | U | NS | | NS | NS | | 0.15 | U | NS | | 0.15 | U | | ' | 25-Nov-08 | NS | | 0.15 | U | NS | | NS | | NS | | 0.15 | U | NS | NS | | NS | U | 0.15 | U | NS | | | ' | 18-Dec-08 | NS | | NS | | 0.15 | U | NS | | NS | | NS | | 0.15 U | NS | | NS | | 0.15 | U | 0.15 | U | | 1 | 21-Jan-09 | NS | | NS | | NS | | 0.15 | U | NS | | NS | | NS | 0.15 | U | 0.15 | U | NS | | 0.15 | U | | 1 | 25-Feb-09 | 0.15 | U | NS
0.768 | | NS | | NS | | 0.15 | U | NS | ** | NS
NG | NS | | 0.15 | U | 0.15 | U | NS
0.154 | ** | | 1 | 26-Mar-09 | NS | | 0.768
| U | NS
0.154 | | NS | | NS | | 1.54 | U | NS
0.154 U | NS | | NS
0.154 | U | 0.154 | U | 0.154 | U
U | | 1 | 29-Apr-09 | NS
0.768 | U | NS
NC | | 0.154
31.3 | U
U | NS | U | NS
NS | | NS
0.768 | U | **** | NS | | 0.154
0.154 | U | NS | U | 0.154
NS | U | | 1 | 22-Jul-09
9-Oct-09 | 0.768
NS | U | NS
0.154 | U | NS
NS | 0 | 1.54
NS | 0 | 0.154 | U | 0.768
NS | 0 | NS
0.154 U | NS
32 | U | 0.154 | U | 0.154
NS | U | 0.154 | U | | 1 | 15-Jan-10 | 0.154 | U | NS | U | 0.154 | U | 0.154 | U | NS | | 0.154 | U | NS 0.134 | NS | | 0.154 | U | 0.154 | U | NS | | | " | 21-Apr-10 | NS | | 0.154 | U | NS | | NS | | 0.768 | U | NS | | 0.768 U | 0.768 | U | 0.154 | U | NS | | 0.154 | U | | | 16-Jul-10 | 0.154 | U | NS | | 0.154 | U | 0.154 | U | NS | | 1.16 | U | NS C | NS | | 0.154 | U | 0.154 | U | NS | | | | 15-Oct-10 | NS | | 0.154 | U | NS | | NS | | 0.154 | U | NS | | 0.154 U8 | | U | 0.154 | U | NS | | 0.154 | U | | 1 | 26-Jan-11 | 1.54 | U | 0.154 | U | NS | | 0.154 | U | NS | | 0.768 | U | NS | 0.768 | U | 0.768 | U | 0.768 | U | NS | | | 1 | 28-Feb-11 | NS | | NS | | 1.54 | U | NS | 1 | NS | 1 | NS | | NS | NS | | NS | | NS | | NS | | | | 27-Apr-11 | NS | | 0.154 | U | NS | | NS | | 0.154 | U | NS | | 0.154 U | 0.154 | U | 0.154 | U | NS | | 0.154 | U | | ' | 26-Jul-11 | 0.512 | U | NS | | 0.512 | U | 0.154 | U | NS | | 0.768 | U | NS | NS | | 0.154 | U | 0.768 | U | NS | | | ' | 28-Oct-11 | NS | | 3.8 | U | NS | | NS | | 3.8 | U | NS | | 3.8 U | 3.8 | U | 3.8 | U | NS | | 3.8 | U | | ' | 23-Jan-12 | 0.77 | U | NS | | 0.77 | U | 0.77 | U | NS | | 0.77 | U | NS | NS | | 0.77 | U | 0.77 | U | NS | | | ' | 13-Apr-12 | NS
NS | | 0.38 | U | NS
NS | | NS
NS | | 0.38
NS | U | NS
NS | | 0.38 U | 0.38
NS | U | 0.38 | U | NS
1.9 | U | 0.38
NS | U | | 1 | 2-Jul-12 (resample)
23-Jun-12 | 0.77 | U | NS
NS | | 0.77 | U | 0.77 | U | NS
NS | | 0.77 | U | NS
NS | NS
NS | | NS
0.77 | U | 0.77 | U | NS
NS | | | 1 | 1-Nov-12 | NS | | 0.077 | U | NS | | NS | | 0.077 | U | NS | | 0.077 U | 0.077 | U | 0.077 | U | NS | | 0.077 | U | | ' | 1-Feb-13 | 0.077 | U | NS | _ | 0.077 | U | 0.077 | U | NS | _ | 0.077 | U | NS | NS | | 0.077 | U | 0.077 | U | NS | | | ' | 29-Apr-13 | NS | | 0.19 | U | NS | | NS | | 0.077 | U | NS | | 0.077 U | 0.077 | U | 0.077 | U | NS | | 0.077 | U | | 1,2-Dibromoethane | 9-Jul-13 | 0.12 | U | NS | | 0.077 | U | 0.077 | U | NS | | 0.077 | U | NS | NS | | 0.077 | U | 0.077 | U | NS | | | 1,2-Dibromoetnane | 18-Oct-13 | NS | | 0.15 | U | NS | | NS | | 0.15 | U | NS | | 0.15 U | 0.15 | U | 0.15 | U | NS | | 0.15 | U | | ' | 9-Jan-14 | 0.15 | U | NS
0.077 | | 0.15 | U | 0.15 | U | NS
0.077 | ** | 0.15 | U | NS
0.077 U | NS | ** | 0.15 | U | 0.15 | U | NS
0.22 | *** | | ' | 24-Apr-14 | NS
0.15 | U | 0.077
NS | U | NS
0.23 | U | NS
0.23 | U | 0.077
NS | U | NS
NS | | 0.077 U
NS | 0.077
NS | U | 0.077
0.15 | U
U | 0.077
0.15 | U
U | 0.23
NS | U | | ' | 1-Aug-14
27-Aug-14 | NS | 0 | NS
NS | | NS | U | NS | 0 | NS | | 0.077 | U | NS
NS | NS
NS | | NS
NS | | NS | U | NS
NS | | | ' | 12-Sept-14 (resample) | NS | | NS | | NS | | NS | | NS | | NS | | NS
NS | 0.12 | U | NS | | NS | U | NS | | | ' | 22-Oct-14 | NS | | 0.12 | U | NS | | NS | | 0.12 | U | 0.12 | U | 0.12 U | 0.12 | U | 0.12 | U | 0.15 | U | NS | | | ' | 20-Jan-15 | 0.077 | U | NS | | 0.077 | U | 0.077 | U | NS | | 0.077 | U | NS | NS | | 0.12 | U | 0.077 | U | NS | | | 1 | 30-Mar-15 (resample) | NS | NS | | NS | | 0.086 | U | NS | | | ' | 22-Apr-15 | NS | | 0.079 | U | NS | | NS | | 0.077 | U | NS | | 0.077 U | 0.11 | U | 0.077 | U | NS | | 0.088 | U | | ' | 21-Jul-15 | 0.4 | U | NS | | 2 | U | 8 | U | NS | | 0.4 | U | NS | NS | | 0.4 ^o | U | 0.4 ° | U | NS | | | 1 | 23-Sept-15 resample | NS | 0.4 | U | NS | | NS | | NS | | | 1 | 29-Oct-15 | NS | | 0.4 | U | NS | | NS | | 0.4 | U | NS | | 0.6 U | 0.4 | U | 0.4 | U | NS | | 0.4 | U | | 1 | 4-Dec-15 resample
27-Jan-16 | NS
0.077 | U | 0.4
NS | U | NS
0.077 | U | NS
0.077 | U | NS
NS | | NS
0.077 | U | NS
NS | NS
NS | | NS
0.077 | U | NS
0.077 | U | NS
NS | | | 1 | 20-Apr-16 | NS | | 0.077 | U | NS | | NS | | 0.077 | U | NS | | 0.077 U | 0.077 | U | 0.077 | U | NS | 0 | 0.077 | U | | 1 | 20-Jul-16 | 0.38 | U | NS | | 0.38 | U | 0.38 | U | NS | | 0.38 | U | NS | NS | | 0.38 | U | 0.38 | U | NS | | | <u>'</u> | 21-Oct-16 | NS | | 0.077 | U | NS | | NS | | 0.077 | U | NS | | 0.077 U | 0.077 | U | 0.077 | U | NS | | 0.077 | U | | <u>'</u> | 31-Jan-17 | 0.077 | U | NS | | 0.077 | U | 0.077 | U | NS | | 0.077 | U | NS | NS | | 0.077 | U | 0.077 | U | NS | | | <u>'</u> | 17-Apr-17 | NS
0.077 | U | 0.12 | U | NS
0.077 | U | NS
0.077 | U | 0.12 | U | NS
0.077 | | 0.12 U | 0.12 | U | 0.12 | U
U | NS
0.077 | U | 0.12 | U | | | 26-Jul-17
12-Oct-17 | 0.077
NS | 0 | NS
0.077 | U | 0.077
NS | U | 0.077
NS | U | NS
0.077 | U | 0.077
NS | U | NS
0.23 U | NS
0.19 | U | 0.077
0.22 | U | 0.077
NS | U | NS
0.19 | U | | <u>'</u> | 10-Jan-18 | 0.077 | U | NS | | 0.077 | U | 0.077 | U | NS | | 0.077 | U | NS | NS | | 0.077 | U | NS | | 0.077 | U | | | 11-Apr-18 | NS | | 0.15 | U | NS | | NS | | 1.5 | U | NS | | 1.5 U | 1.5 | U | 0.15 | U | NS | | 1.5 | U | | | 23-May-18 | NS
0.28 | ** | NS
NG | | NS | ** | NS
0.28 | ** | NS | | NS
0.28 | | NS
NG | NS | | NS
0.28 | | 0.12 | U | NS | | | | 27-Jul-18
24-Oct-18 | 0.38
NS | U | NS
0.38 | U | 0.38
NS | U | 0.38
NS | U | NS
0.38 | U | 0.38
NS | U | NS
0.38 U | NS
0.38 | U | 0.38
0.38 | U
U | 0.38
NS | U | NS
0.38 | U | | | 16-Jan-19 | 0.077 | U | NS | | 0.077 | U | 0.077 | U | NS | | 0.077 | U | NS U | NS | | 0.077 | U | 0.077 | U | NS | | | | 12-Apr-19 | NS | | 0.077 | U | NS | | NS | | 0.077 | U | NS | | 0.096 U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | | 29-Jul-19 | 0.12 | U | NS | | 0.12 | U | 0.077 | U | NS | | 0.077 | U | NS | NS | | 0.077 | U | 2.1 | | NS | | | | 26-Sep-19 | NS | NS | | NS
0.28 ^D | | <0.12 | U | NS
0.28 ^D | | | | 29-Oct-19 | NS
0.08 | U | 0.077
NS | U | NS
0.08 | U | NS
0.08 | U | 0.077
NS | U | NS
0.08 | U | 0.077 U | 0.077
NS | U | 0.38 ^D
0.08 | U
U | 0.38 ^D
0.08 | U
U | 0.38 ^D
NS | | | | 21-Jan-20
22-Apr-20 | 0.08
NS | | NS
0.077 | U | 0.08
NS | U | 0.08
NS | | NS
0.077 | U | 0.08
NS | U | NS
0.077 U | 0.077 | U | 0.08 | U | 0.08
NS | U | NS
0.077 | U | | | 23-Jul-20 | 0.077 | U | NS | | 0.077 | U | 0.077 | U | NS | | 0.15 | U | NS C | NS | | 0.15 | Ü | 0.15 | U | NS | | | | 29-Oct-20 | NS | | 0.077 | U | NS | | NS | | 0.077 | U | NS | | 0.077 U | 0.077 | U | 0.077 | U | NS | | 0.077 | U | | <u> </u> | | | 1 | l | 1 | | | | 1 | | | | | 1 | 1 | _1 | l | | | | | | | Volatile Organic Compounds via TO-15 Sample Date Qual Q | MP-8 NS NS NS NS 0.12 NS | Qual U | 0.12
NS
0.12
0.12
0.12
NS
0.12
0.12
NS
3 | Qual U U U U U U U | 0.55
0.12
NS
0.12
0.12
NS
0.12 | Qual
U
U
U | NS
0.12
0.12
NS
0.12 | Qua
U
U | |--|--|---------------|---|--------------------|--|---------------------|----------------------------------|---------------| | S-Feb-08 | NS
NS
NS
0.12
NS
NS
NS
NS
NS
NS
NS
NS | U | 0.12
NS
0.12
0.12
NS
0.12
0.12
NS
3 | U
U
U | 0.55
0.12
NS
0.12
0.12
NS | U
U
U | 0.12
0.12
NS
0.12 | U | | 27-Mar-08 | NS NS 0.12 NS NS NS NS NS S NS NS NS NS NS NS NS N | U | NS
0.12
0.12
NS
0.12
0.12
NS
3 |
U
U
U | 0.12
NS
0.12
0.12
NS | U
U | 0.12
0.12
NS
0.12 | | | NS | 0.12
NS
NS
NS
NS
NS
NS
NS
NS | U | 0.12
NS
0.12
0.12
NS
3 | U
U
U | 0.12
0.12
NS | U | NS
0.12 | U | | 27-Jun-08 | NS | U | NS
0.12
0.12
NS
3 | U
U | 0.12
NS | U | 0.12 | | | 31-Jul-08 | NS NS 3 NS NS NS NS NS | | 0.12
0.12
NS
3 | U | NS | | | | | 28-Aug-08 | NS 3 NS NS NS NS NS | | 0.12
NS
3 | U | | | | U | | 30-Sep-08 | 3
NS
NS
NS
3
NS | | NS
3 | | 0.12 | U | 0.12
NS | U | | 27-Oct-08 | NS
NS
NS
3
NS | | 3 | 11 | 3 | II. | 3 | U | | 18-Dec-08 | NS
3
NS | | 3 | | NS | | 3 | U | | 21-Jan-09 | 3
NS | | | U | 3 | U | NS | | | 25-Feb-09 3 U NS NS NS 3 U NS NS 26-Mar-09 NS 0.601 U NS | NS | | NS | | 3 | U | 3 | U | | 26-Mar-09 NS 0.601 U NS NS NS 1.2 U NS | | U | 3 | U | NS | | 3 | U | | | | | 3
NS | U | 3
0.12 | U | NS
0.12 | U | | 29-Apr-09 NS NS 0.12 U NS NS NS 0.12 U | NS
NS | | 0.12 | U | NS | | 0.12 | U | | 22-Jul-09 0.601 U NS 24 U 1.2 U NS 0.601 U NS | NS | | 0.12 | U | 0.12 | U | NS | | | 9-Oct-09 NS 0.12 U NS NS 0.12 U NS 0.12 U | 25.1 | U | 0.12 | U | NS | | 0.12 | U | | 15-Jan-10 0.12 U NS 0.12 U 0.12 U NS 0.12 U NS 0.12 U NS | NS | | 0.12 | U | 0.12 | U | NS | | | 21-Apr-10 NS 0.12 U NS NS 0.601 U NS 0.601 U | 0.601 | U | 0.12 | U | NS | | 0.12 | U | | 16-Jul-10 0.12 U NS 0.12 U 0.12 U NS 0.907 U NS 0.13 U 0.1 | NS
0.12 | | 0.12 | U | 1.2 | U | NS
0.12 | *** | | 15-Oct-10 NS 0.12 U NS NS 0.12 U NS 0.12 U NS 0.12 U NS 0.12 U NS 0.601 U NS | 0.12
0.601 | U
U | 0.12
0.601 | U
U | NS
0.601 | U | 0.12
NS | U | | 28-Feb-11 NS NS 1.2 U NS NS NS NS | NS | | NS | | NS | | NS | | | 27-Apr-11 NS 0.12 U NS NS 0.12 U NS 0.12 U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | 26-Jul-11 0.401 U NS 0.401 U 0.12 U NS 0.601 U NS | NS | | 0.12 | U | 0.601 | U | NS | | | 28-Oct-11 NS 3 U NS NS 3 U NS 3 U | 3 | U | 3 | U | NS | | 3 | U | | 23-Jan-12 | NS | ** | 0.6 | U | 7.5 | | NS | U | | 13-Apr-12 | 0.6
NS | U | 0.6
NS | U | NS
3 | U | 0.6
NS | U | | 23-Jun-12 | NS | | 0.6 | U | 0.6 | U | NS | | | 1-Nov-12 NS 0.12 U NS NS 0.12 U NS 0.12 U NS 0.12 U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | 1-Feb-13 0.12 U NS 0.12 U 0.12 U NS 0.12 U NS 0.12 U NS | NS | | 0.12 | U | 0.12 | U | NS | | | 29-Apr-13 NS 0.3 U NS NS 0.12 U NS 0.12 U U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | 9-Jul-13 0.18 U NS 0.12 U 0.12 U NS 0.13 | NS
0.12 | ** | 0.12 | U | 0.12 | U | NS
0.12 | ** | | 1,2-Dichlorobenzene 18-Oct-13 NS 0.12 U NS NS 0.12 U | 0.12
NS | U | 0.12
0.12 | U
U | NS
0.12 | U | 0.12
NS | U | | 24-Apr-14 NS 0.12 U NS NS 0.12 U NS 0.12 U NS 0.12 U | 0.12 | U | 0.12 | U | 0.12 | U | 0.18 | U | | 1-Aug-14 0.12 U NS 0.18 U 0.69 NS NS NS | NS | | 0.12 | U | 0.12 | U | NS | | | 27-Aug-14 NS NS NS NS NS 0.12 U NS | NS | | NS | | NS | | NS | | | 12-Sept-14 (resample) | 0.18 | U | NS | | NS | U | NS | | | 22-Oct-14 | 0.18 | U | 0.18 | U | 0.24 | U | NS | | | 20-Jan-15 0.12 U NS 0.12 U 0.12 U NS 0.12 U NS 0.12 U NS NS NS NS NS NS NS | NS
NS | | 0.18
NS | U | 0.12
0.14 | U | NS
NS | | | 22-Apr-15 NS 0.12 U NS NS 0.12 U NS 0.12 U NS | 0.17 | U | 0.12 | U | NS | | 0.14 | U | | 21-Jul-15 0.3 U NS 0.900 6 U NS 0.3 U NS | NS | | 0.3 ° | U | 0.84 ° | | NS | | | 23-Sept-15 resample | 0.3 | U | NS | | NS | | NS | | | 29-Oct-15 NS 0.3 U NS NS 4 NS 0.5 U | 0.3 | U | 0.3 | U | NS | | 0.3 | U | | 4-Dec-15 resample | NS | | NS
0.12 | | NS
0.12 | U | NS | | | 27-Jan-16 | NS
0.12 | U | 0.12
0.12 | U
U | 0.12
NS | U | NS
0.12 | U | | 20-Jul-16 | NS | | 0.60 | U | 0.60 | U | NS | | | 21-Oct-16 NS 0.12 U NS NS 0.12 U NS 0.12 U U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | 31-Jan-17 0.12 U NS 0.12 U 0.12 U NS | NS | | 0.12 | U | 0.12 | U | NS | | | 17-Apr-17 | 0.18
NS | U | 0.18
0.12 | U
U | NS
0.12 | U | 0.18
NS | U | | 12-Oct-17 NS 0.12 U NS NS 0.12 U NS 0.36 U | 0.32 | | 0.34 | U | NS | | 0.3 | U | | 10-Jan-18 0.12 U NS 0.12 U 0.12 U NS | NS | ** | 0.12 | U | NS | | 0.12 | U | | 11-Apr-18 | 1.2
NS | U | 0.12
NS | U | NS
0.18 | U | 1.2
NS | U | | 27-Jul-18 0.60 U NS 0.60 U 0.60 U NS 0.60 U NS | NS | | 0.60 | U | 0.60 | U | NS | | | 24-Oct-18 NS 0.6 U NS NS 0.6 U NS 0.6 U | 0.6 | U | 0.60 | U | NS
0.12 | | 0.6 | U | | 16-Jan-19 | NS
0.18 | U | 0.12
0.18 | U
U | 0.12
NS | U | NS
0.18 | U | | 29-Jul-19 0.18 U NS 0.18 U 0.12 U NS 0.12 U NS 0.11 U NS | NS
NS | | 0.18 | U | 0.12 | U | NS | | | 26-Sep-19 NS | NS | | NS | | < 0.18 | U | NS | | | 29-Oct-19 NS 0.12 U NS NS 0.23 NS 0.12 U | 0.12 | U | 0.6 ^D | U | 0.6 ^D | U | 0.6 ^D | | | 21-Jan-20 | NS
0.12 | U | 0.12
0.12 | U
U | 0.12
NS | U | NS
0.12 | U | | 23-Jul-20 0.12 U NS 0.12 U 0.12 U NS 0.24 U NS | NS | | 0.24 | U | 0.24 | U | NS | | | 29-Oct-20 NS 0.12 U NS NS 0.12 U NS 0.12 U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | | 1 | | 1 | | | | | | | | 1 | | _ | | | | _ | | | | 1 | | | |---|--------------------------------|-------------|-------|------------|------|-------------|------|-------------------------|------|------------|-----------|-------------------|------|-------------|------|------------|------|-------------------------|--------|------------------|------|------------------|-------| | Volatile Organic Compounds via
TO-15 | | MP-1 | Qual | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Qual | MP-6 | Qual | MP-7 | Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | 10-13 | Sample Date
8-Feb-08 | 0.12 | Qual | NS | Quai | NS | Quai | NS | Quai | 0.12 | Qual
U | NS | Quar | NS | Quai | NS | Quai | 0.12 | U | 0.12 | U | NS | Quai | | | 27-Mar-08 | NS | U | 0.12 | U | NS | | 0.6 | | NS | 0 | 0.12 | U | NS
NS | | NS | | NS | 0 | 0.12 | U | 0.12 | U | | | 25-Apr-08 | NS | | NS | O | 0.12 | U | NS | | NS | | NS | | 0.12 | U | NS | | 0.12 | U | NS | | 0.12 | U | | | 29-May-08 | NS | | NS | | NS | | 1.18 | | NS | | NS | | NS | | 3.47 | | 0.62 | | 0.22 | | NS | | | | 27-Jun-08 | 0.187 | U | NS | | NS | | NS | | 0.257 | | NS | | NS | | NS | | NS | | 0.12 | U | 0.12 | U | | | 31-Jul-08 | NS | | 0.822 | | NS | | NS | | NS | | NS | | NS | | NS | | 0.136 | | NS | | 0.12 | U | | | 28-Aug-08 | NS | | NS | | 0.12 | U | NS | | NS | | NS | | 0.12 | U | NS | | 0.12 | U | 0.12 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 3 | U | NS | | NS | | NS | | 3 | U | NS | | 3 | U | 3 | U | | | 27-Oct-08 | 3 | U | NS | | NS | | NS | | 3 | U | NS | | NS | | NS | | 3 | U | NS | | 3 | U | | | 25-Nov-08 | NS | | 3 | U | NS | | NS | | NS | | 3 | U | NS | | NS | | 3 | U | 3 | U | NS | | | | 18-Dec-08 | NS | | NS | | 3 | U | NS | | NS | | NS | | 3 | U | NS | | NS | | 3 | U | 3 | U | | | 21-Jan-09 | NS | | NS | | NS | | 3 | U | NS | | NS | | NS | | 3 | U | 3 | U | NS | | 3 | U | | | 25-Feb-09 | 3 | U | NS | | NS | | NS | | 3 | U | NS | | NS | | NS | | 3 | U | 3 | U | NS | | | | 26-Mar-09 | NS | | 0.601 | U | NS | | NS | | NS | | 1.2 | U | NS | | NS | | NS | | 0.12 | U | 0.12 | U | | | 29-Apr-09 | NS | | NS | | 0.12 | U | NS | | NS | | NS | | 0.12 | U | NS | | 0.12 | U | NS | | 0.12 | U | | | 22-Jul-09 | 0.601 | U | NS | | 24.5 | U | 1.2 | U | NS | | 0.601 | U | NS | | NS | | 0.12 | U | 0.36 | | NS | | | | 9-Oct-09 | NS | | 0.12 | U | NS | | NS | | 0.12 | U | NS | | 0.12 | U | 25.1 | U | 0.12 | U | NS | | 0.12 | U | | | 15-Jan-10 | 0.12 | | NS | | 0.12 | U | 0.12 | U | NS | | 0.12 | U | NS
0.601 | ,, | NS | | 0.12 | U | 0.12 | U | NS
0.12 | | | | 21-Apr-10 | NS
0.505 | | 0.12 | U | NS
0.605 | | NS | | 0.601 | U | NS
0.007 | | 0.601 | U | 0.601 | U | 0.12 | U | NS | | 0.12 | U | | | 16-Jul-10 | 0.595 | | NS
0.12 | | 0.685 | | 1.99 | | NS
0.12 | | 0.907 | U | NS
0.12 | ,, | NS
0.12 | ,, | 0.132 | | 0.162 | | NS
0.12 | ,. | | | 15-Oct-10 | NS
1.2 | 7.7 | 0.12 | U | NS | | NS
0.12 | | 0.12 | U | NS
0.601 | | 0.12 | U | 0.12 | U | 0.12 | U | NS
0.601 | ** | 0.12 | U | | | 26-Jan-11 | 1.2 | U | 0.12 | U | NS
1.2 | | 0.12 | U | NS | | 0.601 | U | NS
NE | | 0.601 | U | 0.601 | U | 0.601 | U | NS | | | | 28-Feb-11 | NS | | NS
0.12 | U | 1.2 | U | NS | | NS
0.42 | | NS
NG | | NS
0.156 | | NS
0.12 | U | NS
0.12 | T. T. | NS | | NS
0.12 | U | | | 27-Apr-11 | NS
0.401 | U | 0.12 | U | NS
0.401 | U | NS
0.12 | U | 0.42 | | NS
0.601 | U | 0.156 | | 0.12 | U | 0.12 | U
U | NS
0.601 | U | 0.12 | U | | | 26-Jul-11 | 0.401
NS | U | NS
2 | U | 0.401
NS | U | 0.12
NS | U | NS
3 | U | 0.601
NS | U | NS
2 | U | NS
3 | U | 0.12 | U | 0.601
NS | U | NS
3 | U | | | 28-Oct-11
23-Jan-12 | 1.6 | | NS | U | 1.8 | | 2.3 | | NS | 0 | 1.6 | | NS
NS | 0 | NS | 0 | 1.9 | 0 | 2.7 | | NS | | | | 23-Jan-12
13-Apr-12 | NS | | 0.6 | U | NS | | NS | | 0.6 | U | NS | | 0.6 | U | 2 | | 0.6 | U | NS | | 0.6 | U | | | 2-Jul-12 (resample) | NS | | NS | 0 | NS | | NS
NS | | NS | | NS
NS | | NS | | NS | | NS | | 3 | U | NS | | | | 23-Jun-12 | 0.6 | U | NS | | 0.6 | U | 0.6 | U | NS | | 0.6 | U | NS | | NS | | 0.6 | U | 0.6 | U | NS | | | | 1-Nov-12 | NS | Ü | 1.2 | | NS | | NS | | 2.6 | | NS | Ü | 6 | | 2.2 | | 0.18 | | NS | | 0.12 | U | | | 1-Feb-13 | 0.18 | | NS | | 0.34 | | 0.56 | | NS | | 0.44 | | NS | | NS | | 0.17 | | 0.12 | U | NS | | | | 29-Apr-13 | NS | | 1.3 | | NS | | NS | | 4.5 | | NS | | 6.5 | | 6 | | 0.12 | U | NS | _ | 0.14 | | | | 9-Jul-13 | 1.3 | | NS | | 2.0 | | 3.9 | | NS | | 3.8 | | NS | | NS | | 0.12 | U | 0.12 | U | NS | | | 1,3-Dichlorobenzene | 18-Oct-13 | NS | | 0.52 | | NS | | NS | | 1.4 | | NS | | 2.6 | | 2.2 | | 0.16 | | NS | | 0.22 | | | | 9-Jan-14 | 0.58 | | NS | | 0.9 | | 1.1 | | NS | | 0.84 | | NS | | NS | | 3.0 | | 4.1 | | NS | | | | 24-Apr-14 | NS | | 0.12 | U | NS | | NS | | 0.14 | | NS | | 0.12 | U | 0.12 | U | 0.1 | U | 0.12 | U | 0.18 | U | | | 1-Aug-14 | 4.2 | | NS | |
4.8/6.7 | | 4.9/7.6 | | NS | | NS | | NS | | NS | | 3.6 | | 5.1/6.2 | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 0.80 | | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 0.82 | | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.18 | U | NS | | NS | | 0.18 | U | 0.18 | U | 0.18 | U | 0.18 | U | 0.18 | U | 0.24 | U | NS | | | | 20-Jan-15 | 0.12 | U | NS | | 0.120 | U | 0.12 | U | NS | | 0.12 | U | NS | | NS | | 0.2 | | 0.12 | U | NS | | | | 30-Mar-15 (resample) | NS | 0.14 | U | NS | | | | 22-Apr-15 | NS | | 0.13 | | NS | | NS | | 0.36 | | NS | | 1.5 | | 0.78/0.87 | | 0.12 | U | NS | | 0.17 | | | | 21-Jul-15 | 0.3 | U | NS | | 1 | U | 6 | U | NS | | 0.30 ^J | | NS | | NS | | 0.3 ° | U | 0.3 ° | U | NS | | | | 23-Sept-15 resample | NS | | NS | | NS | | NS | | NS | 1 | NS | | NS | _ | 0.3 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.3 | U | NS | | NS | | 0.3 | U | NS | | 0.5 | l n | 0.3 | U | 0.3 | U | NS | | 0.3 | U | | | 4-Dec-15 resample
27-Jan-16 | NS
0.12 | U | 0.3
NS | U | NS
0.12 | U | NS
0.22 ^M | | NS
NS | 1 | NS
0.12 | U | NS
NS | | NS
NS | | NS
0.21 ^M | | NS
0.12 | U | NS
NS | | | | 2/-Jan-16
20-Apr-16 | 0.12
NS | U | NS
0.31 | | 0.12
NS | | 0.22
NS | | NS
0.51 | | 0.12
NS | 0 | NS
0.9 | | NS
0.24 | | 0.21 | | 0.12
NS | 0 | NS
0.21 | | | | 20-Apr-16
20-Jul-16 | 0.60 | U | 0.31
NS | | 1.3 | | 0.60 | U | NS | 1 | 0.60 | U | NS | | 0.24
NS | | 0.22 | U | 0.60 | U | 0.21
NS | | | | 21-Oct-16 | NS | | 0.12 | U | NS | | NS | | 0.12 | U | NS | | 0.12 | U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | | 31-Jan-17 | 0.12 | U | NS | | 0.13 | | 0.13 | | NS | | 0.12 | U | NS | | NS | | 0.12 | | 0.5 | | NS | | | | 17-Apr-17 | NS | | 0.92 | | NS | | NS | | 0.79 | | NS | | 1.3 | | 1.8 | | 0.18 | U | NS | | 0.18 | U | | | 26-Jul-17 | 0.2 | | NS | | 0.12 | U | 2.3 | | NS | | 3.5 | | NS | | NS | | 0.12 | U | 0.12 | U | NS | | | | 12-Oct-17 | NS
0.12 | * * * | 2.2 | | NS
0.10 | | NS
0.28 | | 0.73 | 1 | NS
0.12 | ** | 4.2 | | 4.5 | | 0.34 | U | NS | | 1 | | | | 10-Jan-18
11-Apr-18 | 0.12
NS | U | NS
0.12 | U | 0.19
NS | | 0.28
NS | | NS
1.2 | U | 0.12
NS | U | NS
1.2 | U | NS
1.2 | U | 0.37
0.58 | | NS
NS | | 0.69
1.2 | U | | | 23-May-18 | NS
NS | | NS | J | NS
NS | | NS
NS | | NS | | NS
NS | | NS | | NS | | NS | | 3.2 | | NS | , , , | | | 27-Jul-18 | 3.4 | | NS | | 6.4 | | 4.4 | | NS | | 4.1 | | NS | | NS | | 1.1 | | 1.1 | | NS | | | | 24-Oct-18 | NS | | 0.6 | U | NS | | NS | | 0.6 | U | NS | | 0.6 | U | 0.6 | U | 0.6 | U | NS | | 0.6 | U | | | 16-Jan-19 | 0.12 | U | NS | | 0.12 | U | 0.12 | U | NS | | 0.12 | U | NS | _ | NS | | 0.19 | | 0.24 | | NS | | | | 12-Apr-19 | NS | | 0.2 | | NS
2 | | NS
6.4 | | 0.13 | | NS | | 0.15 | U | 0.18 | U | 0.18 | U | NS | | 0.18 | U | | | 29-Jul-19
26-Sep-19 | 3.3
NS | | NS
NS | | 3
NS | | 6.4
NS | | NS
NS | 1 | 6.7
NS | | NS
NS | | NS
NS | | 1.4
NS | | 3.6
1 | | NS
NS | | | | 29-Oct-19 | NS
NS | | 1 | | NS
NS | | NS
NS | | 1.4 | | NS
NS | | 0.22 | | 1.1 | | 2.6 ^D | | 4.1 ^D | | 2.7 ^D | | | | 29-Oct-19
21-Jan-20 | 0.57 | | NS | | 0.68 | | 0.67 | | NS | 1 | 0.25 | | NS | | NS | | 0.93 | | 0.12 | U | NS | | | | 22-Apr-20 | NS | | 0.3 | | NS | | NS | | 0.13 | 1 | NS | | 0.63 | | 0.84 | | 0.12 | U | NS | | 0.12 | U | | | 23-Jul-20 | 0.12 | U | NS | | 6.3 | | 0.12 | U | NS | | 0.24 | U | NS | | NS | | 0.24 | U | 0.24 | U | NS | | | | 29-Oct-20 | NS | | 0.12 | U | NS | | NS | | 0.12 | U | NS | | 0.12 | U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | 0 | 1 | | | | | | | i . | | | | 1 | | | | | | • | 1 | | | | 1 11 | | Volatile Organic Compounds via
TO-15 | | MP-1 | | MP-2 | 01 | MP-3 | 01 | MP-4 | 01 | MP-5 | | MP-6 | 01 | MP-7 | 01 | MP-8 | 01 | IMP-1 | 01 | IMP-2 | 01 | IMP-3 | 01 | |---|------------------------------------|------------|------|------------|------|------------|------|------------|------|------------|------|------------|------|------------|-------|------------|------|------------------|--------|------------------|------|------------------|------| | 10-15 | Sample Date
8-Feb-08 | 1.56 | Qual | NC | Qual | NC | Qual | | Qual | 0.26 | Qual | NC | Qual | NC | Qual | NC | Qual | 0.5 | Qual | 7.01 | Qual | NC | Qual | | | 27-Mar-08 | 1.56
NS | | NS
4.33 | | NS
NS | | NS
NS | | 0.26
NS | | NS
8.48 | | NS
NS | | NS
NS | | 9.5
NS | | 7.91
6.28 | | NS
15.1 | | | | 25-Apr-08 | NS | | NS | | 0.347 | | NS | | NS | | NS | | 32.3 | | NS | | 17.9 | | NS | | 16.3 | | | | 29-May-08 | NS | | NS | | NS | | 5.5 | | NS | | NS | | NS | | 10 | | 9.41 | | 4.18 | | NS | | | | 27-Jun-08 | 47.3 | | NS | | NS | | NS | | 38.1 | | NS | | NS | | NS | | NS | | 40.8 | | 57.9 | | | | 31-Jul-08 | NS | | 2.46 | | NS | | NS | | NS | | NS | | NS | | NS | | 1.84 | | NS | | 2.04 | | | | 28-Aug-08 | NS | | NS | | 234 | | NS | | NS | | NS | | 214 | | NS | | 229 | | 208 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 7.2 | | NS | | NS | | NS | | 3 | U | NS | | 6.8 | | 5.6 | | | | 27-Oct-08 | 3 | U | NS | | NS | | NS | | 3 | U | NS | | NS | | NS | | 3 | U | NS | | 3 | U | | | 25-Nov-08 | NS | | 3 | U | NS | | NS | | NS | | 3 | U | NS | | NS | | 3 | U | 3 | U | NS | | | | 18-Dec-08 | NS | | NS | | 3 | U | NS | ** | NS | | NS | | 4.7 | | NS | ** | NS
12.0 | | 10.3 | | 17.1 | | | | 21-Jan-09
25-Feb-09 | NS
3 | U | NS
NS | | NS
NS | | 3
NS | U | NS
3 | U | NS
NS | | NS
NS | | 3
NS | U | 13.9 | IJ | NS
3 | U | 27.2
NS | | | | 26-Mar-09 | NS | | 5.43 | | NS | | * | | NS | | 4.87 | | NS
NS | | NS | | NS | | 20.6 | 0 | 33 | | | | 29-Apr-09 | NS | | NS | | 1.2 | | NS | | NS | | NS | | 1.91 | | NS | | 4.12 | | NS | | 4.25 | | | | 22-Jul-09 | 0.601 | U | NS | | 24.5 | U | 1.2 | U | NS | | 0.601 | U | NS | | NS | | 0.348 | | 0.613 | | NS | | | | 9-Oct-09 | NS | | 3.31 | | NS | | NS | | 3.44 | | NS | | 2.79 | | 25.1 | U | 6.95 | | NS | | 3.82 | | | | 15-Jan-10 | 0.12 | | NS | | 1.06 | | 0.715 | | NS | | 0.823 | | NS | | NS | | 2 | | 1.98 | | NS | | | | 21-Apr-10 | NS | | 0.12 | U | NS | | NS | | 0.601 | U | NS | | 0.601 | U | 0.601 | U | 3.27 | | NS | | 2.84 | | | | 16-Jul-10 | 1.78 | | NS | | 2.3 | 1 | 2.86 | | NS | | 1.36 | | NS | | NS | | 1.63 | | 5.05 | | NS | | | | 15-Oct-10 | NS | | 0.685 | | NS | | NS | | 1.75 | | NS | | 1.37 | | 1.48 | | 1.8 | | NS | | 2.47 | | | | 26-Jan-11 | 1.2 | U | 0.12 | U | NS | | 0.12 | U | NS | | 0.601 | U | NS | | 0.601 | U | 0.601 | U | 0.601 | U | NS | | | | 28-Feb-11 | NS | | NS | | 1.2 | U | NS | | | 27-Apr-11 | NS | | 0.985 | | NS | | NS | | 1.08 | | NS | | 0.967 | | 1.14 | | 1.07 | | NS | | 1.24 | | | | 26-Jul-11 | 5.45 | | NS | ** | 5.21 | | 0.715 | | NS | | 5.26 | | NS | ** | NS | ** | 5.54 | ** | 4.69 | | NS | | | | 28-Oct-11 | NS
0.6 | U | 3
NC | U | NS
0.6 | U | NS
0.6 | U | 3
NS | U | NS
0.6 | 11 | 3
NE | U | 3
NS | U | 3
0.6 | U | NS
0.66 | | 3
NC | U | | | 23-Jan-12
13-Apr-12 | NS | 0 | NS
0.6 | U | 0.6
NS | 0 | 0.6
NS | U | 0.6 | U | 0.6
NS | U | NS
0.6 | U | 0.6 | U | 0.6 | IJ | NS | | NS
0.6 | U | | | 2-Jul-12 (resample) | NS | | NS | | NS | | NS | | NS | | NS
NS | | NS | | NS | 0 | NS | | 3 | U | NS | | | | 23-Jun-12 | 0.6 | U | NS | | 0.6 | U | 0.6 | U | NS | | 0.6 | U | NS | | NS | | 0.6 | U | 0.6 | U | NS | | | | 1-Nov-12 | NS | | 0.12 | U | NS | | NS | | 0.12 | U | NS | | 0.12 | U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | | 1-Feb-13 | 0.12 | U | NS | | 0.12 | U | 0.4 | | NS | | 0.12 | U | NS | | NS | | 0.12 | U | 0.12 | U | NS | | | | 29-Apr-13 | NS | | 0.3 | U | NS | | NS | | 0.12 | U | NS | | 0.12 | U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | 148:11 | 9-Jul-13 | 0.18 | U | NS | | 0.14 | | 0.16 | | NS | | 0.18 | | NS | | NS | | 0.18 | | 0.22 | | NS | | | 1,4-Dichlorobenzene | 18-Oct-13 | NS | | 0.12 | U | NS | | NS | | 0.12 | U | NS | | 0.12 | U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | | 9-Jan-14 | 0.12 | U | NS | | 0.12 | U | 0.12 | U | NS | | 0.12 | U | NS | | NS | | 0.14 | | 0.12 | U | NS | | | | 24-Apr-14 | NS | | 0.12 | U | NS | | NS | | 0.12 | U | NS | | 0.12 | U | 0.12 | U | 0.12 | U | 0.12 | U | 0.18 | U | | | 1-Aug-14 | 0.12 | U | NS | | 0.18 | U | 0.18 | U | NS | | NS
0.12 | ** | NS | | NS | | 0.12 | U | 0.12 | U | NS | | | | 27-Aug-14 | NS
NS | | NS
NS | | NS
NS | | NS
NS | | NS
NS | | 0.12
NS | U | NS
NS | | NS
0.18 | U | NS
NS | | NS
NS | U | NS
NS | | | | 12-Sept-14 (resample)
22-Oct-14 | NS | | 0.18 | U | NS | | NS
NS | | 0.18 | U | 0.18 | U | 0.18 | U | 0.18 | U | 0.18 | U | 0.24 | U | NS
NS | | | | 20-Jan-15 | 0.12 | U | NS | | 0.120 | U | 0.12 | U | NS | | 0.12 | U | NS | | NS | | 0.18 | U | 0.13 | | NS | | | | 30-Mar-15 (resample) | NS | 0.14 | U | NS | | | | 22-Apr-15 | NS | | 0.12 | U | NS | | NS | | 0.12 | U | NS | | 0.12 | U | 0.17 | U | 0.12 | U | NS | | 0.14 | U | | | 21-Jul-15 | 0.3 | U | NS | | 1 | U | 6 | U | NS | | 0.3 | U | NS | | NS | | 0.3 ° | U | 0.3 ° | U | NS | | | | 23-Sept-15 resample | NS | 0.3 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.3 | U | NS | | NS | | 0.3 | U | NS | | 0.5 | U | 0.3 | U | 0.3 | U | NS | | 0.3 | U | | | 4-Dec-15 resample | NS | | 0.3 | U | NS | 1 | NS | | | 27-Jan-16 | 0.12 | U | NS | | 0.12 | U | 0.12 | U | NS | | 0.12 | U | NS | | NS | | 0.12 | U | 0.13 | | NS | | | | 20-Apr-16 | NS | | 0.12 | U | NS | | NS | | 0.52 | | NS | | 0.12 | U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | | 20-Jul-16 | 0.60 | U | NS
0.12 | U | 0.60 | U | 0.60 | U | NS
0.12 | U | 0.60 | U | NS
0.12 | U | NS
0.12 | 11 | 0.60 | U
U | 0.60 | U | NS
0.12 | U | | | 21-Oct-16
31-Jan-17 | NS
0.12 | U | 0.12
NS | U | NS
0.12 | U | NS
0.12 | U | 0.12
NS | | NS
0.12 | U | 0.12
NS | | 0.12
NS | U | 0.12
0.12 | U | NS
0.12 | U | 0.12
NS
 U | | | 17-Apr-17 | NS | | 0.18 | U | NS | | NS | | 0.18 | U | NS | | 0.18 | U | 0.18 | U | 0.18 | Ü | NS | | 0.18 | U | | | 26-Jul-17 | 0.12 | U | NS | | 1.8 | | 0.12 | U | NS | | 0.12 | U | NS | | NS | | 0.12 | U | 0.12 | U | NS | | | | 12-Oct-17 | NS
0.12 | ** | 0.12 | U | NS
0.12 | | NS
0.12 | ** | 0.12 | U | NS
0.12 | ** | 0.36 | U | 0.37 | | 0.34 | U | NS | | 0.3 | U | | | 10-Jan-18
11-Apr-18 | 0.12
NS | U | NS
0.12 | U | 0.12
NS | U | 0.12
NS | U | NS
1.2 | U | 0.12
NS | U | NS
1.2 | U | NS
1.2 | U | 0.12
0.12 | U | NS
NS | | 0.12
1.2 | U | | | 23-May-18 | NS | 0.18 | U | NS | | | | 27-Jul-18 | 0.60 | U | NS | | 0.60 | U | 0.60 | U | NS | | 0.60 | U | NS | | NS | | 0.60 | U | 0.60 | U | NS | | | | 24-Oct-18 | NS | | 0.6 | U | NS | | NS | | 0.6 | U | NS | | 0.6 | U | 0.6 | U | 0.60 | U | NS | | 0.6 | U | | | 16-Jan-19 | 0.12
NS | U | NS
0.12 | U | 0.12
NS | U | 0.12
NS | U | NS
0.12 | U | 0.12
NS | U | NS
0.15 | U | NS
0.18 | U | 0.12 | U | 0.12
NS | U | NS
0.18 | U | | | 12-Apr-19
29-Jul-19 | 0.18 | U | 0.12
NS | U | 0.18 | U | 0.12 | U | 0.12
NS | | 0.12 | U | 0.15
NS | | 0.18
NS | U | 0.18
0.12 | U | NS
2.2 | | 0.18
NS | 0 | | | 26-Sep-19 | NS | | NS | | NS | 1 | NS | | NS | | NS | | NS | | NS | | NS | | < 0.18 | U | NS | | | | 29-Oct-19 | NS | | 0.12 | U | NS | | NS | | 0.29 | | NS | | 0.12 | U | 0.12 | U | 0.6 ^D | U | 0.6 ^D | U | 0.6 ^D | | | | 21-Jan-20 | 0.12 | U | NS | | 0.12 | U | 0.12 | U | NS | | 0.12 | U | NS | | NS | | 0.12 | U | 0.12 | U | NS | | | | 22-Apr-20 | NS
0.12 | U | 0.12 | U | NS
0.12 | U | NS
0.12 | U | 0.12
NS | U | NS
0.24 | U | 0.12
NS | U | 0.12
NS | U | 0.12 | U | NS
0.24 | U | 0.12
NS | U | | | 23-Jul-20
29-Oct-20 | 0.12
NS | | NS
0.12 | U | 0.12
NS | " | 0.12
NS | U | NS
0.12 | U | 0.24
NS | 0 | NS
0.12 | U | NS
0.12 | U | 0.24
0.12 | U
U | 0.24
NS | U | NS
0.12 | U | | | 2, 35, 20 | | 1 | 0.12 | J | | 1 | 1 | | V.12 | 1 | 1 | 1 | V.1.2 | 1 ~ 1 | V | 1 - | V.12 | 1 ~ [| | 1 | 0.12 | J | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|-----------------------------------|----------------|------|--------------------------|------|----------------|------|------------------|------|--------------------------|------|------------------|------|--------------------------|------|-------------|------|------------------|------|------------------|------|------------------|------| | TO-15 | Sample Date | | Qual | 8-Feb-08 | 2 | | NS | | NS | | NS | | 2.03 | | NS | | NS | | NS | | 1.92 | | 2 | | NS | | | | 27-Mar-08 | NS | | 2.29 | | NS | | NS | | NS | | 2.15 | | NS | | NS | | NS | | 2.72 | | 4.14 | | | | 25-Apr-08 | NS | | NS | | 2.01 | | NS | | NS | | NS | | 2.11 | | NS | | 2.04 | | NS | | 2.16 | | | | 29-May-08
27-Jun-08 | NS
2.03 | | NS
NS | | NS
NS | | 1.63
NS | | NS
2.52 | | NS
NS | | NS
NS | | 1.62
NS | | 1.68
NS | | 1.66
2.27 | | NS
2.48 | | | | 31-Jul-08 | NS | | 1.9 | | NS
NS | | NS
NS | | 2.32
NS | | NS
NS | | NS | | NS
NS | | 1.81 | | NS | | 1.87 | | | | 28-Aug-08 | NS | | NS | | 3.13 | | NS | | NS | | NS | | 2.8 | | NS | | 2.75 | | 2.88 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 2.5 | U | NS | | NS | | NS | | 2.5 | U | NS | | 2.5 | U | 2.7 | | | | 27-Oct-08 | 2.5 | U | NS | | NS | | NS | | 2.5 | U | NS | | NS | | NS | | 2.5 | U | NS | | 2.5 | U | | | 25-Nov-08 | NS | | 215 | | NS | | NS | | NS | | 11.7 | | NS | | NS | | 2.5 | U | 5.1 | | NS | | | | 18-Dec-08 | NS | | NS | | 25 | | NS | | NS | | NS | | 2.5 | U | NS | | NS | | 2.5 | U | 2.5 | U | | | 21-Jan-09 | NS | | NS | | NS | | 2.5 | U | NS | | NS | | NS | | 5.8 | | 2.5 | U | NS | | 2.5 | U | | | 25-Feb-09 | 2.5 | U | NS | | NS | | NS | | 19.4 | | NS | | NS | | NS | | 2.5 | U | 3.4 | | NS | | | | 26-Mar-09 | NS | | 2.55 | | NS | | NS | | NS | | 2.48 | | NS | | NS | | NS | | 2.46 | | 2.41 | | | | 29-Apr-09 | NS | | NS | | 2.41 | | NS | | NS | | NS
2.5 | | 3.78 | | NS | | 2.26 | | NS
2.40 | | 2.4 | | | | 22-Jul-09 | 2.42 | | NS | | 2.42
NS | | 2.72 | | NS
2.77 | | 2.5 | | NS
3.67 | | NS
51.6 | U | 2.37
2.64 | | 2.48 | | NS | | | | 9-Oct-09
15-Jan-10 | NS
2.5 | | 2.73
NS | | 3.57 | | NS
2.52 | | NS | | NS
2.61 | | NS | | 51.6
NS | U | 2.29 | | NS
2.25 | | 2.79
NS | | | | 21-Apr-10 | NS | | 0.568 | | NS | | NS | | 2.2 | | NS | | 2.59 | | 2.2 | | 2.64 | | NS | | 2.43 | | | | 16-Jul-10 | 3.36 | | NS | | 2.61 | | 2.55 | | NS | | 2.98 | | NS | | NS | | 3.15 | | 3.29 | | NS | | | | 15-Oct-10 | NS | | 3.13 | | NS | | NS | | 2.67 | | NS | | 2.43 | | 2.41 | | 2.46 | | NS | | 2.43 | | | | 26-Jan-11 | 2.47 | U | 2.2 | | NS | | 2.64 | | NS | | 1.98 | | NS | | 2.57 | | 3.31 | | 3.24 | | NS | | | | 28-Feb-11 | NS | | NS | | 2.47 | U | NS | | | 27-Apr-11 | NS | | 2.18 | | NS | | NS | | 2.27 | | NS | | 2.26 | | 2.5 | | 2.32 | | NS | | 2.31 | | | | 26-Jul-11 | 2.41 | | NS | | 2.29 | | 2.28 | | NS | | 2.08 | | NS | | NS | | 2.44 | | 2.3 | | NS | | | | 28-Oct-11 | NS | | 2.7 | | NS | | NS | | 2.7 | | NS | | 2.7 | | 2.7 | | 2.9 | | NS | | 3.1 | | | | 23-Jan-12 | 2.5 | | NS | | 2.6 | | 2.6 | | NS | | 2.7 | | NS | | NS | | 2.6 | | 2.6 | | NS | | | | 13-Apr-12 | NS | | 2.5 | | NS | | NS | | 2.9 | | NS | | 2.4 | | 3.2 | | 2.5 | | NS | | 2.8 | | | | 2-Jul-12 (resample) | NS | | NS
NS | | NS
2.3 | | NS
2.5 | | NS | | NS
2.3 | | NS
NS | | NS
NS | | NS
2.3 | | 2.8 | | NS | | | | 23-Jun-12
1-Nov-12 | 2.6
NS | | 1.8 | | NS | | NS | | NS
1.8 | | NS | | 2 | | 1.9 | | 2.3 | | 2.3
NS | | NS
1.9 | | | | 1-Feb-13 | 1.4 | | NS | | 1.4 | | 1.5 | | NS | | 1.6 | | NS | | NS | | 1.6 | | 1.6 | | NS | | | | 29-Apr-13 | NS | | 2.6 | | NS | | NS | | 2.3 | | NS | | 2.2 | | 2.2 | | 2.3 | | NS | | 2.3 | | | | 9-Jul-13 | 1 | | NS | | 1.1 | | 0.99 | | NS | | 1.1 | | NS | | NS | | 1.0 | | 1.1 | | NS | | | Dichlorodifluoromethane | 18-Oct-13 | NS | | 2.0 | | NS | | NS | | 1.9 | | NS | | 1.9 | | 2.2 | | 2.0 | | NS | | 2.1 | | | | 9-Jan-14 | 1.5 | | NS | | 1.2 | | 1.3 | | NS | | 1.4 | | NS | | NS | | 1.5 | | 1.5 | | NS | | | | 24-Apr-14 | NS | | 2.7 | | NS | | NS | | 2.6 | | NS | | 2.3 | | 2.6 | | 2.7 | | 2.6 | | 3.1 | | | | 1-Aug-14 | 1.1 | | NS | | 2.2/1.5 | | 2.3/1.6 | | NS | | NS | | NS | | NS | | 1.6 | | 2.2/1.6 | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 2.9/3.3 | | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 2.3 | | NS | | NS | U | NS | | | | 22-Oct-14 | NS
0.099 | U | 1.3
NS | | NS
1.5 | | NS | | 1.4 | | 1.4
1.4 | | 1.4 | | 1.6 | | 1.4
1.4 | | 1.4
1.5 | | NS | | | | 20-Jan-15
30-Mar-15 (resample) | 0.099
NS | U | NS
NS | | NS | | 1.4
NS | | NS
NS | | NS | | NS
NS | | NS
NS | | NS | | 1.4 | | NS
NS | | | | 22-Apr-15 | NS | | 4.0 V | | NS | | NS | | 4.1 ^V | | NS | | 1.8 | | 1.7/2.0 | | 1.8 | | NS | | 2.0 | | | | 21-Jul-15 | 0.88 | | NS | | 1.6 | | 5 | U | NS | | 0.91 | | NS | | NS | | 0.74 ° | | 0.72 ° | | NS | | | | 23-Sept-15 resample | NS | 0.93 | | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 1 | | NS | | NS | | 0.89 | | NS | | 0.88 | | 0.89 | | 0.83 | | NS | | 0.84 | | | | 4-Dec-15 resample | NS | | 0.91 | | NS | | 27-Jan-16 | 2 ^M | | NS | | 2 ^M | | 2.1 ^M | | NS | | 2.1 ^M | | NS | | NS | | 2.2 ^M | | 2.1 ^M | | NS | | | | 20-Apr-16 | NS | | 1.5 | | NS | | NS | | 1.6 | | NS | | 1.5 | | 1.7 | | 1.6 | | NS | | 1.7 | | | | 20-Jul-16 | 1.4 | | NS
0.55 | | 1.6 | | 1.6 | | NS
0.55 | | 1.6 | | NS
0.58 | | NS
0.56 | | 1.5 | | 1.5 | | NS
0.51 | | | | 21-Oct-16
31-Jan-17 | NS
0.75 | | 0.55
NS | | NS
0.79 | | NS
0.8 | | 0.55
NS | | NS
0.75 | | 0.58
NS | | 0.56
NS | | 0.51
0.78 | | NS
0.86 | | 0.51
NS | | | | 17-Apr-17 | NS | | 0.84 | | NS | | NS | | 0.89 | | NS | | 0.91 | | 0.96 | | 0.86 | | NS | | 0.93 | | | | 26-Jul-17 | 1.8 | | NS | | 1.8 | | 1.8 | | NS | | 1.7 | | NS | | NS | | 1.8 | | 1.8 | | NS | | | | 12-Oct-17 | NS
0.66 | | 0.82 | | NS
0.67 | | NS
0.65 | | 0.73 | | NS
0.62 | | 1.3 | | 1.2 | | 1.4 | | NS
NS | | 1.2 | | | | 10-Jan-18
11-Apr-18 | 0.66
NS | | NS
1.2 | | 0.67
NS | | 0.65
NS | | NS
2.8 | | 0.63
NS | | NS
2.7 | | NS
2.7 | | 0.63
1.1 | | NS
NS | | 0.63
2.7 | | | | 23-May-18 | NS | 1.6 | | NS | | | | 27-Jul-18 | 1.6 | | NS | | 1.7 | | 1.6 | | NS | | 1.5 | | NS | | NS | | 1.4 | | 1.6 | | NS | | | | 24-Oct-18 | NS | | 1.7 | | NS
0.70 | | NS
0.75 | | 1.2 | | NS | | 1.1 | | 1.1 | | 1.3 | | NS | | 1.2 | | | | 16-Jan-19 | 0.75 | | NS
0.84 ^{LV} | | 0.78 | | 0.75 | | NS
o salv | | 0.8 | | NS
0.86 ^{LV} | | NS
0.70 | | 0.79 | | 0.99 | | NS | | | | 12-Apr-19
29-Jul-19 | NS
0.15 | U | 0.84 ^{LV}
NS | | NS
0.15 | U | NS
0.099 | U | 0.83 ^{LV}
NS | | NS
0.099 | U | 0.86 ^{LV}
NS | | 0.79
NS | | 0.8
0.099 | U | NS
0.099 | U | 1.1
NS | | | | 29-Jul-19
26-Sep-19 | NS | | NS
NS | | NS
NS | U | 0.099
NS | | NS
NS | | 0.099
NS | | NS
NS | | NS
NS | | 0.099
NS | | 1.5 | | NS
NS | | | | 29-Oct-19 | NS | | 1.5 | | NS | | NS | | 1.8 | | NS | | 1.6 | | 1.5 | | 2.6 ^D | U | 3.4 ^D | | 2.8 ^D | | | | 21-Jan-20 | 2.40 | | NS | | 2.40 | | 0.10 | U | NS | | 2.60 | | NS | | NS | | 0.73 | U | 2.50 | | NS | | | | 22-Apr-20 | NS | | 1.2 | | NS | | NS | | 1.1 | | NS | | 1.1 | | 1.1 | | 1.1 | | NS | | 1.3 | | | | 23-Jul-20
29-Oct-20 | 0.099
NS | U | NS
0.099 | U | 1.1
NS | | 1.1
NS | | NS
0.099 | U | 0.2
NS | U | NS
0.099 | U | NS
0.099 | U | 2.6
0.099 | | 0.2
NS | U | NS
0.099 | U | | | 27 001-20 | 140 | | 0.077 | | 110 | | 110 | | 0.077 | 5 | 110 | | 0.077 | | 0.077 | J | 0.077 | | 110 | | 0.077 | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | |
MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|----------------------------------|-------------|------|-------------|------|-------------|------|-------------|------|-------------|------|-------------|------|-------------|------|-------------|------|------------------|--------|--------------------------|--------|------------------|------| | TO-15 | Sample Date | | Qual | 8-Feb-08 | 0.08 | U | NS | | NS | | NS | | 0.08 | U | NS | | NS | | NS | | 0.08 | U | 0.08 | U | NS | | | | 27-Mar-08
25-Apr-08 | NS | | 0.081
NS | U | NS
0.081 | U | NS
NS | | NS
NS | | 0.081
NS | U | NS
0.081 | U | NS
NS | | NS
0.081 | U | 0.081
NS | U | 0.081 | U | | | 29-May-08 | NS
NS | | NS
NS | | 0.081
NS | 0 | 0.08 | U | NS | | NS | | 0.081
NS | 0 | 0.08 | U | 0.081 | U | 0.08 | U | 0.081
NS | 0 | | | 27-Jun-08 | 0.126 | U | NS | | NS | | NS | | 0.081 | U | NS | | NS | | NS | | NS | | 0.081 | U | 0.081 | U | | | 31-Jul-08 | NS | | 0.081 | U | NS | | NS | | NS | | NS | | NS | | NS | | 0.081 | U | NS | | 0.081 | U | | | 28-Aug-08 | NS | | NS | | 0.081 | U | NS | | NS | | NS | | 0.081 | U | NS | | 0.081 | U | 0.081 | U | NS | | | | 27-Oct-08 | NS | | NS | | NS | | 2 | U | NS | | NS | | NS | | 2 | U | NS | | 2 | U | 2 | U | | | 27-Oct-08
25-Nov-08 | 2
NS | U | NS
2 | U | NS
NS | | NS
NS | | 2
NS | U | NS
2 | U | NS
NS | | NS
NS | | 2 2 | U
U | NS
2 | U | 2
NS | U | | | 18-Dec-08 | NS | | NS | 0 | 2 | U | NS
NS | | NS | | NS | | 2 | U | NS | | NS | | 2 | U | 2 | U | | | 21-Jan-09 | NS | | NS | | NS | _ | 2 | U | NS | | NS | | NS | | 2 | U | 2 | U | NS | | 2 | U | | | 25-Feb-09 | 2 | U | NS | | NS | | NS | | 2 | U | NS | | NS | | NS | | 2 | U | 2 | U | NS | | | | 26-Mar-09 | NS | | 0.404 | U | NS | | NS | | NS | | 0.809 | U | NS | | NS | | NS | | 0.081 | U | 0.081 | U | | | 29-Apr-09 | NS | | NS | | 0.19 | | NS | | NS | | NS | | 0.081 | U | NS | | 0.121 | | NS | | 0.081 | U | | | 22-Jul-09 | 0.404 | U | NS
0.081 | U | 16.5
NS | U | 0.801 | U | NS
0.081 | U | 0.404 | U | NS
0.081 | U | NS | 11 | 0.081 | U
U | 0.081 | U | NS
0.081 | U | | | 9-Oct-09
15-Jan-10 | NS
0.137 | U | 0.081
NS | U | 0.081 | U | NS
0.801 | U | 0.081
NS | U | NS
0.081 | U | 0.081
NS | 0 | 16.9
NS | U | 0.081
0.081 | U | NS
0.081 | U | 0.081
NS | 0 | | | 21-Apr-10 | NS | | 0.081 | U | NS | | NS | | 0.404 | U | NS | | 0.404 | U | 0.404 | U | 0.081 | U | NS | | 0.081 | U | | | 16-Jul-10 | 0.081 | U | NS | | 2.48 | | 0.081 | U | NS | | 0.611 | U | NS | | NS | | 0.081 | U | 0.081 | U | NS | | | | 15-Oct-10 | NS | | 0.081 | U | NS | | NS | | 0.081 | U | NS | | 0.081 | U | 0.081 | U | ,081 | U | NS | | 0.081 | U | | | 26-Jan-11 | 0.809 | U | 0.081 | U | NS | | 0.081 | U | NS | | 7.37 | U | NS | | 0.404 | U | 0.404 | U | 0.404 | U | NS | | | | 28-Feb-11 | NS | | NS | | 0.809 | U | NS | | NS | | NS | | NS
0.081 | | NS | | NS | | NS | | NS
0.081 | U | | | 27-Apr-11
26-Jul-11 | NS
0.27 | U | 0.081
NS | U | NS
0.27 | U | NS
0.081 | U | 0.081
NS | U | NS
0.405 | U | 0.081
NS | U | 0.081
NS | U | 0.081
0.081 | U
U | NS
0.405 | U | 0.081
NS | U | | | 28-Oct-11 | NS | | 2 | U | NS | | NS | | 2 | U | NS | | 2 | U | 2 | U | 2 | U | NS | Ü | 2 | U | | | 23-Jan-12 | 0.4 | U | NS | | 0.4 | U | 0.4 | U | NS | | 0.4 | U | NS | | NS | | 0.4 | U | 0.4 | U | NS | | | | 13-Apr-12 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.2 | U | 0.2 | U | 0.2 | U | NS | | 0.2 | U | | | 2-Jul-12 (resample) | NS | 1 | U | NS | | | | 23-Jun-12 | 0.4 | U | NS | *** | 0.4 | U | 0.4 | U | NS | ** | 0.4 | U | NS | ** | NS | ** | 0.4 | U | 0.4 | U | NS | ** | | | 1-Nov-12
1-Feb-13 | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | 0.04
NS | U | 0.040
0.040 | U
U | NS
0.040 | U | 0.04
NS | U | | | 29-Apr-13 | NS | | 0.2 | U | NS | | NS | | 0.081 | U | NS | | 0.081 | U | 0.081 | U | 0.040 | U | NS | 0 | 0.081 | U | | | 9-Jul-13 | 0.061 | U | NS | | 0.040 | U | 0.040 | U | NS | | 0.040 | U | NS | | NS | | 0.040 | U | 0.040 | U | NS | | | 1,1-Dichloroethane | 18-Oct-13 | NS | | 0.081 | U | NS | | NS | | 0.081 | U | NS | | 0.081 | U | 0.081 | U | 0.081 | U | NS | | 0.081 | U | | | 9-Jan-14 | 0.081 | U | NS | | 0.081 | U | 0.081 | U | NS | | 0.081 | U | NS | | NS | | 0.081 | U | 0.081 | U | NS | | | | 24-Apr-14 | NS | U | 0.04 | U | NS
0.280 | | NS
0.120 | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.040 | U | 0.040 | U | 0.12 | U | | | 1-Aug-14
27-Aug-14 | 0.081
NS | U | NS
NS | | 0.280
NS | | 0.120
NS | U | NS
NS | | NS
0.040 | U | NS
NS | | NS
NS | | 0.081
NS | U | 0.081
NS | U | NS
NS | | | | 12-Sept-14 (resample) | NS | 0.061 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.061 | U | NS | | NS | | 0.061 | U | 0.061 | U | 0.061 | U | 0.061 | U | 0.061 | U | 0.081 | U | | | | | 20-Jan-15 | 0.04 | U | NS | | 0.040 | U | 0.040 | U | NS | | 0.040 | U | NS | | NS | | 0.061 | U | 0.040 | U | NS | | | | 30-Mar-15 (resample) | NS | | NS
v | | NS 0.046 | U | NS | | | | 22-Apr-15 | NS
0.2 | U | 0.041 V | U | NS | | NS | | 0.04 V | U | NS
0.2 | | 0.04 | U | 0.059 | U | 0.040
0.200 ° | U
U | NS
0.200 ^O | II. | 0.047 | U | | | 21-Jul-15
23-Sept-15 resample | 0.2
NS | U | NS
NS | | 0.8
NS | U | 4
NS | U | NS
NS | | 0.2
NS | U | NS
NS | | NS
0.2 | U | 0.200
NS | U | 0.200
NS | U | NS
NS | | | | 29-Oct-15 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.3 | U | 0.2 | U | 0.2 | U | NS | | 0.2 | U | | | 4-Dec-15 resample | NS | | 0.2 | U | NS | | | 27-Jan-16 | 0.04 | U | NS | | 0.044 | | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.04 | U | NS | | | | 20-Apr-16 | NS
0.20 | *** | 0.040 | U | NS
0.27 | | NS
0.20 | | 0.040 | U | NS
0.51 | | 0.040 | U | 0.040 | U | 0.040 | U | NS
0.20 | | 0.040 | U | | | 20-Jul-16
21-Oct-16 | 0.20
NS | U | NS
0.04 | U | 0.37
NS | | 0.20
NS | U | NS
0.04 | U | 0.51
NS | | NS
0.04 | U | NS
0.04 | U | 0.20
0.04 | U
U | 0.20
NS | U | NS
0.24 | | | | 31-Jan-17 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.04 | U | NS | | | | 17-Apr-17 | NS | | 0.061 | U | NS | | NS | | 0.061 | U | NS | | 0.061 | U | 0.061 | U | 0.061 | U | NS | | 0.061 | U | | | 26-Jul-17
12-Oct-17 | 0.04
NS | U | NS
0.04 | U | 0.2
NS | | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | NS
0.12 | U | NS
0.1 | U | 0.04
0.11 | U
U | 0.04
NS | U | NS
0.1 | U | | | 10-Jan-18 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | | | 11-Apr-18 | NS | | 0.081 | U | NS | | NS | | 0.81 | U | NS | | 0.81 | U | 0.81 | U | 0.081 | U | NS | | 0.81 | U | | | 23-May-18
27-Jul-18 | NS
0.20 | U | NS
NS | | NS
0.20 | U | NS
0.20 | U | NS
NS | | NS
0.20 | U | NS
NS | | NS
NS | | NS
0.20 | U | 0.061
0.20 | U
U | NS
NS | | | | 24-Oct-18 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.2 | U | 0.2 | U | 0.20 | U | NS | | 0.2 | U | | | 16-Jan-19 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.04 | U | NS | | | | 12-Apr-19
29-Jul-19 | NS
0.061 | U | 0.04
NS | U | NS
0.24 | | NS
0.04 | U | 0.04
NS | U | NS
0.13 | | 0.051
NS | U | 0.061
NS | U | 0.061
0.04 | U
U | NS
1.1 | | 0.061
NS | U | | | 29-Jul-19
26-Sep-19 | 0.061
NS | | NS
NS | | NS | | NS
NS | | NS
NS | | NS | | NS
NS | | NS
NS | | NS | | <0.061 | U | NS
NS | | | | 29-Oct-19 | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.2 ^D | U | 0.2 ^D | U | 0.2 ^D | | | | 21-Jan-20 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.04 | U | NS | | | | 22-Apr-20
23-Jul-20 | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | NS
0.04 | U | 0.04
NS | U | NS
0.081 | U | 0.04
NS | U | 0.04
NS | U | 0.04
0.081 | U
U | NS
0.081 | U | 0.04
NS | U | | | 29-Oct-20 | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.04 | U | NS | | 0.04 | U | | | | | | | | | | | | | | | | <u> </u> | | | 1 | ĺ | | İ | 1 | | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------|-------------|------|-------------------|------|-------------|------|-------------|------|--------------------|-------|----------------|------|-------------------|---------|-------------------|--------|------------------|--------|------------------|--------|---------------------------|--------| | TO-15 | Sample Date | | Qual | 8-Feb-08 | 0.08 | U | NS | 1 | NS | | NS | | 0.08 | U | NS | | NS | | NS | | 0.09 | | 0.08 | U | NS | | | | 27-Mar-08 | NS | | 0.081 | U | NS | | NS | | NS | | 0.143 | | NS | | NS | | NS | | 0.081 | U | 0.1 | | | | 25-Apr-08 | NS | | NS | | 0.081 | U | NS | | NS | | NS | | 0.081 | U | NS | | 0.081 | U | NS
0.00 | ** | 0.089 | | | | 29-May-08
27-Jun-08 | NS
0.126 | U | NS
NS | | NS
NS | | 0.09
NS | | NS
0.153 | | NS
NS | | NS
NS | | 0.11
NS | | 0.08
NS | U | 0.08
0.11 | U | NS
0.081 | U | | | 27-Jul-08
31-Jul-08 | 0.126
NS | | 0.081 | U | NS
NS | | NS
NS | | 0.133
NS | | NS
NS | | NS
NS | | NS
NS | | 0.081 | U | NS | | 0.081 | U | | | 28-Aug-08 | NS | | NS | | 0.171 | | NS | | NS | | NS | | NS | | NS | | 0.081 | U | 0.081 | U | NS | | | | 27-Oct-08 | NS | | NS | | NS | | 0.08 | U | NS | | NS | | NS | | 0.08 | U | NS | | 0.08 | U | 0.08 | U | | | 27-Oct-08 | 0.08 | U | NS | | NS | | NS | | 0.08 | U | NS | | NS | | NS | | 0.08 | U | NS | | 0.095 | | | | 25-Nov-08 | NS | | 0.08 | U |
NS | | NS | | NS | | 0.08 | U | NS | | NS | | 0.08 | U | 0.08 | U | NS | | | | 18-Dec-08 | NS | | NS | | 0.08 | U | NS | | NS | | NS | | 0.08 | U | NS | | NS | | 0.08 | U | 0.08 | U | | | 21-Jan-09 | NS | | NS | | NS | | 0.08 | U | NS | | NS | | NS | | 0.08 | U | 0.08 | U | NS | | 0.08 | U | | | 25-Feb-09 | 0.08 | U | NS | | NS | | NS | | 0.08 | U | NS | | NS | | NS | | 0.08 | U | 0.08 | U | NS | | | | 26-Mar-09 | NS | | 0.404 | U | NS | | NS | | NS | | 0.809 | U | NS | | NS | | NS | | 0.098 | | 0.133 | | | | 29-Apr-09 | NS | ** | NS | | 0.319 | | NS
0.000 | *** | NS | | NS | ** | 0.081 | U | NS | | 0.081 | U | NS | ** | 0.089 | | | | 22-Jul-09 | 0.404 | U | NS
0.081 | U | 16.5
NS | U | 0.809 | U | NS
0.081 | U | 0.404 | U | NS
0.081 | U | NS | | 0.081 | U
U | 0.081 | U | NS
0.081 | U | | | 9-Oct-09
15-Jan-10 | NS
0.081 | U | 0.081
NS | U | 0.081 | U | NS
0.081 | U | 0.081
NS | U | NS
0.081 | U | 0.081
NS | | 16.9
NS | U | 0.081
0.081 | U | NS
0.081 | U | 0.081
NS | | | | 21-Apr-10 | NS | | 0.081 | U | NS | | NS | | 0.404 | U | NS | | 0.404 | U | 0.404 | U | 0.081 | U | NS | | 0.081 | U | | | 16-Jul-10 | 0.101 | | NS | | 1.44 | | 0.081 | U | NS | | 0.611 | U | NS | | NS | | 0.081 | U | 0.081 | U | NS | | | | 15-Oct-10 | NS | | 0.081 | U | NS | | NS | | 0.081 | U | NS | | 0.081 | U | 0.081 | U | 0.081 | U | NS | | 0.081 | U | | | 26-Jan-11 | 0.809 | U | 0.081 | U | NS | | 0.081 | U | NS | | 0.404 | U | NS | | 0.404 | U | 0.404 | U | 0.404 | U | NS | | | | 28-Feb-11 | NS | | NS | | 0.809 | U | NS | | | 27-Apr-11 | NS | | 0.081 | U | NS | | NS | | 0.081 | U | NS | | 0.081 | U | 0.081 | U | 0.081 | U | NS | | 0.081 | | | | 26-Jul-11 | 0.27 | U | NS | | 0.27 | U | 0.101 | | NS | | 0.405 | U | NS | | NS | | 0.081 | U | 0.405 | U | NS | | | | 28-Oct-11 | NS | | 2 | U | NS | | NS | | 2 | U | NS | | 2 | U | 2 | U | 2 | U | NS | | 2 | U | | | 23-Jan-12 | 0.2 | U | NS | | 0.2 | U | 0.2 | U | NS | | 0.2 | U | NS | | NS | | 0.2 | U | 0.97 | | NS | | | | 13-Apr-12 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.2 | U | 0.2 | U | 0.2 | U | NS | | 0.2 | U | | | 2-Jul-12 (resample) | NS
0.4 | U | NS
NC | | NS
0.4 | U | NS
0.4 | U | NS | | NS
0.4 | U | NS
NC | | NS
NS | | NS
0.4 | 11 | 1
0.4 | U | NS | | | | 23-Jun-12
1-Nov-12 | 0.4
NS | | NS
0.04 | U | NS | 0 | 0.4
NS | 0 | NS
0.04 | U | NS | 0 | NS
0.04 | U | 0.04 | U | 0.04 | U | NS | U | NS
0.057 | | | | 1-Feb-13 | 0.053 | | NS | | 0.062 | | 0.062 | | NS | 0 | 0.05 | | NS | | NS | | 0.066 | | 0.049 | | NS | | | | 29-Apr-13 | NS | | 0.19 | | NS | | NS | | 0.06 | | NS | | 0.04 | U | 0.081 | | 0.079 | | NS | | 0.094 | | | | 9-Jul-13 | 0.12 | U | NS | | 0.081 | U | 0.081 | | NS | | 0.081 | U | NS | | NS | | 0.092 | U | 0.081 | U | NS | | | 1,2-Dichloroethane | 18-Oct-13 | NS | | 0.081 | U | NS | | NS | | 0.081 | U | NS | | 0.081 | U | 0.081 | U | 0.081 | U | NS | | 0.081 | U | | | 9-Jan-14 | 0.081 | U | NS | | 0.040 | U | 0.040 | U | NS | | 0.040 | U | NS | | NS | | 0.081 | | 0.040 | U | NS | | | | 24-Apr-14 | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.04 | U | 0.040 | U | 0.073 | | | | 1-Aug-14 | 0.040 | U | NS | | 0.170 | | 0.061 | U | NS | | NS | | NS | | NS | | 0.04 | U | 0.040 | U | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 0.040 | U | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | | NS | U | NS | | NS | | NS | U | NS
0.061 | U | NS
0.061 | U | 0.061 | U
U | NS
0.061 | U | NS
0.081 | U
U | NS | | | | 22-Oct-14
20-Jan-15 | 0.040 | U | 0.061
NS | U | NS
0.040 | U | NS
0.040 | U | 0.061
NS | U | 0.061
0.040 | U | 0.061
NS | | 0.061
NS | U | 0.061
0.061 | U | 0.081
0.100 | U | NS | | | | 30-Mar-15 (resample) | NS | 0.046 | U | NS | | | | 22-Apr-15 | NS | | 0.17 ^V | | NS | | NS | | 0.087 ^V | | NS | | 0.04 | U | 0.059 | U | 0.040 | U | NS | | 0.047 | U | | | 21-Jul-15 | 0.140^{J} | | NS | | 0.8 | U | 4 | U | NS | | 0.2 | U | NS | | NS | | 0.200 ° | | 0.86 ° | | NS | | | | 23-Sept-15 resample | NS | 0.2 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.3 | U | 0.2 | U | 0.2 | U | NS | | 0.18 | | | | 4-Dec-15 resample | NS | | 0.2 | U | NS | | | 27-Jan-16 | 0.04 | U | NS | | 0.057 | | 0.042 | | NS | | 0.049 | | NS | | NS | | 0.065 | | 0.05 | | NS | | | | 20-Apr-16 | NS | | 0.053 | | NS | | NS | | 0.040 | U | NS | | 0.040 | U | 0.049 | | 0.058 | | NS | | 0.060 | | | | 20-Jul-16
21-Oct-16 | 0.20
NS | U | NS
0.086 | | 0.20
NS | U | 0.20
NS | U | NS
0.04 | U | 0.28
NS | | NS
0.04 | U | NS
0.045 | | 0.21
0.04 | U | 0.20
NS | U | NS
0.052 | | | | 31-Jan-17 | 0.04 | U | NS | | 0.078 | | 0.04 | U | NS | U | 0.04 | U | NS | | NS | | 0.04 | U | 0.04 | U | NS | | | | 17-Apr-17 | NS | | 0.061 | U | NS | | NS | | 0.061 | U | NS | | 0.061 | U | 0.061 | U | 0.061 | U | NS | | 0.061 | U | | | 26-Jul-17 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.04 | U | NS | | | | 12-Oct-17
10-Jan-18 | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | 0.12
NS | U | 0.23
NS | | 0.11
0.04 | U
U | NS
NS | | 0.1
0.04 | U
U | | | 10-Jan-18
11-Apr-18 | NS | | 0.081 | U | NS | 0 | NS | 0 | 0.81 ^D | U | NS | 0 | 0.81 ^D | U | 0.81 ^D | U | 0.04 | 0 | NS
NS | | 0.04
0.81 ^D | II U | | | 23-May-18 | NS
NS | | NS | | NS | | NS
NS | | NS | U | NS | | NS | | NS | | NS | | 0.061 | U | NS | | | | 27-Jul-18 | 0.20 | U | NS | | 0.20 | U | 0.20 | U | NS | | 0.20 | U | NS | | NS | | 0.20 | U | 0.20 | U | NS | | | | 24-Oct-18 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.2 | U | 0.2 | U | 0.20 | U | NS | | 0.2 | U | | | 16-Jan-19 | 0.04
NS | U | NS
0.04 | U | 0.04 | U | 0.04 | U | NS
0.04 | U | 0.04
NS | U | NS
0.051 | U | NS
0.061 | U | 0.04 | U | 0.04 | U | NS
0.061 | U | | | 12-Apr-19
29-Jul-19 | NS
0.061 | U | 0.04
NS | U | NS
0.061 | U | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | 0.051
NS | 0 | 0.061
NS | " | 0.061
0.04 | U
U | NS
0.04 | U | 0.061
NS | U | | | 26-Sep-19 | NS | < 0.061 | U | NS | | | | 29-Oct-19 | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.2 ^D | U | 0.2 ^D | U | 0.2^{D} | | | | 21-Jan-20 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.05 | | NS | \perp | NS | 1 | 0.04 | U | 0.04 | U | NS | | | | 22-Apr-20 | NS
0.04 | 7.7 | 0.04 | U | NS
0.04 | | NS
0.04 | | 0.04 | U | NS
0.081 | *** | 0.04 | U | 0.04 | U | 0.04 | U | NS
0.081 | U | 0.04 | U | | | 23-Jul-20
29-Oct-20 | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | 0.04
NS | U | NS
0.04 | U | 0.081
NS | U | NS
0.04 | U | NS
0.04 | U | 0.081
0.04 | U
U | 0.081
NS | 0 | NS
0.04 | U | | | 2, 30, 20 | 110 | | 0.01 | | | 1 | 1,15 | | 0.01 | 1 ~ 1 | | 1 | 0.01 | ~ | 0.07 | 1 | 0.01 | | I .,,, | 1 | 0.01 | 1 ~ | | Wildio 13 | 1 | 350 4 | | MP * | | ME 2 | _ | No. | | Mr. * | | ME (| | W | T T | MP 2 | | nene | | nene | | II CD A | | |---|-----------------------------------|-------------|------|--------------------|------|-------------|------|-------------|------|-------------|------|-------------|--------|-------------|-------|-------------|------|------------------|--------|------------------|------|------------------|------| | Volatile Organic Compounds via
TO-15 | Sample Date | MP-1 | Qual | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Qual | MP-6 | Qual | MP-7 | Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | 10 10 | 8-Feb-08 | 0.08 | U | NS | Quan | NS | Quan | NS | Quan | 0.08 | U | NS | Quan | NS | Quai | NS | Quan | 0.08 | U | 0.08 | U | NS | Quan | | | 27-Mar-08 | NS | | 0.079 | U | NS | | NS | | NS | | 0.079 | U | NS | | NS | | NS | | 0.079 | U | 0.079 | U | | | 25-Apr-08 | NS | | NS | | 0.079 | U | NS | | NS | | NS | | 0.079 | U | NS | | 0.079 | U | NS | | 0.079 | U | | | 29-May-08 | NS | | NS | | NS | | 0.08 | U | NS | | NS | | NS | | 0.08 | U | 0.08 | U | 0.08 | U | NS | | | | 27-Jun-08 | 0.123 | U | NS | | NS | | NS | | 0.079 | U | NS | | NS | | NS | | NS | | 0.079 | U | 0.079 | U | | | 31-Jul-08 | NS | | 0.079 | U | NS
0.070 | ** | NS | | NS | | NS | | NS
0.070 | | NS | | 0.079 | U | NS
0.070 | *** | 0.079 | U | | | 28-Aug-08
30-Sep-08 | NS
NS | | NS
NS | | 0.079
NS | U | NS
2 | U | NS
NS | | NS
NS | | 0.079
NS | U | NS
2 | U | 0.079
NS | U | 0.079
2 | U | NS
2 | U | | | 27-Oct-08 | 2 | U | NS | | NS | | NS | | 2 | U | NS | | NS | | NS | 0 | 2 | U | NS | | 2 | U | | | 25-Nov-08 | NS | | 2 | U | NS | | NS | | NS | | 2 | U | NS | | NS | | 2 | U | 2 | U | NS | _ | | | 18-Dec-08 | NS | | NS | | 2 | U | NS | | NS | | NS | | 2 | U | NS | | NS | | 2 | U | 2 | U | | | 21-Jan-09 | NS | | NS | | NS | | 2 | U | NS | | NS | | NS | | 2 | U | 2 | U | NS | | 2 | U | | | 25-Feb-09 | 2 | U | NS | | NS | | NS | | 2 | U | NS | | NS | | NS | | 2 | U | 2 | U | NS | | | | 26-Mar-09 | NS | | 0.396 | U | NS | | NS | | NS | | 0.792 | U | NS | | NS | | NS | | 0.079 | U | 0.079 | U | | | 29-Apr-09 | NS
0.206 | U | NS | | 0.079 | U | NS
0.702 | | NS | | NS
0.206 | | 0.079 | U | NS | | 0.079 | U | NS
0.070 | U | 0.079 | U | | | 22-Jul-09
9-Oct-09 | 0.396
NS | 0 | NS
0.079 | U | 16.2
NS | 0 | 0.792
NS | U | NS
0.079 | U | 0.396
NS | U | NS
0.079 | U | NS
16.5 | U | 0.079
0.079 | U
U | 0.079
NS | U | NS
0.079 | U | | | 15-Jan-10 | 0.137 | U | NS | | 0.079 | U | 0.079 | U | NS | | 0.079 | U | NS | | NS | 0 | 0.079 | U | 0.079 | U | NS | | | | 21-Apr-10 | NS | | 0.079 | U | NS | | NS | | 0.396 | U | NS | | 0.396 | U | 0.396 | U | 0.079 | U | NS | | 0.079 | U | | | 16-Jul-10 | 0.079 | U | NS | | 0.206 | | 0.079 | U | NS | | 0.598 | U | NS | | NS
| | 0.079 | U | 0.079 | U | NS | | | | 15-Oct-10 | NS | | 0.079 | U | NS | | NS | | 0.079 | U | NS | | 0.079 | U | 0.079 | U | 0.079 | U | NS | | 0.079 | U | | | 26-Jan-11 | 0.792 | U | 0.079 | U | NS | | 0.079 | U | NS | | 0.396 | U | NS | | 3.96 | U | 0.396 | U | 0.396 | U | NS | | | | 28-Feb-11 | NS | | NS
0.070 | | 0.792 | U | NS | | NS | | NS | | NS
0.070 | | NS
0.070 | 1 | NS
0.070 | | NS | | NS | | | | 27-Apr-11 | NS
0.264 | U | 0.079 | U | NS
0.264 | U | NS
0.070 | U | 0.079 | U | NS
0.206 | | 0.079 | U | 0.079 | U | 0.079 | U | NS
0.200 | U | 0.079 | U | | | 26-Jul-11
28-Oct-11 | 0.264
NS | 0 | NS
2 | U | 0.264
NS | 0 | 0.079
NS | U | NS
2 | U | 0.396
NS | U | NS
2 | U | NS
2 | U | 0.079
2 | U
U | 0.396
NS | U | NS
2 | U | | | 23-Jan-12 | 0.4 | U | NS | | 0.4 | U | 0.4 | U | NS | | 0.4 | U | NS | | NS | 0 | 0.4 | U | 0.4 | U | NS | | | | 13-Apr-12 | NS | | 0.2 | U | NS | _ | NS | - | 0.2 | U | NS | _ | 0.2 | U | 0.2 | U | 0.2 | U | NS | | 0.2 | U | | | 2-Jul-12 (resample) | NS | 0.99 | U | NS | | | | 23-Jun-12 | 0.4 | U | NS | | 0.4 | U | 0.4 | U | NS | | 0.4 | U | NS | | NS | | 0.4 | U | 0.4 | U | NS | | | | 1-Nov-12 | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.040 | U | NS | | 0.04 | U | | | 1-Feb-13 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.040 | U | 0.040 | U | NS | | | | 29-Apr-13
9-Jul-13 | NS
0.059 | U | 0.099
NS | U | NS
0.040 | U | NS
0.040 | U | 0.04
NS | U | NS
0.040 | U | 0.04
NS | U | 0.04
NS | U | 0.040
0.040 | U
U | NS
0.040 | U | 0.04
NS | U | | 1,1-Dichloroethene | 18-Oct-13 | 0.039
NS | | 0.079 | U | 0.040
NS | 0 | 0.040
NS | | 0.079 | U | 0.040
NS | | 0.079 | U | 0.079 | U | 0.040 | U | 0.040
NS | 0 | 0.079 | U | | | 9-Jan-14 | 0.079 | U | NS | | 0.081 | U | 0.079 | U | NS | | 0.079 | U | NS | | NS | Ü | 0.079 | U | 0.079 | U | NS | | | | 24-Apr-14 | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.040 | U | 0.040 | U | 0.12 | U | | | 1-Aug-14 | 0.079 | U | NS | | 0.120 | U | 0.420 | | NS | | NS | U | NS | | NS | | 0.079 | U | 0.079 | U | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 0.040 | U | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 0.059 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS
0.04 | U | 0.059 | U | NS
0.040 | | NS | U | 0.059 | U | 0.059 | U
U | 0.059 | U | 0.059 | U | 0.059 | U | 0.079 | U | NS | | | | 20-Jan-15
30-Mar-15 (resample) | 0.04
NS | 0 | NS
NS | | 0.040
NS | U | 0.040
NS | U | NS
NS | | 0.040
NS | 0 | NS
NS | | NS
NS | | 0.059
NS | U | 0.040
0.045 | U | NS
NS | | | | 22-Apr-15 | NS | | 0.041 ^V | U | NS | | NS | | 0.040 V | U | NS | | 0.04 | U | 0.057 | U | 0.040 | U | NS | | 0.046 | U | | | 21-Jul-15 | 0.2 | U | NS | | 0.8 | U | 4 | U | NS | | 0.2 | U | NS | | NS | _ | 0.200 ° | U | 0.200 ° | U | NS | | | | 23-Sept-15 resample | NS | 0.2 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.3 | U | 0.2 | U | 0.2 | U | NS | | 0.46 | | | | 4-Dec-15 resample | NS | | 0.2 | U | NS | | | 27-Jan-16 | 0.04 | U | NS | ** | 0.04 | U | 0.04 | U | NS | *** | 0.04 | U | NS
0.040 | | NS | | 0.04 | U | 0.04 | U | NS | | | | 20-Apr-16
20-Jul-16 | NS
0.20 | U | 0.040
NS | U | NS
0.21 | | NS
0.20 | U | 0.040
NS | U | NS
0.24 | | 0.040
NS | U | 0.040
NS | U | 0.040
0.24 | U | NS
0.21 | | 0.040
NS | U | | | 21-Oct-16 | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.04 | U | NS | | 0.63 | | | | 31-Jan-17 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | _ | 0.04 | U | 0.04 | U | NS | | | | 17-Apr-17 | NS | | 0.059 | U | NS | | NS | | 0.059 | U | NS | | 0.059 | U | 0.059 | U | 0.059 | U | NS | | 0.059 | U | | | 26-Jul-17
12-Oct-17 | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | NS
0.12 | U | NS
0.099 | U | 0.04
0.11 | U
U | 0.04
NS | U | NS
0.099 | U | | | 12-Oct-17
10-Jan-18 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS
NS | | 0.099
NS | | 0.04 | U | NS
NS | | 0.099 | U | | | 11-Apr-18 | NS | | 0.079 | U | NS | | NS | | 0.79 | U | NS | | 0.79 | U | 0.79 | U | 0.079 | U | NS | | 0.79 | U | | | 23-May-18 | NS
0.20 | U | NS
NS | | NS
0.20 | U | NS
0.20 | U | NS
NS | | NS
0.20 | U | NS
NS | | NS
NS | | NS
0.20 | U | 0.059
0.20 | U | NS
NS | | | | 27-Jul-18
24-Oct-18 | 0.20
NS | | 0.2 | U | 0.20
NS | 0 | NS | | 0.2 | U | 0.20
NS | | 0.2 | U | 0.2 | U | 0.20 | U | 0.20
NS | | 0.2 | U | | | 16-Jan-19 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.04 | U | NS | | | | 12-Apr-19 | NS
0.050 | тт | 0.04 | U | NS
0.050 | * * | NS
0.04 | | 0.04 | U | NS
0.04 | * * | 0.05 | U | 0.059 | U | 0.059 | U | NS | | 0.059 | U | | | 29-Jul-19
26-Sep-19 | 0.059
NS | U | NS
NS | | 0.059
NS | U | 0.04
NS | U | NS
NS | | 0.04
NS | U | NS
NS | | NS
NS | | 0.04
NS | U | 1.1
<0.059 | U | NS
NS | | | | 29-Oct-19 | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.2 ^D | U | 0.2 ^D | U | 0.2 ^D | | | | 21-Jan-20 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.04 | U | NS | | | | 22-Apr-20 | NS
0.04 | U | 0.04 | U | NS
0.04 | * * | NS
0.04 | | 0.04 | U | NS
0.070 | U | 0.04 | U | 0.04 | U | 0.04 | U | NS
0.070 | II | 0.04 | U | | | 23-Jul-20
29-Oct-20 | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | 0.04
NS | U | NS
0.04 | U | 0.079
NS | U | NS
0.04 | U | NS
0.04 | U | 0.079
0.04 | U
U | 0.079
NS | U | NS
0.04 | U | | | 2, 36, 20 | 110 | | 0.01 | 1 ~ | | 1 | 110 | | 0.01 | | | 1 | 0.01 | 1 - 1 | 0.01 | | 3.01 | 1 - | .10 | | 0.01 | 1 | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------|-------------|------|--------------------------|------|-------------|------|-------------|------|--------------------------|------|-------------|------|-------------|------|-------------|------|-------------------------------|--------|--------------------------|--------|--------------------|------| | TO-15 | Sample Date | | Qual | 2 | Qual | | Qual | | Qual | 0 | Qual | | 8-Feb-08 | 0.08 | U | NS | | NS | | NS | | 0.08 | U | NS | | NS | | NS | | 0.08 | U | 0.08 | U | NS | | | | 27-Mar-08 | NS | | 0.079 | U | NS | | NS | | NS | | 0.079 | U | NS | | NS | | NS
0.070 | | 0.079 | U | 0.079 | U | | | 25-Apr-08
29-May-08 | NS
NS | | NS
NS | | 0.079
NS | U | NS
0.08 | | NS
NS | | NS
NS | | 0.079
NS | U | NS
0.08 | U | 0.079
0.08 | U
U | NS
0.08 | U | 0.079
NS | U | | | 29-May-08
27-Jun-08 | 0.123 | U | NS
NS | | NS | | NS | | 0.079 | U | NS | | NS
NS | | NS | U | NS | U | 0.08 | U | 0.079 | U | | | 31-Jul-08 | NS | | 0.079 | U | NS | | NS | | NS | Ü | NS | | NS | | NS | | 0.079 | U | NS | | 0.079 | U | | | 28-Aug-08 | NS | | NS | | 0.079 | U | NS | | NS | | NS | | 0.079 | U | NS | | 0.079 | U | 0.079 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 5.9 | U | NS | | NS | | NS | | 5.9 | U | NS | | 5.9 | U | 5.9 | U | | | 27-Oct-08 | 2 | U | NS | | NS | | NS | | 2 | U | NS | | NS | | NS | | 2 | U | NS | | 2 | U | | | 25-Nov-08
18-Dec-08 | NS
NS | | 2
NS | U | NS
2 | U | NS
NS | | NS
NS | | 2
NS | U | NS
2 | U | NS
NS | | 2
NS | U | 2 | U | NS
2 | U | | | 21-Jan-09 | NS | | NS
NS | | NS | U | 2 | IJ | NS | | NS | | NS | | 2 | U | 2 | U | NS | | 2 | U | | | 25-Feb-09 | 2 | U | NS | | NS | | NS | | 2 | U | NS | | NS | | NS | _ | 2 | U | 2 | U | NS | - | | | 26-Mar-09 | NS | | 0.396 | U | NS | | NS | | NS | | 0.792 | U | NS | | NS | | NS | | 0.079 | U | 0.079 | U | | | 29-Apr-09 | NS | | NS | | 0.079 | U | NS | | NS | | NS | | 0.079 | U | NS | | 0.079 | U | NS | | 0.079 | U | | | 22-Jul-09 | 0.396 | U | NS
0.070 | | 595 | | 0.792 | U | NS
0.070 | ** | 0.396 | U | NS
0.070 | | NS | | 0.079 | U | 0.079 | U | NS
0.070 | | | | 9-Oct-09
15-Jan-10 | NS
0.079 | U | 0.079
NS | U | NS
0.079 | U | NS
0.079 | U | 0.079
NS | U | NS
0.079 | IJ | 0.079
NS | U | 16.5
NS | U | 0.079
0.079 | U
U | NS
0.079 | U | 0.079
NS | U | | | 21-Apr-10 | NS | | 0.079 | U | NS | O | NS | | 0.396 | U | NS | | 0.396 | U | 0.396 | U | 0.079 | U | NS | | 0.079 | U | | | 16-Jul-10 | 0.079 | U | NS | | 0.079 | U | 0.079 | U | NS | | 0.598 | U | NS | | NS | | 0.079 | U | 0.079 | U | NS | 1 ' | | | 15-Oct-10 | NS | | 0.079 | U | NS | | NS | | 0.079 | U | NS | | 0.079 | U | 0.079 | U | 0.079 | U | NS | | 0.079 | U | | | 26-Jan-11 | 0.792 | U | 0.079 | U | NS | | 0.079 | U | NS | | 0.396 | U | NS | | 0.396 | U | 0.396 | U | 0.396 | U | NS | | | | 28-Feb-11 | NS
NE | | NS
0.070 | _ , | 0.792 | U | NS
NC | | NS
0.070 | 7.7 | NS | | NS
0.070 | 17 | NS
0.070 | ** | NS
0.070 | ,, | NS | | NS
0.070 | | | | 27-Apr-11
26-Jul-11 | NS
0.264 | U | 0.079
NS | U | NS
0.264 | U | NS
0.079 | U | 0.079
NS | U | NS
0.396 | U | 0.079
NS | U | 0.079
NS | U | 0.079
0.079 | U
U | NS
0.396 | U | 0.079
NS | U | | | 28-Oct-11 | 0.264
NS | | 2 | U | 0.264
NS | | 0.079
NS | | 2 | U | 0.396
NS | | 2 | U | 2 | U | 2 | U | 0.396
NS | | 2 | U | | | 23-Jan-12 | 0.4 | U | NS | | 0.4 | U | 0.4 | U | NS | | 0.4 | U | NS | | NS | | 0.4 | U | 0.53 | | NS | | | | 13-Apr-12 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.2 | U | 0.2 | U | 0.2 | U | NS | | 0.2 | U | | | 2-Jul-12 (resample) | NS | 0.99 | U | NS | | | | 23-Jun-12 | 0.4 | U | NS
0.04 | | 0.4 | U | 0.4 | U | NS
0.04 | | 0.4 | U |
NS
0.04 | | NS
0.04 | | 0.4 | U | 0.4 | U | NS
0.04 | | | | 1-Nov-12
1-Feb-13 | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | NS
0.04 | U | 0.04
NS | U | NS
0.04 | IJ | 0.04
NS | U | 0.04
NS | U | 0.040
0.040 | U
U | NS
0.04 | U | 0.04
NS | U | | | 29-Apr-13 | NS | | 0.2 | U | NS | · · | NS | | 0.079 | U | NS | | 0.079 | U | 0.079 | U | 0.079 | U | NS | | 0.079 | U | | | 9-Jul-13 | 0.059 | U | NS | | 0.040 | U | 0.040 | U | NS | | 0.054 | | NS | | NS | | 0.040 | U | 0.040 | U | NS | | | cis-1,2-Dichloroethene* | 18-Oct-13 | NS | | 0.079 | U | NS | | NS | | 0.079 | U | NS | | 0.079 | U | 0.079 | U | 0.079 | U | NS | | 0.079 | U | | | 9-Jan-14 | 0.079 | U | NS | | 0.079 | U | 0.079 | U | NS | | 0.079 | U | NS | | NS | | 0.079 | U | 0.079 | U | NS | | | | 24-Apr-14 | NS
0.079 | U | 0.04
NS | U | NS
0.120 | U | NS
0.120 | U | 0.04 | U | NS | U | 0.04
NS | U | 0.04
NS | U | 0.040
0.079 | U
U | 0.040
0.079 | U | 0.12
NS | U | | | 1-Aug-14
27-Aug-14 | 0.079
NS | 0 | NS
NS | | 0.120
NS | U | 0.120
NS | U | NS
NS | | NS
0.040 | U | NS | | NS
NS | | 0.079
NS | U | 0.079
NS | U | NS
NS | | | | 12-Sept-14 (resample) | NS | 0.059 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.059 | U | NS | | NS | | 0.059 | U | 0.059 | U | 0.059 | U | 0.059 | U | 0.059 | U | 0.079 | U | NS | | | | 20-Jan-15 | 0.04 | U | NS | | 0.040 | U | 0.040 | U | NS | | 0.040 | U | NS | | NS | | 0.059 | U | 0.040 | U | NS | | | | 30-Mar-15 (resample) | NS | 0.045 | U | NS | | | | 22-Apr-15
21-Jul-15 | NS
0.2 | U | 0.041 ^V
NS | U | NS
0.8 | U | NS
4 | IJ | 0.040 ^V
NS | U | NS
0.2 | T.I | 0.04
NS | U | 0.057
NS | U | 0.040
0.11 ^{J, O} | U | NS
1.700 ^o | | 0.046
NS | U | | | 23-Sept-15 resample | NS | | NS | | NS | U | NS | | NS | | NS | | NS | | 0.2 | U | NS | | NS | | NS
NS | | | | 29-Oct-15 | NS | | 0.2 | U | NS | | NS | | 0.27 | | NS | | 0.4 | | 0.31 | | 0.2 | U | NS | | 2.7 | | | | 4-Dec-15 resample | NS | | 0.2 | U | NS | ' | | | 27-Jan-16 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.04 | U | NS | | | | 20-Apr-16 | NS
0.20 | U | 0.040
NS | U | NS
0.20 | U | NS
0.20 | U | 0.040
NS | U | NS
0.2 | | 0.040
NS | U | 0.040
NS | U | 0.040 | U | NS
0.20 | U | 0.040
NS | U | | | 20-Jul-16
21-Oct-16 | 0.20
NS | | NS
0.04 | U | 0.20
NS | U | 0.20
NS | | NS
0.04 | U | 0.2
NS | | NS
0.04 | U | NS
0.04 | U | 0.21
0.04 | U | 0.20
NS | 0 | NS
0.04 | U | | | 31-Jan-17 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.07 | | NS | | | | 17-Apr-17 | NS | 1 ,. | 0.059 | U | NS | | NS | | 0.059 | U | NS | , | 0.059 | U | 0.059 | U | 0.059 | U | NS | , | 0.059 | U | | | 26-Jul-17
12-Oct-17 | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | NS
0.12 | U | NS
0.099 | U | 0.04
0.11 | U
U | 0.04
NS | U | NS
0.099 | U | | | 10-Jan-18 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | | | 11-Apr-18 | NS
NE | | 0.079 | U | NS
NE | | NS | | 0.79 | U | NS | | 0.79 | U | 0.79 | U | 0.079 | U | NS
0.050 | *** | 0.79 | U | | | 23-May-18
27-Jul-18 | NS
0.20 | U | NS
NS | | NS
0.20 | U | NS
0.20 | U | NS
NS | | NS
0.20 | U | NS
NS | | NS
NS | | NS
0.20 | U | 0.059
0.20 | U
U | NS
NS | 1 | | | 24-Oct-18 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.2 | U | 0.2 | U | 0.20 | U | NS | - | 0.2 | U | | | 16-Jan-19 | 0.04 | U | NS
0.04 | | 0.04 | U | 0.04 | U | NS | 7.7 | 0.04 | U | NS
0.05 | | NS | ** | 0.04 | U | 0.04 | U | NS
0.050 | | | | 12-Apr-19
29-Jul-19 | NS
0.059 | U | 0.04
NS | U | NS
0.059 | U | NS
0.071 | U | 0.04
NS | U | NS
0.062 | | 0.05
NS | U | 0.059
NS | U | 0.059
0.059 | U | NS
1.1 | | 0.059
NS | U | | | 26-Sep-19 | NS | | NS | | NS | | NS | _ | NS | | NS | | NS | | NS | | NS | | < 0.059 | U | NS | | | | 29-Oct-19 | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.2 ^D | U | 0.2 ^D | U | 0.2^{D} | | | | 21-Jan-20 | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | 0.04 | U | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | NS
0.04 | U | 0.04
0.04 | U
U | 0.04 | U | NS
0.04 | U | | | 22-Apr-20
23-Jul-20 | NS
0.04 | U | 0.04
NS | " | NS
0.04 | U | NS
0.04 | U | 0.04
NS | 0 | NS
0.079 | U | 0.04
NS | U | 0.04
NS | " | 0.04 | U | NS
0.079 | U | 0.04
NS | | | | 29-Oct-20 | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.04 | U | NS | | 0.04 | U | | | | | Ĭ. | l . | i l | | l | | ıl_ | | i . | | 1 1 | | | | Ĭ. | 1 | 1 1 | | ı | | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|----------------------------------|-------------|------|--------------------------|-------|-------------|------|-------------|------|--------------------------|------|-------------|------|-------------|------|-------------|------|------------------|--------|------------------|--------|------------------|---| | TO-15 | Sample Date | 1721 -1 | Qual | 1111-2 | Qual | | Qual | 1124 -4 | Qual | | Qual | 11-0 | Qual | 1722 -/ | Qual | 1,11-0 | Qual | 1.711 -1 | Qual | 11711 -2 | Qual | 111 -0 | Qual | | | 8-Feb-08 | 0.08 | U | NS | | NS | | NS | | 0.08 | U | NS | | NS | | NS | | 0.08 | U | 0.08 | U | NS | | | | 27-Mar-08 | NS | | 0.079 | U | NS | | NS | | NS | | 0.079 | U | NS | | NS | | NS | | 0.079 | U | 0.079 | U | | | 25-Apr-08 | NS | | NS | | 0.079 | U | NS
0.08 | U | NS | | NS | | 0.079 | U | NS
0.08 | U | 0.079 | U
U | NS | U | 0.079 | U | | | 29-May-08
27-Jun-08 | NS
0.123 | U | NS
NS | | NS
NS | | 0.08
NS | U | NS
0.079 | U | NS
NS | | NS
NS | | 0.08
NS | U | 0.08
NS | U | 0.08
0.079 | U | NS
0.079 | U | | | 31-Jul-08 | NS | | 0.079 | U | NS | | NS | | NS | Ü | NS | | NS | | NS | | 0.079 | U | NS | | 0.079 | U | | | 28-Aug-08 | NS | | NS | | 0.079 | U | NS | | NS | | NS | | 0.079 | U | NS | | 0.079 | U | 0.079 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 2 | U | NS | | NS | | NS | | 2 | U | NS | | 2 | U | 2 | U | | | 27-Oct-08 | 2 | U | NS | | NS | | NS | | 2 | U | NS | | NS | | NS | | 2 | U | NS | | 2 | U | | | 25-Nov-08
18-Dec-08 | NS
NS | | 2
NS | U | NS
2 | U | NS
NS | | NS
NS | | 2
NS | U | NS
2 | U | NS
NS | | 2
NS | U | 2 | U | NS
2 | U | | | 21-Jan-09 | NS | | NS | | NS | O | 2 | U | NS | | NS | | NS | | 2 | U | 2 | U | NS | | 2 | U | | | 25-Feb-09 | 2 | U | NS | | NS | | NS | | 2 | U | NS | | NS | | NS | | 2 | U | 2 | U | NS | | | | 26-Mar-09 | NS | | 0.396 | U | NS | | NS | | NS | | 0.792 | U | NS | | NS | | NS | | 0.079 | U | 0.079 | U | | | 29-Apr-09 | NS | | NS | | 0.079 | U | NS | | NS | | NS | | 0.079 | U | NS | | 0.079 | U | NS | | 0.079 | U | | | 22-Jul-09 | 0.396 | U | NS
0.070 | T. T. | 0.396 | U | 0.792 | U | NS | | 0.396 | U | NS
0.070 | | NS | | 0.079 | U | 0.079 | U | NS | | | | 9-Oct-09
15-Jan-10 | NS
0.079 | | 0.079
NS | U | NS
0.079 | | NS
0.079 | | 0.079
NS | | NS
0.079 | U | 0.079
NS | U | 16.5
NS | U | 0.079
0.079 | U
U | NS
0.079 | U | 0.079
NS | U | | | 21-Apr-10 | NS | | 0.079 | U | NS | | NS | | 0.396 | U | NS | | 3.96 | U | 0.396 | U | 0.079 | U | NS | ~ | 0.079 | U | | | 16-Jul-10 | 0.079 | U | NS | | 0.079 | U | 0.079 | U | NS | | 0.598 | U | NS | | NS | | 0.079 | U | 0.079 | U | NS | " | | | 15-Oct-10 | NS | | 0.079 | U | NS | | NS | | 0.079 | U | NS | | 0.079 | U | 0.079 | U | 0.079 | U | NS | | 0.079 | U | | | 26-Jan-11 | 0.792 | U | 0.079 | U | NS | | 0.079 | U | NS | | 0.36 | U | NS | | 0.396 | U | 0.396 | U | 0.396 | U | NS | | | | 28-Feb-11 | NS
NC | | NS
0.070 | 17 | 0.792 | U | NS
NC | | NS
0.070 | 11 | NS | | NS
0.070 | | NS
0.070 | *** | NS
0.070 | T 7 | NS | | NS
0.070 | , | | | 27-Apr-11
26-Jul-11 | NS
0.264 | U | 0.079
NS | U | NS
0.264 | U | NS
0.079 | IJ | 0.079
NS | U | NS
0.396 | U | 0.079
NS | U | 0.079
NS | U | 0.079
0.079 | U
U | NS
0.396 | U | 0.079
NS | U | | | 28-Oct-11 | 0.264
NS | | 2 | U | 0.264
NS | | 0.079
NS | | 2 | U | 0.396
NS | | 2 | U | 2 | U | 2 | U | 0.396
NS | | 2 | U | | | 23-Jan-12 | 0.4 | U | NS | | 0.4 | U | 0.4 | U | NS | | 0.4 | U | NS | | NS | | 0.4 | U | 0.4 | U | NS | | | | 13-Apr-12 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.2 | U | 0.2 | U | 0.2 | U | NS | | 0.2 | U | | | 2-Jul-12 (resample) | NS | 0.99 | U | NS | | | | 23-Jun-12 | 0.4 | U | NS
0.04 | 17 | 0.4 | U | 0.4 | U | NS
0.04 | 11 | 0.4 | U | NS
0.04 | | NS
0.04 | *** | 0.4 | U | 0.4 | U | NS
0.04 | ,, | | | 1-Nov-12
1-Feb-13 | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | 0.04
NS | U | 0.040
0.040 | U
U | NS
0.04 | U | 0.04
NS | U | | | 29-Apr-13 | NS | | 0.099 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.040 | U | NS | ~ | 0.04 | U | | | 9-Jul-13 | 0.059 | U | NS | | 0.040 | U | 0.040 | U | NS | | 0.040 | U | NS | | NS | | 0.040 | U | 0.040 | U | NS | | | trans-1,2-Dichloroethene* | 18-Oct-13 | NS | | 0.079 | U | NS | | NS | | 0.079 | U | NS | | 0.079 | U | 0.079 | U | 0.079 | U | NS | | 0.079 | U | | | 9-Jan-14 | 0.079 | U | NS | | 0.079 | U | 0.079 | U | NS | | 0.079 | U | NS | _ | NS | | 0.079 | U | 0.079 | U | NS | | | | 24-Apr-14 | NS
0.070 | U | 0.04 | U | NS
0.120 | U | NS
0.120 | IJ | 0.04
NS | U | NS
NS | U | 0.04 | U | 0.04 | U | 0.040
0.079 | U
U | 0.040 | U | 0.12
NS | U | | | 1-Aug-14
27-Aug-14 |
0.079
NS | U | NS
NS | | 0.120
NS | U | 0.120
NS | U | NS
NS | | NS
0.040 | U | NS
NS | | NS
NS | | 0.079
NS | U | 0.079
NS | U | NS
NS | | | | 12-Sept-14 (resample) | NS | | NS
NS | | NS 59 | U | NS
NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.059 | U | NS | | NS | | 0.059 | U | 0.059 | U | 0.059 | U | 0.059 | U | 0.059 | U | 0.079 | U | NS | " | | | 20-Jan-15 | 0.04 | U | NS | | 0.040 | U | 0.040 | U | NS | | 0.040 | U | NS | | NS | | 0.059 | U | 0.040 | U | NS | " | | | 30-Mar-15 (resample) | NS | ,. | NS
0.057 | | NS
0.040 | | 0.045 | U | NS | | | | 22-Apr-15
21-Jul-15 | NS
0.2 | U | 0.041 ^V
NS | U | NS
0.8 | U | NS
4 | TI. | 0.040 ^V
NS | U | NS
0.2 | II. | 0.04
NS | U | 0.057
NS | U | 0.040
0.200 ° | U
U | NS
2.000 ° | U | 0.046
NS | U | | | 21-Jul-15
23-Sept-15 resample | 0.2
NS | U | NS
NS | | 0.8
NS | U | 4
NS | J J | NS
NS | | NS | | NS
NS | | NS
0.2 | U | 0.200
NS | U | 2.000
NS | | NS
NS | | | | 29-Oct-15 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.3 | U | 0.2 | U | 0.2 | U | NS | | 0.2 | U | | | 4-Dec-15 resample | NS | | 0.2 | U | NS | | | 27-Jan-16 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.04 | U | NS | | | | 20-Apr-16 | NS
0.20 | ,,, | 0.040 | U | NS
0.20 | 1,1 | NS
0.20 | ,, | 0.040 | U | NS
0.21 | | 0.040 | U | 0.040 | U | 0.040 | U | NS
0.2 | | 0.040 | U | | | 20-Jul-16
21-Oct-16 | 0.20
NS | U | NS
0.04 | U | 0.20
NS | U | 0.20
NS | U | NS
0.04 | U | 0.21
NS | | NS
0.04 | U | NS
0.04 | U | 0.20
0.04 | U
U | 0.2
NS | | NS
0.04 | U | | | 31-Jan-17 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.14 | | NS | | | | 17-Apr-17 | NS | | 0.071 | | NS | | NS | | 0.079 | | NS | | 0.059 | U | 0.086 | | 0.059 | U | NS | | 0.059 | U | | | 26-Jul-17
12-Oct-17 | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | 0.04
NS | U | NS
0.04 | U | 0.04
NS | U | NS
0.12 | U | NS
0.099 | U | 0.04
0.11 | U
U | 0.04
NS | U | NS
0.099 | U | | | 10-Jan-18 | 0.04 | U | NS | J | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | | | 11-Apr-18 | NS | | 0.079 | U | NS | | NS | | 0.79 | U | NS | | 0.79 | U | 0.79 | U | 0.079 | U | NS | | 0.79 | U | | | 23-May-18
27-Jul-18 | NS
0.20 | U | NS
NS | | NS
0.20 | U | NS
0.20 | U | NS
NS | | NS
0.20 | U | NS
NS | | NS
NS | | NS
0.20 | U | 0.059
0.20 | U
U | NS
NS | | | | 24-Oct-18 | NS | | 0.2 | U | NS | ٥ | NS | | 0.2 | U | NS | | 0.2 | U | 0.2 | U | 0.20 | U | NS | | 0.2 | U | | | 16-Jan-19 | 0.04 | U | NS | | 0.04 | U | 0.04 | U | NS | | 0.04 | U | NS | | NS | | 0.04 | U | 0.04 | U | NS | | | | 12-Apr-19
29-Jul-19 | NS
0.059 | U | 0.04
NS | U | NS
0.059 | U | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | 0.05
NS | U | 0.059
NS | U | 0.059
0.04 | U
U | NS
1 | | 0.059
NS | U | | | 29-Jul-19
26-Sep-19 | 0.059
NS | | NS
NS | | 0.039
NS | U | NS | | NS
NS | | NS | | NS
NS | | NS
NS | | NS | U | < 0.059 | U | NS
NS | | | | 29-Oct-19 | NS | | 0.04 | U | NS | | NS | | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.2 ^D | U | 0.2 ^D | U | 0.2 ^D | | | | 21-Jan-20 | 0.04 | U | NS
0.04 | ** | 0.04 | U | 0.04 | U | NS | ** | 0.04 | U | NS
0.04 | ., | NS
0.04 | | 0.04 | U | 0.04 | U | NS
0.04 | | | | 22-Apr-20
23-Jul-20 | NS
0.04 | U | 0.04
NS | U | NS
0.04 | U | NS
0.04 | U | 0.04
NS | U | NS
0.079 | U | 0.04
NS | U | 0.04
NS | U | 0.04
0.079 | U
U | NS
0.079 | U | 0.04
NS | U | | | 29-Oct-20 | NS | | 0.04 | U | NS | | NS | - | 0.04 | U | NS | | 0.04 | U | 0.04 | U | 0.04 | U | NS | | 0.04 | U | | | | | 1 | | | | | | | | 1 | | | | | | 1 | <u> </u> | | | | | الـــــــــــــــــــــــــــــــــــــ | | | | 100.4 | 1 | 100.0 | | 150.0 | | 100.4 | T T | 150.5 | | 100 6 | | 100.5 | | 100 | 1 | T 19 19 1 | 1 | 77.50 | | 77.00 | | |---|-----------------------------------|-------------|------|----------------------|------|-------------|------|-------------|------|----------------------|------|-------------|------|----------------------|------|----------------------|------|----------------------|--------|----------------------|--------|---------------------|--------| | Volatile Organic Compounds via
TO-15 | Sample Date | MP-1 | Qual | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Qual | MP-6 | Qual | MP-7 | Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | | 8-Feb-08 | 0.09 | U | NS | | NS | | NS | | 0.09 | U | NS | | NS | | NS | | 0.09 | U | 0.09 | U | NS | T | | | 27-Mar-08 | NS | | 0.092 | U | NS | | NS | | NS | | 0.092 | U | NS | | NS | | NS | | 0.092 | U | 0.092 | U | | | 25-Apr-08 | NS | | NS | | 0.092 | U | NS | | NS | | NS | | 0.092 | U | NS | | 0.092 | U | NS | | 0.092 | U | | | 29-May-08 | NS
0.144 | U | NS | | NS | | 0.09 | U | NS
0.002 | U | NS | | NS | | 0.09 | U | 0.09 | U | 0.09 | U | NS
0.002 | | | | 27-Jun-08
31-Jul-08 | 0.144
NS | U | NS
0.092 | U | NS
NS | | NS
NS | | 0.092
NS | U | NS
NS | | NS
NS | | NS
NS | | NS
0.092 | U | 0.092
NS | U | 0.092
0.092 | U
U | | | 28-Aug-08 | NS | | NS | | 0.092 | U | NS | | NS | | NS | | 0.092 | U | NS | | 0.092 | U | 0.092 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | _ | 0.09 | U | NS | | NS | | NS | | 0.09 | U | NS | | 0.09 | U | 0.09 | U | | | 27-Oct-08 | 0.09 | U | NS | | NS | | NS | | 0.09 | U | NS | | NS | | NS | | 0.09 | U | NS | | 0.09 | U | | | 25-Nov-08 | NS | | 0.09 | U | NS | | NS | | NS | | 0.09 | U | NS | | NS | | 0.09 | U | 0.09 | U | NS | | | | 18-Dec-08 | NS | | NS | | 0.09 | U | NS | ** | NS | | NS | | 0.09 | U | NS | U | NS | ** | 0.09 | U | 0.09 | U | | | 21-Jan-09
25-Feb-09 | NS
0.09 | U | NS
NS | | NS
NS | | 0.09
NS | U | NS
0.09 | U | NS
NS | | NS
NS | | 0.09
NS | U | 0.09
0.09 | U
U | NS
0.09 | U | 0.09
NS | U | | | 26-Mar-09 | NS | | 0.462 | U | NS | | NS | | NS | Ü | 0.924 | U | NS | | NS | | NS | | 0.092 | U | 0.092 | U | | | 29-Apr-09 | NS | | NS | | 0.092 | U | NS | | NS | | NS | | 0.092 | U | NS | | 0.092 | U | NS | | 0.092 | U | | | 22-Jul-09 | 0.462 | U | NS | | 18.8 | U | 0.924 | U | NS | | 0.462 | U | NS | | NS | | 0.092 | U | 0.092 | U | NS | | | | 9-Oct-09 | NS | | 0.092 | U | NS | | NS | | 0.092 | U | NS | | 0.092 | U | 19.3 | U | 0.092 | U | NS | | 0.092 | U | | | 15-Jan-10 | 0.092 | U | NS
0.002 | ** | 0.092 | U | 0.092 | U | NS | *** | 0.092 | U | NS
0.462 | | NS
0.462 | *** | 0.092 | U | 0.092 | U | NS
0.002 | | | | 21-Apr-10
16-Jul-10 | NS
0.092 | U | 0.092
NS | U | NS
0.092 | U | NS
0.092 | U | 0.462
NS | U | NS
0.698 | U | 0.462
NS | U | 0.462
NS | U | 0.092
0.092 | U
U | NS
0.092 | U | 0.092
NS | U | | | 15-Oct-10 | 0.092
NS | 0 | 0.092 | U | 0.092
NS | U | 0.092
NS | | 0.092 | U | 0.698
NS | | 0.092 | U | 0.092 | U | 0.092 | U | 0.092
NS | | 0.092 | U | | | 26-Jan-11 | 0.924 | U | 0.092 | U | NS | | 0.092 | U | NS | | 0.462 | U | NS | | 0.462 | U | 0.462 | U | 0.462 | U | NS | | | | 28-Feb-11 | NS | | NS | | 0.924 | U | NS | | | 27-Apr-11 | NS | | 0.092 | U | NS | | NS | | 0.092 | U | NS | | 0.092 | U | 0.092 | U | 0.092 | U | NS | | 0.092 | U | | | 26-Jul-11 | 0.308 | U | NS | | 0.308 | U | 0.092 | U | NS | | 0.462 | U | NS | | NS | | 0.092 | U | 0.462 | U | NS | | | | 28-Oct-11 | NS
0.23 | U | 2.3
NS | U | NS
0.22 | U | NS
0.23 | U | 2.3 | U | NS
0.23 | U | 2.3
NS | U | 2.3
NS | U | 2.3
0.23 | U
U | NS
0.23 | U | 2.3
NS | U | | | 23-Jan-12
13-Apr-12 | 0.23
NS | U | NS
0.46 | U | 0.23
NS | U | 0.23
NS | U | NS
0.46 | U | 0.23
NS | U | NS
0.46 | U | NS
0.46 | U | 0.23 | U | 0.23
NS | U | NS
0.46 | U | | | 2-Jul-12 (resample) | NS
NS | | NS | | NS | | NS | | NS | 0 | NS | | NS | | NS | | NS | 0 | 1.2 | U | NS | | | | 23-Jun-12 | 0.46 | U | NS | | 0.46 | U | 0.46 | U | NS | | 0.46 | U | NS | | NS | | 0.46 | U | 0.46 | U | NS | | | | 1-Nov-12 | NS | | 0.046 | U | NS | | NS | | 0.046 | U | NS | | 0.046 | U | 0.046 | U | 0.046 | U | NS | | 0.046 | U | | | 1-Feb-13 | 0.092 | U | NS | | 0.092 | U | 0.092 | U | NS | | 0.092 | U | NS | | NS | | 0.092 | U | 0.092 | U | NS | | | | 29-Apr-13 | NS | | 0.12 | U | NS | | NS | | 0.046 | U | NS | | 0.046 | U | 0.046 | U | 0.046 | U | NS | | 0.098 | , | | 1,2-Dichloropropane | 9-Jul-13 | 0.14
NS | U | NS
0.092 | U | 0.092
NS | U | 0.092
NS | U | NS
0.092 | U | 0.092
NS | U | NS
0.092 | U | NS
0.092 | U | 0.092
0.092 | U
U | 0.092
NS | U | NS
0.092 | U | | 1,2-Dichioropropane | 18-Oct-13
9-Jan-14 | 0.092 | U | 0.092
NS | U | 0.092 | U | 0.092 | U | 0.092
NS | U | 0.092 | U | 0.092
NS | U | 0.092
NS | | 0.092 | U | 0.092 | U | 0.092
NS | | | | 24-Apr-14 | NS | | 0.046 ^{L,V} | U | NS | | NS | | 0.046 ^{L,V} | U | NS | | 0.046 ^{L,V} | U | 0.046 ^{L,V} | U | 0.046 ^{L,V} | U | 0.046 ^{L,V} | U | 0.14 ^{L,V} | U | | | 1-Aug-14 | 0.092 | U | NS | | 0.14 | U | 0.14 | U | NS | | NS | | NS | | NS | | 0.092 | U | 0.092 | U | NS | , | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 0.046 | U | NS | | NS | | NS | | NS | | NS | , | | | 12-Sept-14 (resample) | NS | 0.069 ^{L,V} | U | NS | | NS | U | NS | , | | | 22-Oct-14 | NS
0.046 | U | 0.069
NS | U | NS
0.046 | U | NS
0.046 | U | 0.069 | U | 0.069 | U | 0.069 | U | 0.069 | U | 0.069
0.069 | U
U | 0.092
0.046 | U | NS
NS | , | | | 20-Jan-15
30-Mar-15 (resample) | 0.046
NS | U | NS
NS | | 0.046
NS | U | 0.046
NS | U | NS
NS | | 0.046
NS | 0 | NS
NS | | NS
NS | | 0.069
NS | U | 0.046 | U | NS
NS | | | | 22-Apr-15 | NS | | 0.047 | U | NS | | NS | | 0.046 | U | NS | | 0.046
 U | 0.067 | U | 0.046 | U | NS | | 0.053 | U | | | 21-Jul-15 | 0.2 | U | NS | | 0.9 | U | 5 | U | NS | | 0.3 | U | NS | | NS | | 0.200 ° | U | 0.200 ° | U | NS | | | | 23-Sept-15 resample | NS | 0.2 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.3 | U | NS | | NS | | 0.3 | U | NS | | 0.4 | U | 0.2 | U | 0.2 | U | NS | | 0.2 | U | | | 4-Dec-15 resample | NS
0.046 | U | 0.2
NS | U | NS
0.046 | U | NS
0.046 | U | NS
NS | | NS
0.046 | U | NS
NS | | NS
NS | | NS
0.046 | U | NS
0.046 | U | NS
NS | | | | 27-Jan-16
20-Apr-16 | 0.046
NS | U | NS
0.046 | U | 0.046
NS | U | 0.046
NS | U | NS
0.046 | U | 0.046
NS | U | NS
0.046 | U | NS
0.046 | U | 0.046 | U | 0.046
NS | 0 | NS
0.046 | | | | 20-Api-16
20-Jul-16 | 0.23 | U | NS | | 0.23 | U | 0.23 | U | NS | | 0.27 | | NS | | NS | | 0.29 | | 0.24 | | NS | | | | 21-Oct-16 | NS | | 0.046 | U | NS | | NS | | 0.046 | U | NS | | 0.046 | U | 0.046 | U | 0.046 | U | NS | | 0.046 | U | | | 31-Jan-17 | 0.046 | U | NS | | 0.046 | U | 0.046 | U | NS | | 0.046 | U | NS | | NS | | 0.046 | U | 0.046 | U | NS | | | | 17-Apr-17
26-Jul-17 | NS
0.046 | U | 0.069
NS | U | NS
0.046 | U | NS
0.046 | U | 0.069
NS | U | NS
0.046 | U | 0.069
NS | U | 0.069
NS | U | 0.069
0.046 | U
U | NS
0.046 | U | 0.069
NS | U | | | 12-Oct-17 | 0.046
NS | | 0.046 | U | 0.046
NS | | 0.046
NS | | 0.046 | U | NS | | 0.14 | U | 0.12 | U | 0.13 | U | 0.046
NS | | 0.12 | U | | | 10-Jan-18 | 0.046 | U | NS | | 0.046 | U | 0.046 | U | NS | | 0.046 | U | NS | | NS | | 0.046 | U | NS | | 0.046 | U | | | 11-Apr-18 | NS
NG | | 0.092 | U | NS | | NS | | 0.92 ^D | U | NS | | 0.92 ^D | U | 0.92 ^D | U | 0.092 | U | NS | 1, | 0.92 ^D | U | | | 23-May-18
27-Jul-18 | NS
0.23 | U | NS
NS | | NS
0.23 | U | NS
0.23 | U | NS
NS | | NS
0.23 | U | NS
NS | | NS
NS | | NS
0.23 | U | 0.069
0.23 | U
U | NS
NS | | | | 24-Oct-18 | NS | | 0.23 | U | NS | | NS | | 0.23 | U | NS | | 0.23 | U | 0.23 | U | 0.23 | U | NS | | 0.23 | U | | | 16-Jan-19 | 0.046 | U | NS | | 0.046 | U | 0.046 | U | NS | | 0.046 | U | NS | | NS | | 0.046 | U | 0.046 | U | NS | | | | 12-Apr-19
29-Jul-19 | NS
0.069 | U | 0.046
NS | U | NS
0.069 | U | NS
0.046 | U | 0.046
NS | U | NS
0.046 | U | 0.058
NS | U | 0.069
NS | U | 0.069
0.046 | U
U | NS
1.1 | | 0.069
NS | U | | | 29-Jul-19
26-Sep-19 | 0.069
NS | | NS
NS | | 0.009
NS | U | NS | | NS | | NS | | NS
NS | | NS
NS | | NS | | <0.069 | U | NS
NS | | | | 29-Oct-19 | NS | | 0.046 | U | NS | | NS | | 0.046 | U | NS | | 0.046 | U | 0.046 | U | 0.23 ^D | U | 0.23 ^D | U | 0.23 ^D | | | | 21-Jan-20 | 0.05 | U | NS | | 0.05 | U | 0.05 | U | NS | | 0.05 | U | NS | | NS | | 0.05 | U | 0.05 | U | NS | | | | 22-Apr-20 | NS
0.046 | 17 | 0.092 ^L | U | NS
0.046 | 11 | NS
0.046 | U | 0.092 ^L | U | NS
0.002 | U | 0.092 ^L | U | 0.092 ^L | U | 0.092 ^L | U | NS
0.002 | U | 0.092 ^L | U | | | 23-Jul-20
29-Oct-20 | 0.046
NS | U | NS
0.046 | U | 0.046
NS | U | 0.046
NS | U | NS
0.046 | U | 0.092
NS | U | NS
0.046 | U | NS
0.046 | U | 0.092
0.046 | U
U | 0.092
NS | U | NS
0.046 | U | | | _, _0, 20 | - 1,5 | | 2.3.0 | | | | | | | ~ | | 1 1 | 10 | | 2.3.0 | ~ | | | | | | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|-----------------------------------|-------------|------|--------------------|------|-------------|------|-------------|------|--------------------|------|-------------|------|-------------|----------|-------------|------|-------------------------|--------|-----------------------------|--------|--------------------|--------| | TO-15 | Sample Date | 1411-1 | Qual | 1411 - 2 | Qual | WII -5 | Qual | 1411-4 | Qual | M1-3 | Qual | 1411-0 | Qual | | Qual | 1411 -0 | Qual | 1,411-1 | Qual | 11411 -2 | Qual | 11411-5 | Qual | | | 8-Feb-08 | 0.09 | U | NS | | NS | | NS | | 0.09 | U | NS | | NS | | NS | | 0.09 | U | 0.09 | U | NS | | | | 27-Mar-08 | NS | | 0.091 | U | NS | | NS | | NS | | 0.091 | U | NS | | NS | | NS | | 0.091 | U | 0.091 | U | | | 25-Apr-08 | NS | | NS | | 0.091 | U | NS | ** | NS | | NS | | ***** | U | NS | *** | 0.091 | U | NS | | 0.091 | U | | | 29-May-08
27-Jun-08 | NS
0.141 | U | NS
NS | | NS
NS | | 0.09
NS | U | NS
0.091 | U | NS
NS | | NS
NS | | 0.09
NS | U | 0.09
NS | U | 0.09
0.091 | U
U | NS
0.091 | U | | | 31-Jul-08 | NS | Ü | 0.091 | U | NS | | NS | | NS | | NS | | NS | | NS | | 0.091 | U | NS | | 0.091 | U | | | 28-Aug-08 | NS | | NS | | 0.091 | U | NS | | NS | | NS | | | U | NS | | 0.091 | U | 0.091 | U | NS | | | | 27-Oct-08 | NS | | NS | | NS | | 0.18 | U | NS | | NS | | NS | | 0.18 | U | NS | | 0.18 | U | 0.18 | U | | | 27-Oct-08 | 0.18 | U | NS | | NS | | NS | | 0.18 | U | NS | | NS | | NS | | 0.18 | U | NS | | 0.18 | U | | | 25-Nov-08
18-Dec-08 | NS
NS | | 0.18
NS | U | NS
0.18 | U | NS
NS | | NS
NS | | 0.18
NS | U | NS
0.18 | U | NS
NS | | 0.18
NS | U | 0.18
0.18 | U
U | NS
0.18 | U | | | 21-Jan-09 | NS | | NS | | NS | | 0.18 | U | NS | | NS | | NS | | 0.18 | U | 0.18 | U | NS | 0 | 0.18 | U | | | 25-Feb-09 | 0.18 | U | NS | | NS | | NS | | 0.18 | U | NS | | NS | | NS | | 0.18 | U | 0.18 | U | NS | | | | 26-Mar-09 | NS | | 0.453 | U | NS | | NS | | NS | | 0.907 | U | NS | | NS | | NS | | 0.091 | U | 0.91 | U | | | 29-Apr-09 | NS | | NS | | 0.091 | U | NS | | NS | | NS | | ***** | U | NS | | 0.091 | U | NS | | 0.091 | U | | | 22-Jul-09 | 0.453 | U | NS | *** | 18.5 | U | 0.907 | U | NS | | 0.453 | U | NS
0.001 | U | NS | | 0.091 | U
U | 0.091 | U | NS
0.001 | U | | | 9-Oct-09
15-Jan-10 | NS
0.091 | U | 0.091
NS | U | NS
0.091 | U | NS
0.091 | U | 0.091
NS | U | NS
0.091 | U | 0.091
NS | U | 18.9
NS | U | 0.091
0.091 | U | NS
0.091 | U | 0.091
NS | U | | | 21-Apr-10 | NS | | 0.091 | U | NS | | NS | | 0.453 | U | NS | | | U | 0.453 | U | 0.091 | U | NS | | 0.091 | U | | | 16-Jul-10 | 0.091 | U | NS | | 0.091 | U | 0.091 | U | NS | | 0.685 | U | NS | | NS | | 0.091 | U | 0.091 | U | NS | | | | 15-Oct-10 | NS | | 0.091 | U | NS | | NS | | 0.091 | U | NS | | | U | 0.091 | U | 0.091 | U | NS | | 0.091 | U | | | 26-Jan-11 | 0.907 | U | 0.091 | U | NS | | 0.091 | U | NS | | 0.453 | U | NS | | 0.453 | U | 0.453 | U | 0.453 | U | NS | 1 | | | 28-Feb-11
27-Apr-11 | NS
NS | | NS
0.091 | U | 0.907
NS | U | NS
NS | | NS
0.091 | U | NS
NS | | NS
0.091 | U | NS
0.091 | U | NS
0.091 | U | NS
NS | | NS
0.091 | U | | | 26-Jul-11 | 0.303 | U | 0.091
NS | U | 0.303 | U | 0.091 | U | 0.091
NS | U | 0.454 | U | 0.091
NS | U | 0.091
NS | U | 0.091 | U | 0.454 | U | 0.091
NS | | | | 28-Oct-11 | NS | Ü | 2.3 | U | NS | | NS | | 2.3 | U | NS | | | U | 2.3 | U | 2.3 | U | NS | | 2.3 | U | | | 23-Jan-12 | 0.45 | U | NS | | 0.45 | U | 0.45 | U | NS | | 0.45 | U | NS | | NS | | 0.45 | U | 0.45 | U | NS | | | | 13-Apr-12 | NS | | 0.2 | U | NS | | NS | | 0.23 | U | NS | | | U | 0.23 | U | 0.23 | U | NS | | 0.23 | U | | | 2-Jul-12 (resample) | NS | 1.1 | U | NS | | | | 23-Jun-12
1-Nov-12 | 0.45
NS | U | NS
0.045 | U | 0.45
NS | U | 0.45
NS | U | NS
0.045 | U | 0.45
NS | U | NS
0.045 | IJ | NS
0.045 | U | 0.45
0.045 | U | 0.45
NS | U | NS
0.045 | U | | | 1-Feb-13 | 0.045 | U | NS | | 0.045 | U | 0.045 | U | NS | | 0.045 | U | 0.043
NS | | 0.043
NS | | 0.045 | U | 0.045 | U | NS | | | | 29-Apr-13 | NS | _ | 0.11 | U | NS | | NS | | 0.045 | U | NS | | | U | 0.045 | U | 0.045 | U | NS | | 0.045 | U | | : 12 B: 11 | 9-Jul-13 | 0.068 | U | NS | | 0.045 | U | 0.045 | U | NS | | 0.045 | U | NS | | NS | | 0.045 | U | 0.045 | U | NS | | | cis-1,3-Dichloropropene | 18-Oct-13 | NS | | 0.091 | U | NS | | NS | | 0.091 | U | NS | | | U | 0.091 | U | 0.091 | U | NS | | 0.091 | U | | | 9-Jan-14 | 0.091
NS | U | NS
0.045 | U | 0.091 | U | 0.091 | U | NS
0.045 | U | 0.091 | U | NS
0.045 | IJ | NS
0.045 | | 0.091
0.045 | U
U | 0.091 | U
U | NS
0.14 | U | | | 24-Apr-14
1-Aug-14 | 0.091 | U | 0.043
NS | U | NS
0.14 | U | NS
0.14 | U | 0.043
NS | U | NS
NS | | 0.043
NS | U | 0.043
NS | U | 0.043 | U | 0.045
0.091 | U | NS | | | | 27-Aug-14 | NS | Ü | NS | | NS | | NS | | NS | | 0.045 | U | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 0.068 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.068 | U | NS | | NS | | 0.068 | U | 0.068 | U | ***** | U | 0.068 | U | 0.068 | U | 0.091 | U | NS | | | | 20-Jan-15 | 0.045 | U | NS | | 0.045 | U | 0.045 | U | NS | | 0.045 | U | NS
NG | | NS | | 0.068 | U | 0.045 | U
U | NS | | | | 30-Mar-15 (resample)
22-Apr-15 | NS
NS | | NS
0.047 | U | NS
NS | | NS
NS | | NS
0.045 | IJ | NS
NS | | NS
0.045 | U | NS
0.066 | U | NS
0.045 | U | 0.051
NS | U | NS
0.052 | U | | | 21-Jul-15 | 0.2 | U | NS | | 0.9 | U | 5 | U | NS | | 0.3 | U | NS | | NS | | 0.200 ° | U | 0.200 ° | U | NS | | | | 23-Sept-15 resample | NS | 0.2 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.3 | U | NS | | NS | | 0.3 | U | NS | | 0.4 | U | 0.2 | U | 0.2 | U | NS | | 0.2 | U | | | 4-Dec-15 resample | NS
0.045 | *** | 0.2 | U | NS
0.045 | *** | NS
0.045 | * 7 | NS | | NS
0.045 | ** | NS
NC | | NS
NC | | NS
0.045 | *** | NS
0.045 | *** | NS | 1 | | | 27-Jan-16
20-Apr-16 | 0.045
NS | U | NS
0.045 | U | 0.045
NS | U | 0.045
NS | U | NS
0.045 | U | 0.045
NS | U | NS
0.045 | U | NS
0.045 | U | 0.045
0.045 | U | 0.045
NS | U | NS
0.045 | U | | | 20-Jul-16 | 0.23 | U | NS | | 0.23 | U | 0.23 | U | NS | | 0.23 | U | NS | - | NS | | 0.23 | | 0.23 | U | NS | | | |
21-Oct-16 | NS | | 0.045 | U | NS | | NS | | 0.045 | U | NS | | 0.045 | U | 0.045 | U | 0.045 | U | NS | | 0.045 | U | | | 31-Jan-17
17-Apr-17 | 0.045
NS | U | NS
0.068 | U | 0.045
NS | U | 0.045
NS | U | NS
0.068 | U | 0.045
NS | U | NS
0.068 | U | NS
0.068 | U | 0.045
0.068 | U
U | 0.045
NS | U | NS
0.068 | U | | | 26-Jul-17 | 0.045 | U | 0.068
NS | | 0.045 | U | 0.045 | U | NS | | 0.045 | U | 0.008
NS | <u> </u> | NS | | 0.045 | U | 0.045 | U | NS | | | | 12-Oct-17 | NS | | 0.045 | U | NS | | NS | | 0.045 | U | NS | | | U | 0.11 | U | 0.13 | U | NS | | 0.11 | U | | | 10-Jan-18
11-Apr-18 | 0.045
NS | U | NS
0.091 | U | 0.045
NS | U | 0.045
NS | U | NS
0.91 | U | 0.045
NS | U | NS
0.91 | U | NS
0.91 | U | 0.045
0.091 | U
U | NS
NS | | 0.045
0.91 | U
U | | | 23-May-18 | NS | - | NS | | NS | | 0.068 | U | NS | | | | 27-Jul-18 | 0.23 | U | NS
0.22 | U | 0.23 | U | 0.23 | U | NS
0.22 | U | 0.23 | U | NS
0.22 | U | NS
0.22 | U | 0.23 | U | 0.23 | U | NS
0.22 | U | | | 24-Oct-18
16-Jan-19 | NS
0.045 | U | 0.23
NS | U | NS
0.045 | U | NS
0.045 | U | 0.23
NS | U | NS
0.045 | U | 0.23
NS | U | 0.23
NS | " | 0.23
0.045 | U
U | NS
0.045 | U | 0.23
NS | U | | | 12-Apr-19 | NS | | 0.045 | U | NS | | NS | | 0.045 | U | NS | | 0.057 | U | 0.068 | U | 0.068 | U | NS | | 0.068 | U | | | 29-Jul-19 | 0.068 | U | NS
NS | | 0.068 | U | 0.045 | U | NS
NS | | 0.045 | U | NS
NS | | NS
NS | | 0.045
NS | U | 0.045
<0.068 | U
U | NS
NS | | | | 26-Sep-19
29-Oct-19 | NS
NS | | NS
0.045 | U | NS
NS | | NS
NS | | NS
0.045 | U | NS
NS | | NS
0.045 | U | NS
0.045 | U | NS
0.23 ^D | U | <0.068
0.23 ^D | U | 0.23 ^D | 1 | | | 21-Jan-20 | 0.05 | U | NS | | 0.05 | U | 0.05 | U | NS | | 0.05 | U | NS | _ | NS | | 0.05 | U | 0.05 | U | NS | | | | 22-Apr-20 | NS | | 0.045 ^L | U | NS | | NS | | 0.045 ^L | U | NS | | | U | 0.045^{L} | U | 0.045 ^L | U | NS | | 0.045 ^L | U | | | 23-Jul-20
29-Oct-20 | 0.045
NS | U | NS
0.045 | U | 0.045
NS | U | 0.045
NS | U | NS
0.045 | U | 0.091
NS | U | NS
0.045 | U | NS
0.045 | U | 0.091
0.045 | U
U | 0.091
NS | U | NS
0.045 | U | | | 27-001-20 | 110 | | 0.043 | U | נויו | | 140 | | 0.073 | | 110 | | 0.043 | J | 0.073 | J | 0.043 | , i | 140 | 1 | 0.073 | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|----------------------------------|-------------|------|----------------|--------|-------------|------|-------------|------|-------------|------|-------------|------|-------------|------|----------------|--------|---------------------------|--------|---------------------------|--------|-------------------------|--------| | TO-15 | Sample Date | IVIF-1 | Qual | NIF-2 | Qual | MIT-3 | Qual | WIF-4 | Qual | MIF-3 | Qual | MIT-0 | Qual | | Qual | NIF-0 | Qual | | Qual | IIVIT-2 | Qual | 11/117-3 | Qual | | | 8-Feb-08 | 0.09 | U | NS | | NS | | NS | | 0.09 | U | NS | | NS | | NS | | 0.09 | U | 0.09 | U | NS | | | | 27-Mar-08 | NS | | 0.091 | U | NS | | NS | | NS | | 0.091 | U | NS | | NS | | NS | | 0.091 | U | 0.091 | U | | | 25-Apr-08 | NS | | NS | | 0.091 | U | NS | | NS | | NS | | ***** | U | NS | | 0.091 | U | NS | | 0.091 | U | | | 29-May-08 | NS | *** | NS | | NS | | 0.09 | U | NS | U | NS | | NS | | 0.09 | | 0.09 | U | 0.09 | U | NS
0.001 | | | | 27-Jun-08
31-Jul-08 | 0.141
NS | U | NS
0.091 | U | NS
NS | | NS
NS | | 0.091
NS | U | NS
NS | | NS
NS | | NS
NS | | NS
0.091 | U | 0.091
NS | U | 0.091
0.091 | U
U | | | 28-Aug-08 | NS | | NS | | 0.091 | U | NS | | NS | | NS
NS | | | U | NS | | 0.091 | U | 0.091 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 0.18 | U | NS | | NS | | NS | - | 0.18 | U | NS | | 0.18 | U | 0.18 | U | | | 27-Oct-08 | 0.18 | U | NS | | NS | | NS | | 0.18 | U | NS | | NS | | NS | | 0.18 | U | NS | | 0.18 | U | | | 25-Nov-08 | NS | | 0.18 | U | NS | | NS | | NS | | 0.18 | U | NS | | NS | | 0.18 | U | 0.18 | U | NS | | | | 18-Dec-08 | NS | | NS | | 0.18 | U | NS | | NS | | NS | | **** | U | NS | | NS | | 0.18 | U | 0.18 | U | | | 21-Jan-09 | NS
0.18 | *** | NS | | NS | | 0.18 | U | NS
0.18 | U | NS | | NS | | 0.18 | U | 0.18 | U | NS
0.18 | | 0.18 | U | | | 25-Feb-09
26-Mar-09 | 0.18
NS | U | NS
0.453 | U | NS
NS | | NS
NS | | 0.18
NS | 0 | NS
0.907 | U | NS
NS | | NS
NS | | 0.18
NS | 0 | 0.18
0.091 | U
U | NS
0.091 | U | | | 29-Apr-09 | NS | | NS | | 0.091 | U | NS | | NS | | NS | | | U | NS | | 0.091 | U | NS | | 0.091 | U | | | 22-Jul-09 | 0.453 | U | NS | | 0.453 | U | 0.907 | U | NS | | 0.453 | U | NS | | NS | | 0.091 | U | 0.091 | U | NS | | | | 9-Oct-09 | NS | | 0.079 | U | NS | | NS | | 0.091 | U | NS | | 0.091 | U | 18.9 | U | 0.091 | U | NS | | 0.091 | U | | | 15-Jan-10 | 0.091 | | NS | | 0.091 | U | 0.091 | | NS | | 0.091 | U | NS | | NS | | 0.091 | U | 0.091 | U | NS | | | | 21-Apr-10 | NS | | 0.091 | U | NS | | NS | | 0.453 | U | NS | | ***** | U | 0.453 | U | 0.091 | U | NS | | 0.091 | U | | | 16-Jul-10 | 0.091 | U | NS
0.001 | *** | 0.091 | U | 0.091 | U | NS
0.001 | U | 0.685 | U | NS
0.001 | , | NS
0.001 | *** | 0.091 | U | 0.091 | U | NS
0.001 | ** | | | 15-Oct-10
26-Jan-11 | NS
0.907 | U | 0.091
0.091 | U
U | NS
NS | | NS
0.091 | U | 0.091
NS | " | NS
0.453 | U | 0.091
NS | U | 0.091
0.453 | U
U | 0.091
0.453 | U | NS
0.453 | U | 0.091
NS | U | | | 28-Feb-11 | 0.907
NS | | 0.091
NS | | 0.907 | U | 0.091
NS | | NS | | 0.433
NS | | NS | | 0.433
NS | | 0.433
NS | | 0.433
NS | | NS | | | | 27-Apr-11 | NS | | 0.091 | U | NS | | NS | | 0.091 | U | NS | | | U | 0.091 | U | 0.091 | U | NS | | 0.091 | U | | | 26-Jul-11 | 0.303 | U | NS | | 0.303 | U | 0.091 | U | NS | | 0.454 | U | NS | | NS | | 0.091 | U | 0.454 | U | NS | | | | 28-Oct-11 | NS | | 2.3 | U | NS | | NS | | 2.3 | U | NS | | 2.3 | U | 2.3 | U | 2.3 | U | NS | | 2.3 | U | | | 23-Jan-12 | 0.45 | U | NS | | 0.45 | U | 0.45 | U | NS | | 0.45 | U | NS | | NS | | 0.45 | U | 0.45 | U | NS | | | | 13-Apr-12 | NS | | 1.2 | U | NS | | NS | | 0.23 | U | NS | | * | U | 0.23 | U | 0.23 | U | NS | | 0.23 | U | | | 2-Jul-12 (resample)
23-Jun-12 | NS
0.45 | U | NS
NS | | NS
0.45 | U | NS
0.45 | U | NS
NS | | NS
0.45 | U | NS
NS | | NS
NS | | NS
0.45 | U | 1.1
0.45 | U
U | NS
NS | | | | 23-Jun-12
1-Nov-12 | 0.43
NS | U | 0.045 | U | 0.43
NS | 0 | NS | U | 0.045 | U | NS | U | NS
0.045 | U | 0.045 | U | 0.045 | U | NS | U | 0.045 | U | | | 1-Feb-13 | 0.045 | U | NS | | 0.045 | U | 0.045 | U | NS | | 0.045 | U | NS | | NS | | 0.045 | U | 0.045 | U | NS | | | | 29-Apr-13 | NS | | 0.11 | U | NS | | NS | | 0.045 | U | NS | | | U | 0.045 | U | 0.045 | U | NS | | 0.045 | U | | 12 D' 11 | 9-Jul-13 | 0.068 | U | NS | | 0.045 | U | 0.045 | U | NS | | 0.045 | U | NS | | NS | | 0.045 | U | 0.045 | U | NS | | | trans-1,3-Dichloropropene | 18-Oct-13 | NS | | 0.091 | U | NS | | NS | | 0.091 | U | NS | | ***** | U | 0.091 | U | 0.091 | U | NS | | 0.091 | U | | | 9-Jan-14 | 0.091 | U | NS | | 0.091 | U | 0.091 | U | NS | | 0.091 | U | NS | | NS | | 0.091 | U | 0.091 | U | NS | | | | 24-Apr-14 | NS
0.091 | U | 0.045
NS | U | NS
0.14 | U | NS
0.14 | U | 0.045
NS | U | NS
NS | | 0.045
NS | U | 0.045
NS | U | 0.045
0.091 | U | 0.045
0.091 | U
U | 0.14
NS | U | | | 1-Aug-14
27-Aug-14 | 0.091
NS | U | NS
NS | | NS | 0 | NS | U | NS
NS | | 0.045 | U | NS | | NS | | 0.091
NS | | 0.091
NS | U | NS | | | | 12-Sept-14 (resample) | NS | 0.068 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.068 | U | NS | | NS | | 0.068 | U | 0.068 | U | | U | 0.068 | U | 0.068 | U | 0.091 | U | NS | | | | 20-Jan-15 | 0.045 | U | NS | | 0.045 | U | 0.045 | U | NS | | 0.045 | U | NS | | NS | | 0.068 | U | 0.045 | U | NS | | | | 30-Mar-15 (resample) | NS | 0.051 | U | NS | | | | 22-Apr-15 | NS | | 0.047 | U | NS | | NS | | 0.045 | U | NS | | ****** | U | 0.066 | U | 0.045 | U | NS | | 0.052 | U | | | 21-Jul-15 | 0.2
NS | U | NS
NS | | 0.9
NS | U | 5
NS | U | NS
NS | | 0.3
NS | U | NS
NS | | NS
0.2 | U | 0.200 °
NS | U | 0.200 °
NS | U | NS
NS | | | | 23-Sept-15 resample
29-Oct-15 | NS
NS | | 0.3 | IJ | NS
NS | | NS | | 0.3 | IJ | NS
NS | | 0.4 | U | 0.2 | II. | 0.2 | II | NS
NS | | 0.2 | IJ | | | 4-Dec-15 resample | NS | | 0.2 | U | NS | | NS | | NS | | NS | | NS | 1 | NS | | NS | | NS | | NS | | | | 27-Jan-16 | 0.045 | U | NS | | 0.045 | U | 0.045 | U | NS | | 0.045 | U | NS | | NS | | 0.045 | U | 0.045 | U | NS | | | | 20-Apr-16 | NS | | 0.045 | U | NS | | NS | | 0.045 | U | NS | | | U | 0.045 | U | 0.045 | U | NS | | 0.045 | U | | | 20-Jul-16 | 0.23 | U | NS | | 0.23 | U | 0.23 | U | NS | | 0.23 | U | NS | | NS | | 0.23 | U | 0.23 | U | NS | | | | 21-Oct-16
31-Jan-17 | NS
0.045 | U | 0.045
NS | U | NS
0.045 | U | NS
0.045 | U | 0.045
NS | U | NS
0.045 | U | 0.045
NS | U | 0.045
NS | U | 0.045
0.045 | U
U | NS
0.045 | U | 0.045
NS | U | | | 31-Jan-17
17-Apr-17 | 0.045
NS | | 0.068 | U | 0.045
NS | U | 0.045
NS | | 0.068 | U | 0.045
NS | | | U | 0.068 | U | 0.043 | U | 0.045
NS | | 0.068 | U | | | 26-Jul-17 | 0.045 | U | NS | | 0.045 | U | 0.045 | U | NS | | 0.045 | U | NS | | NS | | 0.045 | U | 0.045 | U | NS | | | | 12-Oct-17 | NS
0.045 | U | 0.045
NS | U | NS
0.045 | U | NS
0.045 | U | 0.045
NS | U | NS
0.045 | U | | U | 0.11
NS | U | 0.13 | U
U | NS
NS | | 0.11
0.045 | U
U | | | 10-Jan-18
11-Apr-18 | 0.045
NS | U | 0.091 | U | 0.045
NS | U | 0.045
NS | 0 | NS
0.91 | U | 0.045
NS | 0 |
NS
0.91 | U | NS
0.91 | U | 0.045
0.091 | U | NS
NS | | 0.045 | U | | | 23-May-18 | NS | 0.27 | U | NS | | | | 27-Jul-18 | 0.23 | U | NS
0.22 | | 0.23 | U | 0.23 | U | NS
0.22 | .,, | 0.23 | U | NS
0.22 | , | NS | ** | 0.23 | U | 0.23 | U | NS
0.22 | | | | 24-Oct-18
16-Jan-19 | NS
0.045 | U | 0.23
NS | U | NS
0.045 | U | NS
0.045 | U | 0.23
NS | U | NS
0.045 | U | 0.23
NS | U | 0.23
NS | U | 0.23
0.045 | U
U | NS
0.045 | U | 0.23
NS | U | | | 12-Apr-19 | NS | | 0.045 | U | NS | | NS | | 0.045 | U | NS | | | U | 0.068 | U | 0.068 | U | NS | | 0.068 | U | | | 29-Jul-19 | 0.068 | U | NS | | 0.068 | U | 0.045 | U | NS | | 0.045 | U | NS | | NS | | 0.045 | U | 0.045 | U | NS | | | | 26-Sep-19 | NS | | NS
0.045 | ** | NS | | NS | | NS
0.045 | .,, | NS | | NS
0.045 | , | NS
0.045 | *** | NS
0.22 ^D | *** | <0.068 | U | NS
0.22 ^D | | | | 29-Oct-19
21-Jan-20 | NS
0.05 | U | 0.045
NS | U | NS
0.05 | U | NS
0.05 | U | 0.045
NS | U | NS
0.05 | U | 0.045
NS | U | 0.045
NS | U | 0.23 ^D
0.05 | U
U | 0.23 ^D
0.05 | U
U | 0.23 ^D
NS | 1 | | | 22-Apr-20 | NS | | 0.045 | U | NS | | NS | | 0.045 | U | NS | | | U | 0.045 | U | 0.045 | U | NS | | 0.045 | U | | | 23-Jul-20 | 0.045 | U | NS | | 0.045 | U | 0.045 | U | NS | | 0.091 | U | NS | . | NS | | 0.091 | U | 0.091 | U | NS | | | | 29-Oct-20 | NS | | 0.045 | U | NS | | NS | | 0.045 | U | NS | | 0.045 | U | 0.045 | U | 0.045 | U | NS | | 0.045 | U | | TO-15 | Sample Date
8-Feb-08 | 0.21 | Qual | Qual | | Qual | | Qual | | Qual | | 01 | | | | | | | | Δ1 | | Δ1 | |--------------|--------------------------------|------------|--------------|------|--------------------|------|------------|------|-------------------|------|-------------|------|-------------|------|------------|------|------------------------|------|-------------------------|------|-------------------------|------| | | | 0.21 | | | | + | | Quai | | Quai | | Qual | | Qual | | Qual | | Qual | | Qual | | Qual | | | | | NS | | NS | | NS | | 0.23 | | NS | | NS | | NS | | 0.33 | | 4.89 | | NS | | | | 27-Mar-08 | NS | 0.295 | | NS
0.201 | | NS | | NS | | 0.157 | | NS
0.22 | | NS | | NS | | 0.645 | | 0.372 | | | • | 25-Apr-08 | NS | NS
NC | | 0.291 | | NS | | NS | | NS | | 0.32 | | NS
2.2 | | 2.82 | | NS | | 0.565 | | | | 29-May-08
27-Jun-08 | NS
4.34 | NS
NS | | NS
NS | | 1.49
NS | | NS
0.472 | | NS
NS | | NS
NS | | 2.2
NS | | 2.82
NS | | 1.01
0.606 | | NS
0.699 | | | | 31-Jul-08 | NS | * | | NS | | NS | | NS | | NS | | NS | | NS | | 0.758 | | NS | | 0.577 | | | | 28-Aug-08 | NS | NS | | 0.83 | | NS | | NS | | NS | | 0.482 | | NS | | 0.711 | | 0.666 | | NS | | | | 30-Sep-08 | NS | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | 2.2 | U | 2.2 | U | | | 27-Oct-08 | 18.4 | NS | | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | 2.2 | U | | | 25-Nov-08 | NS | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | NS | | 2.3 | | 2.2 | U | NS | | | | 18-Dec-08 | NS | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | NS | | 2.2 | U | 2.2 | U | | | 21-Jan-09 | NS | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | 2.2 | U | NS | | 2.2 | U | | | 25-Feb-09 | 10.8 | NS
0.516 | | NS | | NS | | 2.2 | U | NS | ** | NS | | NS | | 2.2 | U | 2.2 | U | NS | | | | 26-Mar-09 | NS
NS | 0.516
NS | | NS
0.19 | | NS
NS | | NS
NS | | 0.868
NS | U | NS
0.191 | | NS
NS | | NS
0.304 | | 0.845
NS | | 1.18
0.325 | | | | 29-Apr-09
22-Jul-09 | 11.7 | NS
NS | | 11.7 | | 0.868 | U | NS
NS | | 1.15 | | 0.191
NS | | NS
NS | | 38.2 | | 1.04 | | 0.323
NS | | | | 9-Oct-09 | NS | 0.564 | | NS | | NS | | 0.56 | | NS | | 0.291 | | 18.1 | U | 0.542 | | NS | | 0.542 | | | | 15-Jan-10 | 6.95 | NS | | 0.568 | | 0.542 | | NS | | 0.659 | | NS | | NS | Ü | 0.712 | | 0.72 | | NS | | | | 21-Apr-10 | NS | 0.304 | | NS | | NS | | 1.34 | | NS | | 1.8 | | 1.76 | | 2.12 | | NS | | 1.56 | | | | 16-Jul-10 | 8.23 | NS | | 2.4 | | 1.8 | | NS | | 1.44 | | NS | | NS | | 1.51 | | 1.42 | | NS | | | | 15-Oct-10 | NS | 0.534 | | NS | | NS | | 0.625 | | NS | | 0.521 | | 0.573 | | 1.07 | | NS | | 0.833 | | | | 26-Jan-11 | 1.26 | 1.62 | | NS | | 1.66 | | NS | | 1.26 | | NS | | 1.21 | | 4.14 | | 4.68 | | NS | | | | 28-Feb-11 | NS | NS | | 0.868 | U | NS | | | 27-Apr-11 | NS | 0.243 | | NS | | NS | | 0.239 | | NS | | 0.286 | | 3.86 | | 0.364 | | NS | | 0.508 | | | | 26-Jul-11 | 3.91 | NS | | 0.942 | | 0.339 | | NS | | 0.434 | U | NS | | NS | | 0.304 | | 0.434 | U | NS | | | | 28-Oct-11 | NS | 2.2
NS | U | NS
0.79 | | NS
0.56 | | 2.2 | U | NS
0.82 | | 2.2 | U | 2.2 | U | 3.8
1.7 | | NS
12 | | 2.2 | U | | | 23-Jan-12
13-Apr-12 | NS | 0.43 | U | 0.79
NS | | 0.56
NS | | NS
0.43 | U | 0.82
NS | | NS
0.43 | U | NS
0.43 | U | 1.7 | | 12
NS | | NS
0.43 | U | | | 2-Jul-12 (resample) | NS | NS | U | NS | | 2.2 | U | NS | | | | 23-Jun-12 | 5.1 | NS | | 0.53 | | 0.43 | U | NS | | 0.47 | | NS | | NS | | 0.76 | | 0.46 | | NS | | | | 1-Nov-12 | NS | 0.55 | | NS | | NS | | 0.57 | | NS | | 0.8 | | 0.75 | | 0.87 | | NS | | 1.3 | | | | 1-Feb-13 | 1.3 | NS | | 0.18 | | 0.15 | | NS | | 0.23 | | NS | | NS | | 0.54 | | 0.52 | | NS | | | | 29-Apr-13 | NS | 0.33 | | NS | | NS | | 0.39 | | NS | | 0.37 | | 0.49 | | 0.63 | | NS | | 0.8 | | | Ed. II | 9-Jul-13 | 5.1 | NS | | 0.087 | U | 0.68 | | NS | | 0.59 | | NS | | NS | | 1.1 | | 1.0 | | NS | | | Ethylbenzene | 18-Oct-13 | NS | 1.7 | | NS | | NS | | 1.9 | | NS | | 2.0 | | 2.6 | | 1.5 | | NS | | 1.9 | | | | 9-Jan-14 | 2.7 | NS | | 2.0 | | 2.6 | | NS | | 2.8 | | NS | | NS | | 6.2 | | 5.5 | | NS | | | | 24-Apr-14 | NS | 0.087 | U | NS
0.84 | | NS
0.65 | | 0.087 | U | NS | | 0.087 | U | 0.087 | U | 0.092 | | 0.087 | U | 0.49 | | | | 1-Aug-14
27-Aug-14 | 1.7
NS | NS
NS | | 0.84
NS | | 0.65
NS | | NS
NS | | NS
0.96 | | NS
NS | | NS
NS | | 0.45
NS | | 0.85
NS | | NS
NS | | | | 12-Sept-14 (resample) | NS | NS
NS | | NS | | NS
NS | | NS | | NS | | NS
NS | | 0.79 | | NS
NS | | NS
NS | U | NS | | | | 22-Oct-14 | NS | 0.13 | U | NS | | NS | | 0.13 | U | 0.13 | U | 0.15 | | 0.13 | U | 0.27 | | 0.27 | | NS | | | | 20-Jan-15 | 0.400 | NS | | 0.087 | U | 0.096 | | NS | | 0.087 | U | NS | | NS | | 0.24 | | 0.29 | | NS | | | | 30-Mar-15 (resample) | NS | NS | 0.29 | | NS | | | | 22-Apr-15 | NS | 0.22 | | NS | | NS | | 0.12 | | NS | | 0.26 | | 0.21/0.24 | | 0.44 | | NS | | 0.53 | | | | 21-Jul-15 | 0.54 | NS | | 0.590 ¹ | | 4 | U | NS | | 0.56 | | NS | | NS | | 0.65 ° | | 0.90 ° | | NS | | | | 23-Sept-15 resample | NS | NS | | NS | | NS | | NS | | NS | | NS
o and | | 0.41 | | NS | | NS | | NS | | | | 29-Oct-15 | NS | 0.2 | U | NS | | NS | | 0.14 ^J | | NS | | 0.22 J | | 0.28 | | 0.27 | | NS | | 0.33 | | | | 4-Dec-15 resample
27-Jan-16 | NS
0.63 | 0.2
NS | U | NS
0.087 | | NS
0.12 | | NS
NS | | NS
0.12 | | NS
NS | | NS
NS | | NS
0.51 | | NS
0.54 | | NS
NS | | | | 20-Apr-16 | NS | 0.3 | | NS | | NS | | 0.39 | | NS | | 0.56 | | 0.34 | | 0.71 | | NS | | 0.61 | | | | 20-Jul-16 | 5.8 | NS | | 0.75 | | 0.43 | U | NS | | 0.5 | | NS | | NS | | 2.7 | | 1.1 | | NS | | | | 21-Oct-16 | NS | 0.14 | | NS | | NS | | 0.35 | | NS | | 0.24 | | 0.62 | | 1.2 | | NS | | 0.52 | | | | 31-Jan-17 | 0.56 | NS | | 0.16 | | 0.17 | | NS | | 0.14 | | NS | | NS | | 0.86 | | 0.61 | | NS | | | | 17-Apr-17 | NS
0.52 | 0.13 | U | NS
0.27 | | NS
0.21 | | 0.13 | U | NS
0.28 | | 0.13 | U | 0.13 | U | 0.17 | | NS
0.25 | | 0.17 | | | | 26-Jul-17
12-Oct-17 | 0.53
NS | NS
0.16 | | 0.27
NS | | 0.21
NS | | NS
0.2 | | 0.38
NS | | NS
0.26 | U | NS
0.36 | | 0.4
0.32 | | 0.35
NS | | NS
0.31 | | | | 10-Jan-18 | 0.5 | NS | | 0.11 | | 0.22 | | NS | | 0.19 | | NS | | NS | | 0.94 | | NS | | 0.4 | | | | 11-Apr-18 | NS | 0.13 | | NS | | NS | | 0.87 | U | NS | | 0.87 | U | 0.87 | U | 0.37 | | NS | | 0.87 | U | | | 23-May-18 | NS
0.42 | U NS | | NS
0.42 | | NS
0.42 | U | NS | | NS
0.42 | | NS
NC | | NS | | NS
0.42 | U | 0.19 | U | NS | | | | 27-Jul-18
24-Oct-18 | 0.43
NS | U NS
0.43 | U | 0.43
NS | U | 0.43
NS | U | NS
0.43 | U | 0.43
NS | U | NS
0.7 | | NS
0.43 | U | 0.43
0.49 | 0 | 0.43
NS | U | NS
0.43 | U | | | 16-Jan-19 | 0.51 | NS | | 0.087 | U | 0.11 | | NS | | 0.13 | | NS | | NS | | 0.26 | | 0.31 | | NS | | | | 12-Apr-19 | NS | 0.1 | | NS | | NS | | 0.11 | | NS | | 0.11 | U | 0.2 | | 0.19 | | NS | | 0.37 | | | | 29-Jul-19 | 3.6 | NS
NC | | 3.7 | | 4.6 | | NS | | 5.5 | | NS
NC | | NS | | 2.4 | | 3.3 | | NS | | | | 26-Sep-19
29-Oct-19 | NS
NS | NS
0.64 | | NS
NS | | NS
NS | | NS
0.48 | | NS
NS | | NS
0.2 | | NS
0.66 | | NS
1.1 ^D | | 1.4
1.6 ^D | | NS
0.97 ^D | | | | 29-Oct-19
21-Jan-20 | 0.24 | 0.64
NS | | 0.30 | | 0.27 | | 0.48
NS | | 0.19 | | NS | | NS | | 0.92 | | 1.10 | | NS | | | | 22-Apr-20 | NS | 0.087 | U | NS | | NS | | 0.087 | U | NS | | 0.087 | U | 0.087 | U | 0.29 | | NS | | 0.39 | | | | 23-Jul-20 | 0.92 | NS | | 0.29 | | 0.27 | | NS | | 0.4 | | NS | | NS | | 0.71 | | 1.3 | | NS | | | | 29-Oct-20 | NS | 0.19 | | NS | | NS | | 0.2 | | NS | | 0.16 | | 0.27 | | 0.43 | | NS | | 0.68 | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------|--------------------------|------|------------|------|------------|-------|------------|------|------------|------|-------------------------|------|------------|------|------------|------|------------------------------|--------|----------------------------|------|------------------------|------| | TO-15 | Sample Date | | Qual | 8-Feb-08
27-Mar-08 | 2.46
NS | U | NS
2.46 | U | NS
NS | | NS
NS |
 2.46
NS | U | NS
NS | | NS
NS | | NS
NS | | 2.46
NS | U | 2.46
2.46 | U | NS
2.46 | U | | | 25-Apr-08 | NS | | NS | | 2.46 | U | NS | | NS | | NS | | 2.46 | U | NS | | 2.46 | U | NS | | 2.46 | U | | | 29-May-08 | NS | | NS | | NS | | 2.46 | U | NS | | NS | | NS | | 2.46 | U | 2.46 | U | 2.46 | U | NS | | | | 27-Jun-08 | 3.83 | U | NS | | NS | | NS | | 2.46 | U | NS | | NS | | NS | | NS | | 2.46 | U | 2.46 | U | | | 31-Jul-08 | NS
NC | | 2.46
NS | U | NS
2.46 | U | NS | | NS
NC | | NS
NC | | NS | U | NS | | 2.46 | U
U | NS
2.46 | U | 2.46 | U | | | 28-Aug-08
30-Sep-08 | NS
NS | | NS
NS | | 2.46
NS | U | NS
4.9 | U | NS
NS | | NS
NS | | 2.46
NS | U | NS
4.9 | U | 2.46
NS | U | 2.46
4.9 | U | NS
4.9 | U | | | 27-Oct-08 | 5.2 | | NS | | NS | | NS | | 4.9 | U | NS | | NS | | NS | | 4.9 | U | NS | | 4.9 | U | | | 25-Nov-08 | NS | | 4.9 | U | NS | | NS | | NS | | 4.9 | U | NS | | NS | | 5.9 | U | 4.9 | U | NS | | | | 18-Dec-08 | NS | | NS | | 4.9 | U | NS | | NS | | NS | | 4.9 | U | NS | | NS | | 4.9 | U | 4.9 | U | | | 21-Jan-09 | NS
4.0 | U | NS | | NS
NC | | 4.9 | U | NS
4.0 | U | NS
No | | NS
NC | | 4.9 | U | 4.9 | U
U | NS
4.9 | U | 4.9 | U | | | 25-Feb-09
26-Mar-09 | 4.9
NS | U | NS
12.3 | U | NS
NS | | NS
NS | | 4.9
NS | U | NS
24.6 | U | NS
NS | | NS
NS | | 4.9
NS | U | 2.46 | U | NS
2.46 | U | | | 29-Apr-09 | NS | | NS | | 2.46 | U | NS | | NS | | NS | | 2.46 | U | NS | | 2.46 | U | NS | | 2.46 | U | | | 22-Jul-09 | 12.3 | U | NS | | 12.3 | U | 24.6 | U | NS | | 12.3 | U | NS | | NS | | 3.78 | | 2.46 | U | NS | | | | 9-Oct-09 | NS | | 2.74 | U | NS | | NS | | 2.46 | U | NS | | 2.46 | U | 513 | U | 2.46 | U | NS | | 2.46 | U | | | 15-Jan-10 | 2.46 | U | NS
2.46 | *** | 2.46 | U | 2.46 | U | NS | ** | 2.46 | U | NS | | NS | ** | 2.46 | U | 2.46 | U | NS
2.46 | | | | 21-Apr-10
16-Jul-10 | NS
2.46 | U | 2.46
NS | U | NS
2.66 | | NS
2.46 | U | 12.3
NS | U | NS
18.5 | U | 12.3
NS | U | 12.3
NS | U | 2.46
2.46 | U
U | NS
2.46 | 11 | 2.46
NS | U | | | 15-Oct-10 | NS | | 2.46 | U | NS | | NS | | 2.46 | U | NS | | 2.46 | U | 2.46 | U | 2.46 | U | NS | | 2.46 | U | | | 26-Jan-11 | 24.6 | U | 2.46 | U | NS | | 2.46 | U | NS | | 12.3 | U | NS | | 12.3 | U | 12.3 | U | 12.3 | U | NS | | | | 28-Feb-11 | NS | | NS | | 24.6 | U | NS | | | 27-Apr-11 | NS | | 2.46 | U | NS | | NS | | 2.46 | U | NS | | 2.46 | U | 2.46 | U | 2.46 | U | NS | | 2.46 | U | | | 26-Jul-11 | 8.21 | U | NS | U | 8.21 | U | 2.46 | U | NS | U | 12.3 | U | NS | U | NS | U | 2.46 | U | 12.3 | U | NS | U | | | 28-Oct-11
23-Jan-12 | NS
1.2 | IJ | 6.2
NS | U | NS
1.2 | U | NS
0.25 | U | 6.2
NS | U | NS
1.2 | U | 6.2
NS | 0 | 6.2
NS | 0 | 6.2
1.2 | U
U | NS
1.4 | | 6.2
NS | 0 | | | 13-Apr-12 | NS | | 1.2 | U | NS | | NS | | 1.2 | U | NS | | 1.2 | U | 1.2 | U | 1.2 | U | NS | | 1.2 | U | | | 2-Jul-12 (resample) | NS | 6.2 | U | NS | | | | 23-Jun-12 | 1.2 | U | NS | | 1.2 | U | 1.2 | U | NS | | 1.2 | U | NS | | NS | | 1.2 | U | 1.2 | U | NS | | | | 1-Nov-12 | NS
0.25 | ** | 0.25 | U | NS | ** | NS
0.25 | ** | 0.25 | U | NS | ** | 0.25 | U | 0.25 | U | 0.25 | U | NS
0.25 | II | 0.25 | U | | | 1-Feb-13
29-Apr-13 | 0.25
NS | U | NS
0.62 | U | 0.25
NS | U | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | NS
0.25 | U | NS
0.25 | U | 0.25
0.25 | U
U | 0.25
NS | U | NS
0.25 | U | | | 9-Jul-13 | 0.37 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | Isopropylbenzene | 18-Oct-13 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.27 | | 0.25 | U | NS | | 0.25 | U | | | 9-Jan-14 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.53 | | 0.49 | | NS | | | | 24-Apr-14 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | 0.25 | U | 0.37 | U | | | 1-Aug-14
27-Aug-14 | 0.25
NS | | NS
NS | | 0.37
NS | U | 0.37
NS | U | NS
NS | | NS
0.25 | U | NS
NS | | NS
NS | | 0.25
NS | U | 0.25
NS | U | NS
NS | | | | 12-Sept-14 (resample) | NS | 0.37 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.37 | U | NS | | NS | | 0.37 | U | 0.37 | U | 0.37 | U | 0.37 | U | 0.37 | U | 0.50 | U | NS | | | | 20-Jan-15 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.37 | U | 0.25 | U | NS | | | | 30-Mar-15 (resample) | NS | 0.28 | U | NS | | | | 22-Apr-15
21-Jul-15 | NS
0.140 ^J | | 0.26
NS | U | NS
1 | II | NS
5 | II | 0.25
NS | U | NS
0.19 ^J | | 0.25
NS | U | 0.36
NS | U | 0.25
0.21 ^{J, O} | U | NS
0.20 ^{J, O} | | 0.29
NS | U | | | 23-Sept-15 resample | NS | 0.2 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.3 | U | NS | | NS | | 0.3 | U | NS | | 0.4 | U | 0.2 | U | 0.2 | U | NS | | 0.2 | U | | | 4-Dec-15 resample | NS | | 0.2 | U | NS | | | 27-Jan-16 | 0.25 | U | NS
0.25 | | 0.25 | U | 0.25 | U | NS
0.25 | | 0.25 | U | NS
0.25 | U | NS
0.25 | | 0.25 | U | 0.25 | U | NS
0.25 | U | | | 20-Apr-16
20-Jul-16 | NS
1.2 | U | 0.25
NS | U | NS
1.2 | U,M,W | NS
1.2 | U | 0.25
NS | U | NS
1.2 | U | 0.25
NS | U | 0.25
NS | U | 0.25
1.2 | U
U | NS
1.2 | U | 0.25
NS | U | | | 21-Oct-16 | NS | | 0.25 | U | NS | 0,, | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 31-Jan-17 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | | 17-Apr-17
26-Jul-17 | NS
0.25 | U | 0.37
NS | U | NS
0.25 | U | NS
0.25 | U | 0.37
NS | U | NS
0.25 | U | 0.37
NS | U | 0.37
NS | U | 0.37
0.25 | U
U | NS
0.25 | U | 0.37
NS | U | | | 12-Oct-17 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.76 | U | 0.62 | U | 0.71 | U | NS | | 0.62 | U | | | 10-Jan-18 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | | | 11-Apr-18
23-May-18 | NS
NS | | 0.25
NS | U | NS
NS | | NS
NS | | 2.5
NS | U | NS
NS | | 2.5
NS | U | 2.5
NS | U | 0.25
NS | U | NS
0.37 | U | 2.5
NS | U | | | 27-Jul-18 | 1.2 | U | NS | | 1.2 | U | 1.2 | U | NS | | 1.2 | U | NS | | NS | | 1.2 | U | 1.2 | U | NS | | | | 24-Oct-18 | NS
0.25 | 17 | 1.2 | U | NS
0.25 | *** | NS
0.25 | 1, | 1.2 | U | NS
0.25 | | 1.2 | U | 1.2 | U | 1.2 | U | NS
0.25 | ,,, | 1.2 | U | | | 16-Jan-19
12-Apr-19 | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | NS
0.31 | U | NS
0.37 | U | 0.25
0.37 | U
U | 0.25
NS | U | NS
0.37 | U | | | 29-Jul-19 | 0.37 | U | NS | | 0.37 | U | 0.25 | U | NS | - | 0.25 | U | NS | | NS | - | 0.25 | U | 0.25 | U | NS | _ | | | 26-Sep-19 | NS | | NS
0.25 | | NS | | NS | | NS
0.25 | ,. | NS | | NS
0.25 | | NS
0.25 | | NS
1.2 ^D | | <0.37 | U | NS
1.2 ^D | | | | 29-Oct-19
21-Jan-20 | NS
0.25 | U | 0.25
NS | U | NS
0.25 | U | NS
0.25 | U | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | 0.25
NS | U | 1.2 ^D
0.25 | U
U | 1.2 ^D
0.25 | U | 1.2 ^D
NS | | | | 22-Apr-20 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 23-Jul-20 | 0.25 | U | NS | 1, | 0.25 | U | 0.25 | U | NS
0.25 | ** | 0.5 | U | NS
0.25 | | NS
0.25 | | 0.5 | U | 0.5 | U | NS
0.25 | * * | | | 29-Oct-20 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | Valetta Occasio C | | Mp 1 | | MP 2 | 1 1 | 3 4 D 2 | | MP 4 | | MP 7 | | MP | | MD 7 | MDO | | INTO 1 | | IMP 2 | | IMP 3 | | |---|-----------------------------------|------------|------|--------------|--------|--------------------|--------|-------------|--|-------------------|------|------------|-------|--------------|-------------------|--------|----------------------|--------|-------------------|--------|-------------------|--------| | Volatile Organic Compounds via
TO-15 | Sample Date | MP-1 | Qual | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Qual | MP-6 | Qual | MP-7 Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | | 8-Feb-08 | 2.74 | U | NS | | NS | - Yuan | NS | \\ \alpha \tau \tau \tau \tau \tau \tau \tau \ta | 2.74 | U | NS | - Zum | NS | NS | ~ um | 2.74 | U | 2.74 | U | NS | | | l l | 27-Mar-08 | NS | | 2.74 | U | NS | | 1.2 | | NS | | NS | | NS | NS | | NS | | 2.74 | U | 2.74 | U | | ' | 25-Apr-08 | NS | | NS | | 2.74 | U | NS | | NS | | NS | | 2.74 U | NS | | 2.74 | U | NS | | 2.74 | U | | l l | 29-May-08 | | | NS | | NS | | 2.74 | U | NS | | NS | | NS | 2.74 | U | 2.74 | U | 2.74 | U | NS | | | ' | 27-Jun-08 | 4.27 | U | NS
2.74 | U | NS | | NS | | 2.74 | U | NS | | NS
NG | NS | | NS
2.74 | ** | 2.74 | U | 2.74 | U
U | | ' | 31-Jul-08
28-Aug-08 | NS
NS | | 2.74
NS | U | NS
2.74 | U | NS
NS | | NS
NS | | NS
NS | | NS
2.74 U | NS
NS | | 2.74
2.74 | U | NS
2.74 | U | 2.74
NS | U | | l l | 30-Sep-08 | NS | | NS | | NS | | 5.5 | U | NS
NS | | NS
NS | | NS | 5.5 | U | NS | 0 | 5.5 | U | 5.5 | U | | ' | 27-Oct-08 | 12.5 | | NS | | NS | | NS | | 5.5 | U | NS | | NS | NS | | 18.5 | | NS | | 5.5 | U | | ' | 25-Nov-08 | NS | | 5.5 | U | NS | | NS | | NS | | 5.5 | U | NS | NS | | 5.5 | U | 5.5 | U | NS | | | l l | 18-Dec-08 | NS | | NS | | 5.5 | U | NS | | NS | | NS | | 5.5 U | NS | | NS | | 5.5 | U | 5.5 | U | | ' | 21-Jan-09 | NS | | NS | | NS | | 5.5 | U | NS | | NS | | NS | 5.5 | U | 5.5 | U | NS | | 5.5 | U | | l l | 25-Feb-09
26-Mar-09 | 5.5
NS | U | NS
13.7 | U | NS
NS | | NS
NS | | 5.5
NS | U | NS
27.4 | U | NS
NS | NS
NS | | 5.5
NS | U | 5.5
2.74 | U
U |
NS
2.74 | U | | l l | 29-Apr-09 | NS
NS | | NS | U | 2.74 | U | NS
NS | | NS
NS | | NS | U | 2.74 U | NS
NS | | 2.74 | U | 2.74
NS | U | 2.74 | U | | ' | 22-Jul-09 | 13.7 | U | NS | | 13.7 | U | 27.4 | U | NS | | 13.7 | U | NS S | NS | | 2.74 | U | 2.74 | U | NS | | | 1 | 9-Oct-09 | NS | | 2.74 | U | NS | | NS | | 2.74 | U | NS | | 2.74 U | 573 | U | 2.74 | U | NS | | 2.74 | U | | l l | 15-Jan-10 | 2.72 | U | NS | | 2.74 | U | 2.74 | U | NS | | 2.74 | U | NS | NS | | 2.74 | U | 2.74 | U | NS | | | " | 21-Apr-10 | NS | | 2.74 | U | NS | | NS | | 13.7 | U | NS | | 13.7 U | 13.7 | U | 2.74 | U | NS | | 2.74 | U | | " | 16-Jul-10 | 2.74 | U | NS
2.74 | | 2.74 | U | 2.74 | U | NS | | 20.7 | U | NS | NS
2.74 | | 2.74 | U | 2.74 | | NS | | | 1 | 15-Oct-10
26-Jan-11 | NS
27.4 | U | 2.74
2.74 | U
U | NS
NS | | NS
2.74 | U | 2.74
NS | U | NS
13.7 | U | 2.74 U | 2.74 | U
U | 2.74
13.7 | U | NS
13.7 | U | 2.74
NS | U | | " | 26-Jan-11
28-Feb-11 | 27.4
NS | U | 2.74
NS | 0 | NS
27.4 | U | 2.74
NS | | NS
NS | | 13.7
NS | U | NS
NS | 13.7
NS | U | NS | U | 13.7
NS | 0 | NS
NS | | | " | 27-Apr-11 | NS | | 2.74 | U | NS | | NS | | 2.74 | U | NS
NS | | 2.74 U | 2.74 | U | 2.74 | U | NS | | 2.74 | U | | ' | 26-Jul-11 | 9.17 | U | NS | | 9.17 | U | 2.74 | U | NS | | 13.7 | U | NS | NS | | 2.74 | U | 13.7 | U | NS | | | ' | 28-Oct-11 | NS | | 6.3 | U | NS | | NS | | 6.3 | U | NS | | 6.3 U | 6.3 | U | 6.3 | U | NS | | 6.3 | U | | l l | 23-Jan-12 | 1.3 | U | NS | | 1.3 | U | 1.3 | U | NS | | 1.3 | U | NS | NS | | 1.3 | U | 1.3 | U | NS | | | l l | 13-Apr-12 | NS | | 1.3 | U | NS | | NS | | 1.3 | U | NS | | 1.3 U | 1.3 | U | 1.3 | U | NS | | 1.3 | U | | l l | 2-Jul-12 (resample) | NS | ** | NS
NG | | NS | | NS | | NS | | NS
1.2 | | NS
NG | NS | | NS
1.2 | *** | 6.3 | U
U | NS | | | l l | 23-Jun-12
1-Nov-12 | 1.3
NS | U | NS
0.25 | U | 1.3
NS | U | 1.3
NS | U | NS
0.25 | U | 1.3
NS | U | NS
0.27 | NS
0.25 | U | 1.3
0.29 | U | 1.3
NS | U | NS
0.45 | | | l l | 1-Feb-13 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | NS | | 0.25 | U | 0.25 | U | NS | | | l l | 29-Apr-13 | NS | | 0.63 | U | NS | | NS | | 0.25 | U | NS | | 0.25 U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | . T | 9-Jul-13 | 0.38 | U | NS | | 0.28 | | 0.29 | | NS | | 0.29 | | NS | NS | | 0.36 | | 0.53 | | NS | | | p-Isopropyltoluene | 18-Oct-13
9-Jan-14 | NS
0.25 | U | 0.38
NS | | NS
0.33 | | NS
0.040 | | 0.25
NS | U | NS
0.25 | U | 0.25 U
NS | 0.51
NS | | 0.25 | U | NS
1.2 | | 0.54
NS | | | l l | 9-Jan-14
24-Apr-14 | NS | 0 | 0.25 | U | NS | | 0.040
NS | | 0.25 | U | NS
NS | U | 0.25 U | 0.072 | U | 1.2
0.25 | U | 0.25 | U | 0.54 | | | l l | 1-Aug-14 | 0.70 | | NS | | 0.88 | | 1.4 | | NS | | NS | | NS | NS | | 0.45 | | 0.61 | | NS | | | l l | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 0.38 | | NS | NS | | NS | | NS | | NS | | | l l | 12-Sept-14 (resample) | NS | 0.66 | | NS | | NS | U | NS | | | l l | 22-Oct-14 | NS
0.25 | ** | 0.38 L | U | NS
0.25 | | NS
0.25 | | 0.38 ^L | U | 0.38 L | U | 0.38 L U | 0.38 ^L | U | 0.38 L | U | 0.50 ^L | U | NS | | | l l | 20-Jan-15
30-Mar-15 (resample) | 0.25
NS | U | NS
NS | | 0.25
NS | U | 0.25
NS | U | NS
NS | | 0.25
NS | U | NS
NS | NS
NS | | 0.38
NS | | 0.51
0.28 | U | NS
NS | | | ' | 22-Apr-15 | NS | | 0.26 | U | NS | | NS | | 0.25 | U | NS | | 0.25 U | 0.36 | U | 0.25 | U | NS | | 0.29 | U | | ' | 21-Jul-15 | 0.3 | U | NS | | 1 | U | 6 | U | NS | | 0.16 | | NS | NS | | 0.15 ^{J, O} | | 0.30 ° | U | NS | | | 1 | 23-Sept-15 resample | NS | 0.34 | | NS | | NS | | NS | | | 1 | 29-Oct-15 | NS | | 0.3 | U | NS | | NS | | 0.19 ^J | | NS | | 0.5 U | 0.3 | U | 0.3 | U | NS | | 0.19 ^J | | | 1 | 4-Dec-15 resample | NS
0.25 | ** | 0.3 | U | NS
0.25 | ** | NS | | NS
NG | | NS
0.25 | ** | NS
NG | NS | | NS
0.25 | 7.7 | NS
0.25 | 1. | NS | | | | 27-Jan-16
20-Apr-16 | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | NS
0.25 U | NS
0.25 | U | 0.25
0.25 | U | 0.25
NS | U | NS
0.25 | U | | | 20-Api-16
20-Jul-16 | 1.3 | U | NS | | 1.3 ^{M W} | U | 1.3 | U | NS | | 1.3 | U | NS | NS | | 1.3 | U | 1.3 | U | NS | | | | 21-Oct-16 | NS | | 0.25 | U | NS | - | NS | 1 | 0.25 | U | NS | | 0.25 U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 31-Jan-17 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | NS | | 0.43 | | 0.42 | | NS | | | | 17-Apr-17
26-Jul-17 | NS
0.25 | U | 0.38
NS | U | NS
0.25 | U | NS
0.25 | U | 0.38
NS | U | NS
0.25 | U | 0.38 U
NS | 0.38
NS | U | 0.38
0.25 | U
U | NS
0.25 | U | 0.38
NS | U | | | 26-Jul-17
12-Oct-17 | 0.25
NS | | 0.25 | U | 0.25
NS | | NS | | 0.25 | U | 0.25
NS | U | 0.76 U | 0.63 | U | 0.23 | U | 0.25
NS | | 0.63 | U | | | 10-Jan-18 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | NS | | 0.25 | U | NS | | 0.25 | U | | 1 | 11-Apr-18
23-May-18 | NS
NS | | 0.25
NS | U | NS
NS | | NS
NS | | 2.5
NS | U | NS
NS | | 2.5 U
NS | 2.5
NS | U | 0.25
NS | U | NS
0.38 | U | 2.5
NS | U | | 1 | 23-May-18
27-Jul-18 | 1.3 | U | NS
NS | | 1.3 | U | 1.3 | U | NS
NS | | 1.3 | U | NS
NS | NS
NS | | 1.3 | U | 1.3 | U | NS
NS | 1 | | | 24-Oct-18 | NS | | 1.3 | U | NS | | NS | | 1.3 | U | NS | | 1.3 U | 1.3 | U | 1.3 | U | NS | | 1.3 | U | | | 16-Jan-19 | 0.25
NS | U | NS
0.25 | U | 0.25 | U | 0.25 | U | NS
0.25 | U | 0.25
NS | U | NS
0.31 U | NS
0.38 | U | 0.25 | U
U | 0.25
NS | U | NS
0.41 | | | | 12-Apr-19
29-Jul-19 | NS
0.38 | U | 0.25
NS | U | NS
0.38 | U | NS
0.26 | | 0.25
NS | | NS
0.31 | | 0.31 U
NS | 0.38
NS | U | 0.38
0.25 | U | NS
0.25 | U | 0.41
NS | 1 | | | 26-Sep-19 | NS | | NS | | NS | - | NS | | NS | | NS | | NS | NS | | NS | | < 0.38 | U | NS | | | | 29-Oct-19 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 U | 0.25 | U | 1.3 ^D | U | 1.3 ^D | U | 1.3 ^D | U | | | 21-Jan-20 | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | NS
0.25 U | NS
0.25 | U | 0.25
0.25 | U
U | 0.25
NS | U | NS
0.25 | U | | 1 | 22-Apr-20
23-Jul-20 | 0.25 | U | NS | | 0.25 ^M | U | 0.25 | U | 0.25
NS | | 0.5 | U | 0.25 U | 0.25
NS | U | 0.23 | U | 0.5 | U | 0.25
NS | | | 1 | 29-Oct-20 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | 1 | | | 1 | | | | | | | | | | 1 | | | 1 | | | | 1 | | | | | | • | | | | | | | | | _ | | | | | | | | | | | | | |---|--------------------------------|-------------|------|--------------------|------|-------------|------|-------------|------|-------------|------|-------------|------|-------------|------|-------------|-------|-------------------|--------|-------------------|------|-------------------|---------| | Volatile Organic Compounds via
TO-15 | Comple Date | MP-1 | 01 | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | 01 | MP-6 | Qual | MP-7 | Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | 10-13 | Sample Date | 0.07 | Qual | NC | Quai | NC | Quai | NC | Quai | 0.07 | Qual | NC | Quai | NIC | Quai | NC | Quai | 0.14 | Quai | 0.07 | | NIC | Quai | | | 8-Feb-08
27-Mar-08 | 0.07
NS | U | NS
0.072 | U | NS
NS | | NS
NS | | 0.07
NS | U | NS
0.072 | U | NS
NS | | NS
NS | | 0.14
NS | | 0.07
0.165 | U | NS
0.126 | | | | 27-Mar-08
25-Apr-08 | NS
NS | | 0.072
NS | U | 0.072 | U | NS
NS | | NS
NS | | 0.072
NS | U | 0.072 | U | NS
NS | | 0.072 | U | 0.163
NS | | 0.126 | | | | 29-May-08 | NS
NS | | NS | | NS | | 0.07 | U | NS | | NS | | NS | | 0.07 | U | 0.072 | U | 0.07 | U | NS | | | | 27-Jun-08 | 0.436 | | NS | | NS | | NS | | 0.072 | U | NS | | NS | | NS | | NS | | 0.072 | U | 0.072 | U | | | 31-Jul-08 | NS | | 0.072 | U | NS | | NS | | NS | | NS | | NS | | NS | | 0.072 | U | NS | | 0.072 | U | | | 28-Aug-08 | NS | | NS | _ | 0.106 | | NS | | NS | | NS | | 0.072 | U | NS | | 0.172 | U | 0.14 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 1.8 | U | NS | | NS | | NS | | 1.8 | U | NS | | 1.8 | U | 1.8 | U | | | 27-Oct-08 | 1.8 | U | NS | | NS | | NS | | 2.6 | | NS | | NS | | NS | | 3.2 | | NS | | 5.8 | | | | 25-Nov-08 | NS | | 1.8 | U | NS | | NS | | NS | | 1.8 | U | NS | | NS | | 1.8 | U | 1.8 | U | NS | | | | 18-Dec-08 | NS | | NS | | 1.8 | U | NS | | NS | | NS | | 1.8 | U | NS | | NS | | 1.8 | U | 1.8 | U | | | 21-Jan-09 | NS | | NS | | NS | | 1.8 | U | NS | | NS | | NS | | 1.8 | U | 1.8 | U | NS | | 1.8 | U | | | 25-Feb-09 | 5.8 | | NS | | NS | | NS | | 1.8 | U | NS | | NS | | NS | | 1.8 | U | 1.8 | U | NS | | | | 26-Mar-09 | NS | | 0.36 | U | NS | | NS | | NS | | 0.72 | U | NS | | NS | | NS | | 0.072 | U | 0.072 | U | | | 29-Apr-09 | NS | | NS | | 0.072 | U | NS | | NS | | NS | | 0.072 | U | NS | | 0.072 | U | NS | | 0.072 | U | | | 22-Jul-09 | 0.36 | U | NS | | 0.36 | U | 0.72 | U | NS | | 0.36 | U | NS | | NS | | 0.072 | U | 0.072 | U | NS | | | | 9-Oct-09 | NS | | 0.072 | U | NS | | NS | | 0.072 | U | NS | | 0.072 | U | 15 | U | 0.086 | | NS | | 0.083 | | | | 15-Jan-10 | 0.079 | | NS | | 0.072 | U | 0.072 | U | NS | | 0.072 | U | NS | | NS | 1 | 0.072 | U | 0.072 | U | NS | | | | 21-Apr-10 | NS
0.072 | | 0.072 | U | NS
0.072 | | NS
0.072 | | 0.36 | U | NS
0.544 | | 3.6 | U | 0.36 | U | 0.072 | U | NS | | 0.072 | U | | | 16-Jul-10 | 0.072 | U | NS | | 0.072 | U | 0.072 | U | NS
0.072 | | 0.544 | U | NS | | NS | | 0.072 | U | 0.072 | U | NS
0.072 | <u></u> | | | 15-Oct-10 | NS
0.72 | | 0.072 | U | NS | | NS
0.072 | | 0.072 | U | NS
0.206 | | 0.072 | U | 0.072 | U |
0.072 | U | NS
0.26 | ** | 0.072 | U | | | 26-Jan-11 | 0.72 | U | 0.072 | U | NS | ,,, | 0.072 | U | NS | | 0.396 | U | NS | | 0.36 | U | 0.36 | U | 0.36 | U | NS | | | | 28-Feb-11 | NS
NS | | NS | *** | 0.72 | U | NS
NC | | NS
0.072 | *** | NS | | NS
0.072 | U | NS
0.072 | * * * | NS
0.072 | 1, | NS | | NS
0.072 | | | | 27-Apr-11 | NS
0.24 | U | 0.072
NS | U | NS
0.24 | U | NS
0.072 | U | 0.072
NS | U | NS
0.36 | U | 0.072 | U | 0.072
NS | U | 0.072
0.072 | U | NS
0.36 | U | 0.072 | U | | | 26-Jul-11 | 0.24
NS | U | 1.8 | U | 0.24
NS | U | 0.072
NS | U | 1.8 | U | 0.36
NS | U | NS
1.8 | U | 1.8 | U | 1.8 | IJ | | U | NS
1.8 | U | | | 28-Oct-11
23-Jan-12 | 0.36 | U | NS | U | 0.36 | U | 0.36 | U | NS | U | 0.36 | U | NS | | NS | U | 0.36 | U | NS
0.36 | U | NS | | | | 23-Jan-12
13-Apr-12 | NS | U | 0.36 | U | NS | 0 | NS | 0 | 0.36 | IJ | NS | U | 0.36 | U | 0.36 | U | 0.36 | U | NS | 0 | 0.36 | U | | | 2-Jul-12 (resample) | NS | | NS | | NS | | NS
NS | | NS | 0 | NS | | NS | | NS | 0 | NS | | 1.8 | U | NS | | | | 23-Jun-12 | 0.36 | U | NS | | 0.36 | U | 0.36 | U | NS | | 0.36 | U | NS | | NS | | 0.36 | U | 0.36 | U | NS | | | | 1-Nov-12 | NS | Ü | 0.072 | U | NS | | NS | | 0.072 | U | NS | | 0.072 | U | 0.072 | U | 0.072 | U | NS | | 0.072 | U | | | 1-Feb-13 | 0.072 | U | NS | | 0.072 | U | 0.072 | U | NS | | 0.072 | U | NS | | NS | | 0.072 | U | 0.072 | U | NS | | | | 29-Apr-13 | NS | _ | 0.18 | U | NS | _ | NS | _ | 0.072 | U | NS | _ | 0.072 | U | 0.072 | U | 0.072 | U | NS | _ | 0.072 | U | | | 9-Jul-13 | 0.17 | | NS | | 0.072 | U | 0.072 | U | NS | | 0.072 | U | NS | | NS | | 0.072 | | 0.072 | U | NS | | | Methyl tert butyl ether (MTBE) | 18-Oct-13 | NS | | 0.072 | U | NS | | NS | | 0.072 | U | NS | | 0.072 | U | 0.072 | U | 0.072 | U | NS | | 0.072 | U | | | 9-Jan-14 | 0.072 | U | NS | | 0.072 | U | 0.072 | U | NS | | 0.072 | U | NS | | NS | | 0.072 | U | 0.072 | U | NS | | | | 24-Apr-14 | NS | | 0.072 | U | NS | | NS | | 0.072 | U | NS | | 0.077 | U | 0.072 | U | 0.072 | U | 0.072 | U | 0.11 | U | | | 1-Aug-14 | 0.072 | U | NS | | 0.11 | U | 0.12 | | NS | | NS | | NS | | NS | | 0.072 | U | 0.072 | U | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 0.072 | U | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 0.11 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.11 | U | NS | | NS | | 0.11 | U | 0.11 | U | 0.11 | U | 0.11 | U | 0.11 | U | 0.14 | U | NS | | | | 20-Jan-15 | 0.072 | U | NS | | 0.072 | U | 0.072 | U | NS | | 0.072 | U | NS | | NS | | 0.11 | U | 0.072 | U | NS | | | | 30-Mar-15 (resample) | NS | 0.081 | U | NS | | | | 22-Apr-15 | NS | | 0.074 ^V | U | NS | | NS | | 0.072 V | U | NS | | 0.072 | U | 0.10 | U | 0.072 | U | NS | | 0.083 | U | | | 21-Jul-15 | 0.2 | U | NS | | 0.7 | U | 4 | U | NS | | 0.2 | U | NS | | NS | | 0.200 ° | U | 0.200 ° | U | NS | | | | 23-Sept-15 resample | NS | 0.2 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.2 | U | NS | | NS
NC | | 0.2 | U | NS | | 0.3 | U | 0.2 | U | 0.2 | U | NS | | 0.096 J | | | | 4-Dec-15 resample
27-Jan-16 | NS
0.072 | U | 0.2
NS | U | NS
0.072 | U | NS
0.072 | U | NS
NS | | NS
0.072 | U | NS
NS | | NS
NS | | NS
0.072 | U | NS
0.072 | U | NS
NS | | | | 2/-Jan-16
20-Apr-16 | 0.072
NS | 0 | NS
0.072 | U | 0.072
NS | | 0.072
NS | U | NS
0.072 | U | 0.072
NS | U | NS
0.072 | U | NS
0.072 | U | 0.072 | U | 0.072
NS | U | NS
0.072 | U | | | 20-Apr-16
20-Jul-16 | 0.36 | U | 0.072
NS | U | 0.46 | | 0.36 | U | NS | | 0.36 | U | NS | | 0.072
NS | | 0.36 | U | 0.36 | U | 0.072
NS | | | | 21-Oct-16 | NS | | 0.072 | U | NS | | NS | | 0.072 | U | NS | | 0.072 | U | 0.072 | U | 0.072 | U | NS | ~ | 0.072 | U | | | 31-Jan-17 | 0.072 | U | NS | | 0.072 | U | 0.072 | U | NS | | 0.072 | U | NS | | NS | | 0.072 | U | 0.072 | U | NS | | | | 17-Apr-17 | NS | | 0.11 | U | NS | | NS | | 0.11 | U | NS | | 0.11 | U | 0.11 | U | 0.11 | U | NS | | 0.11 | U | | | 26-Jul-17 | 0.072 | U | NS | | 0.072 | U | 0.072 | U | NS
0.072 | | 0.072 | U | NS
0.22 | | NS | 1 | 0.072 | U | 0.072 | U | NS | | | | 12-Oct-17 | NS
0.072 | ,,, | 0.072 | U | NS
0.072 | ,,, | NS
0.072 | *** | 0.072 | U | NS
0.072 | *** | 0.22 | U | 0.18 | U | 0.2 | U | NS | | 0.18 | U | | | 10-Jan-18
11-Apr-18 | 0.072
NS | U | NS
0.072 | U | 0.072
NS | U | 0.072
NS | U | NS
0.72 | U | 0.072
NS | U | NS
0.72 | U | NS
0.72 | U | 0.072
0.072 | U
U | NS
NS | | 0.072
0.72 | U | | | 23-May-18 | NS | | NS | | NS | | NS
NS | | NS 1 | U | NS | | | | 27-Jul-18 | 0.36 | U | NS | | 0.36 | U | 0.36 | U | NS | | 0.36 | U | NS | | NS | | 0.36 | U | 0.36 | U | NS | | | | 24-Oct-18 | NS | | 0.36 | U | NS | 1 . | NS | | 0.36 | U | NS | | 0.36 | U | 0.36 | U | 0.36 | U | NS | | 0.36 | U | | | 16-Jan-19 | 0.072 | U | NS
0.072 | ** | 0.072 | U | 0.072 | U | NS
0.072 | ** | 0.072 | U | NS | | NS | | 0.072 | U | 0.072 | U | NS | | | | 12-Apr-19
29-Jul-19 | NS
0.11 | U | 0.072
NS | U | NS
0.11 | U | NS
0.072 | U | 0.072
NS | U | NS
0.072 | U | 0.09
NS | U | 0.11
NS | U | 0.11
0.072 | U
U | NS
1 | | 0.11
NS | U | | | 26-Sep-19 | NS | | NS
NS | | NS | | 0.072
NS | | NS
NS | | NS | | NS
NS | | NS
NS | | 0.072
NS | | < 0.11 | U | NS
NS | | | | 29-Oct-19 | NS | | 0.072 | U | NS | | NS | | 0.072 | U | NS | | 0.072 | U | 0.072 | U | 0.36 ^D | U | 0.36 ^D | U | 0.36 ^D | U | | | 21-Jan-20 | 0.07 | U | NS | | 0.07 | U | 0.07 | U | NS | | 0.07 | U | NS | | NS | | 0.07 | U | 0.07 | U | NS | | | | 22-Apr-20 | NS | | 0.072 | U | NS | | NS | | 0.072 | U | NS | | 0.072 | U | 0.072 | U | 0.072 | U | NS | | 0.072 | U | | | 23-Jul-20 | 0.072 | U | NS | | 0.072 | U | 0.072 | U | NS | | 0.14 | U | NS | | NS | | 0.14 | U | 0.14 | U | NS | | | | 29-Oct-20 | NS | | 0.072 | U | NS | | NS | | 0.072 | U | NS | | 0.072 | U | 0.072 | U | 0.072 | U | NS | | 0.072 | U | | | | ı | | | | | | ı | | | | I | | ı | | | 1 | | | | | | | |---------------------------------------|----------------------------------|------------|------|-------------------|------|------------|------|------------------|------|-------------------|------|------------|------|------------------|------|------------------------|------|------------------|--------|------------------|------|--------------------------|--------| | Volatile Organic Compounds v
TO-15 | | MP-1 | Qual | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Qual | MP-6 | Qual | MP-7 | Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | 10-13 | Sample Date
8-Feb-08 | 2.34 | Quai | NS | Quai | NS | Quai | NS | Quai | 1.74 | U | NS | Quai | NS | Quai | NS | Quai | 1.74 | U | 1.74 | U | NS | Quai | | | 27-Mar-08 | NS | | 1.74 | U | NS | | NS | | NS | | 2.87 | | NS | | NS | | NS | | 2.1 | | 1.74 | U | | | 25-Apr-08 | NS | | NS | | 1.74 | U | NS | | NS | | NS | | 1.74 | U | NS | | 1.74 | U | NS | | 1.74 | U | | | 29-May-08 | NS | | NS | | NS | | 1.74 | U | NS | | NS | | NS | | 1.74 | U | 2.91 | | 1.74 | U | NS | | | | 27-Jun-08 | 4.33 | U | NS | | NS | | NS | | 3.69 | | NS | | NS | | NS | | NS | | 2.78 | U | 2.78 | U | | | 31-Jul-08 | NS | | 1.74 | U | NS | | NS | | NS | | NS | | NS | | NS | | 1.74 | U | NS | | 1.74 | U | | | 28-Aug-08 | NS | | NS | | 1.74 | U | NS | | NS | | NS | | 1.74 | U | NS | | 1.74 | U | 1.74 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 1.7 | U | NS | | NS | | NS | | 1.7 | U | NS | | 1.7 | U | 1.7 | U | | | 27-Oct-08 | 1.7 | U | NS | | NS | | NS | | 1.7 | U | NS | | NS | | NS | | 1.7 | U | NS | | 1.7 | U | | | 25-Nov-08 | NS | | 1.7 | U | NS | | NS | | NS | | 1.7 | U | NS | | NS | | 1.7 | U | 1.7 | U | NS | | | | 18-Dec-08 | NS | | NS | | 1.7 | U | NS | | NS | | NS | | 1.7 | U | NS | | NS | | 1.7 | U | 1.7 | U | | | 21-Jan-09 | NS
1.7 | U | NS | | NS
NS | | 1.7 | U | NS
1.7 | U | NS | | NS
NG | | 1.7
NS | U | 1.7
1.7 | U
U | NS
1.7 | U | 1.7 | UI | | | 25-Feb-09
26-Mar-09 | NS | U | NS
16.1 | | NS
NS | | NS
NS | | NS | 0 | NS
17.4 | U | NS
NS | | NS | | NS | | 1.74 | U | NS
1.8 | | | | 29-Apr-09 | NS | | NS | | 1.74 | U | NS | | NS | | NS | | 1.74 | U | NS | | 1.74 | U | NS | O | 1.74 | U | | | 22-Jul-09 | 86.8 | U | NS | | 8.68 | U | 17.4 | U | NS | | 8.68 | U | NS | | NS | | 1.74 | U | 1.74 | U | NS | | | | 9-Oct-09 | NS | Ü | 1.74 | U | NS | | NS | | 1.74 | U | NS | | 1.74 | U | 362 | U | 1.74 | U | NS | | 1.74 | U | | | 15-Jan-10 | 1.74 | U | NS | | 1.74 | U | 1.74 | U | NS | | 1.74 | U | NS | | NS | | 1.74 | U | 1.74 | U | NS | | | | 21-Apr-10 | NS | | 1.74 | U | NS | | NS | | 0.868 | U | NS | | 8.68 | U | 8.68 | U | 1.74 | | NS | | 1.74 | | | | 16-Jul-10 | 24 | | NS | | 21.5 | | 19.5 | | NS | 1 | 26.2 | U | NS | | NS | | 27,1 | | 26.5 | | NS | | | | 15-Oct-10 | NS | | 3.47 | U | NS | | NS | | 3.47 | U | NS | | 3.47 | U | 3.47 | U | 3.47 | U | NS | | 3.47 | U | | | 26-Jan-11 | 34.7 | U | 3.47 | U | NS | | 3.47 | U | NS | | 0.404 | U | NS | | 17.4 | U | 17.4 | U | 17.4 | U | NS | | | | 28-Feb-11 | NS | | NS | | 34.7 | U | NS | | | 27-Apr-11 | NS | | 3.47 | U | NS | | NS | | 3.47 | U | NS | | 3.47 | U | 3.47 | U | 3.47 | U | NS | | 3.47 | U | | | 26-Jul-11 | 11.6 | U | NS | | 11.6 | U | 3.47 | U | NS | | 17.4 | U | NS | | NS | | 5.7 | | 17.4 | U | NS | | | | 28-Oct-11 | NS | | 17 | U | NS | | NS | | 17 | U | NS | | 17 | U | 17 | U | 140 | | NS | | 17 | U | | | 23-Jan-12 | 3.5 | U | NS | | 3.5 | U | 3.5 | U | NS | | 3.5 | U | NS | U | NS | | 3.5
3.9 | U | 3.5 | U | NS | U | | | 13-Apr-12 | NS
NS | | 4.6
NS | | NS
NS | | NS
NS | | 7.3
NS | | NS
NS | | 3.5
NS | U | 4.6
NS | | NS | | NS
17 | U | 3.5
NS | U | | | 2-Jul-12 (resample)
23-Jun-12 | 3.5 | U | NS
NS | | 3.5 | U | 3.5 | U | NS
NS | | 3.5 | U | NS
NS | | NS
NS | | 3.5 | U | 3.5 | U | NS | | | | 1-Nov-12 | NS | U |
0.74 | | NS | | NS
NS | | 1.1 | | NS | 0 | 0.69 | U | 1.1 | | 0.69 | U | NS | | 6.2 | | | | 1-Feb-13 | 2 | | NS | | 0.93 | | 1.6 | | NS | | 1.1 | | NS | | NS | | 0.9 | | 2.1 | | NS | | | | 29-Apr-13 | NS | | 1.7 | U | NS | | NS | | 1.4 | | NS | | 0.93 | | 1.8 | | 1.1 | | NS | | 1.4 | | | | 9-Jul-13 | 1.8 | | NS | | 25 | | 1.2 | | NS | | 1.1 | | NS | | NS | | 31 | | 3.6 | | NS | | | Methylene chloride | 18-Oct-13 | NS | | 0.69 | U | NS | | NS | | 0.69 | U | NS | | 0.69 | U | 0.77 | | 0.69 | U | NS | | 0.74 | | | | 9-Jan-14 | 0.85 | | NS | | 0.69 | U | 0.69 | U | NS | | 0.69 | U | NS | | NS | | 0.69 | U | 1.3 | | NS | | | | 24-Apr-14 | NS | | 0.90 | | NS | | NS | | 6.7 | | NS | | 2.8 | | 1.5 | | 0.69 | U | 0.69 | U | 1.0 | U | | | 1-Aug-14 | 1.0 | | NS | | 1.7 | | 1.7 | | NS | | NS | | NS | | NS | | 1.1 | | 1.1 | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 2.9 | | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS
NS | | NS
1.7 | | NS
NS | | NS
NS | | NS
1.0 | U | NS
1.7 | | NS
1.4 | | 1.2
1.0 | U | NS
2.0 | | NS
3.0 | U | NS
NS | | | | 22-Oct-14
20-Jan-15 | 33 | | NS | | 27 | | 25 | | NS | 0 | 31 | | NS | | NS | | 32 | | 0.69 | U | NS | | | | 30-Mar-15 (resample) | NS | | NS | | NS | | NS NS | | NS | | NS | | NS | | NS | | NS | | 40 | | NS | | | | 22-Apr-15 | NS | | 0.85 ^V | | NS | | NS | | 1.00 ^V | | NS | | 0.73 | | 2.5/2.3 | | 1.0 | | NS | | 1.3 | | | | 21-Jul-15 | 2.1 | | NS | | 3.5 | | 3.1 ^J | | NS | | 1.5 | | NS | | NS | | 1.7 ° | | 2.4 ° | | NS | | | | 23-Sept-15 resample | NS | 2.4 | | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 1.6 | | NS | | NS | | 1.4 | | NS | | 3.6 | | 2.7 | | 2 | | NS | | 4.7 | | | | 4-Dec-15 resample | NS | | 1.6 | | NS | | 27-Jan-16 | 2.3 | | NS
0.60 | *** | 0.69 | U | 0.69 | U | NS
0.60 | U | 0.69 | U | NS | | NS
0.60 | ** | 0.69 | U | 0.69 | U | NS
0.86 | | | | 20-Apr-16
20-Jul-16 | NS
3.5 | U | 0.69
NS | U | NS
3.5 | U | NS
3.5 | U | 0.69
NS | | NS
3.5 | U | 1.7
NS | | 0.69
NS | U | 4.4
3.5 | U | NS
8.6 | | 0.86
NS | | | | 20-Jul-16
21-Oct-16 | NS | U | 0.69 | U | S.S
NS | | NS | | 4.6 | | NS
NS | | 0.69 | U | 2.3 | | 3.5
1.1 | | NS | | 1.7 | | | | 31-Jan-17 | 0.69 | U | NS | | 0.8 | | 0.69 | U | NS | | 0.69 | U | NS | | NS | | 0.69 | U | 0.69 | U | NS | | | | 17-Apr-17 | NS | | 1 | U | NS | | NS | | 1 | U | NS | | 1 | U | 1 | U | 1 | U | NS | | 1 | U | | | 26-Jul-17 | 0.69 | U | NS
0.70 | | 0.69 | U | 0.69 | U | NS
0.02 | | 0.69 | U | NS | | NS
2.0 | | 0.69 | U | 0.69 | U | NS | | | | 12-Oct-17 | NS
0.78 | | 0.79
NS | | NS
0.69 | U | NS
0.69 | U | 0.92
NS | | NS
1.1 | | 2.1
NS | U | 2.8
NS | | 2
1.1 | U | NS
NS | | 1.7
0.69 | U
U | | | 10-Jan-18
11-Apr-18 | 0.78
NS | | NS
0.69 | U | 0.69
NS | | 0.69
NS | U | 6.9 ^D | U | NS | | 6.9 ^D | U | NS
8.8 ^D | | 1.1 | | NS
NS | | 0.69
6.9 ^D | U | | | 23-May-18 | NS
NS | | 0.69
NS | U | NS
NS | | NS
NS | | NS | | NS
NS | | NS | | NS | | NS | | NS
1 | U | NS | | | | 27-Jul-18 | 3.5 | U | NS | | 3.5 | U | 3.5 | U | NS | 1 | 3.5 | U | NS | | NS | | 3.5 | U | 3.5 | U | NS | | | | 24-Oct-18 | NS | | 3.5 | U | NS | | NS | | 3.5 | U | NS | | 3.5 | U | 3.5 | U | 3.5 | U | NS | | 3.5 | U | | | 16-Jan-19 | 0.69 | U | NS | ** | 0.69 | U | 0.69 | U | NS
0.60 | | 1.6 | | NS
0.87 | | NS | | 1.1 | | 0.69 | U | NS | | | | 12-Apr-19
29-Jul-19 | NS
1 | U | 0.69
NS | U | NS
1 | U | NS
0.69 | U | 0.69
NS | U | NS
0.69 | U | 0.87
NS | U | 1.1
NS | | 2.6
0.69 | U | NS
1.3 | | 1
NS | U | | | 29-Jul-19
26-Sep-19 | NS | J | NS
NS | | NS | | NS | | NS | | NS | | NS
NS | | NS
NS | | NS | | <1.0 | U | NS
NS | | | | 29-Oct-19 | NS | | 0.69 | U | NS | | NS | | 0.69 | U | NS | | 0.69 | U | 1.8 | | 3.5 ^D | U | 3.5 ^D | U | 3.5 ^D | U | | | 21-Jan-20 | 0.69 | U | NS | | 0.69 | U | 0.69 | U | NS | 1 | 0.69 | U | NS | | NS | | 0.69 | U | 0.69 | U | NS | | | | 22-Apr-20 | NS | | 3.9 | | NS | | NS | | 2.1 | | NS | | 1.7 | | 3.8 | | 2.7 | | NS | | 4.4 | | | | 23-Jul-20
29-Oct-20 | 5
NS | | NS
0.9 | | 0.69
NS | U | 0.69
NS | U | NS
1.4 | | 2.2
NS | | NS
0.69 | U | NS
0.69 | U | 1.4
0.69 | U
U | 1.4
NS | | NS
0.69 | U | | | 29-001-20 | CNI | | 0.9 | | CNI | | IND. | | 1.4 | 1 | CNI | | 0.09 | U | 0.09 | | 0.09 | U | IND | | 0.09 | U | | Valuella Omit Control of | | 340.4 | | 340.0 | | 140.0 | | 340.4 | | 34D 5 | | 14D C | | MD 7 | MD 0 | | IMP 4 | | DAN C | 1 | raen o | | |---|------------------------------------|-------------|------|-------------|--------|----------------|------|-------------------|--------|-------------|------|-------------------|------|---------------|-----------------|--------|---------------------------|--------|--------------------------|--------|-------------------------|------| | Volatile Organic Compounds via
TO-15 | Sample Date | MP-1 | Qual | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Qual | MP-6 | Qual | MP-7 Qua | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | | 8-Feb-08 | 2.05 | U | NS | , | NS | | NS | 2,5,11 | 2.05 | U | NS | ¥ | NS | NS | ¥ 3 | 2.05 | U | 8.7 | | NS | | | | 27-Mar-08 | NS | | 2.05 | U | NS | | NS | | NS | | NS | | NS | NS | | NS | | 15.2 | | 2.05 | U | | | 25-Apr-08 | NS | | NS | | 2.05 | U | NS | | NS | | NS | | 2.05 U | NS | | 2.05 | U | NS | | 2.05 | U | | | 29-May-08 | NS
3.19 | U | NS
NS | | NS
NS | | 2.05
NS | U | NS
2.05 | U | NS
NS | | NS
NS | 2.05
NS | U | 2.05
NS | U | 2.05
2.05 | U
U | NS
2.05 | U | | | 27-Jun-08
31-Jul-08 | NS
NS | | 2.05 | U | NS
NS | | NS
NS | | 2.03
NS | | NS
NS | | NS
NS | NS
NS | | 2.05 | U | NS | U | 2.05 | U | | | 28-Aug-08 | NS | | NS | | 2.05 | U | NS | | NS | | NS | | 2.05 U | NS | | 2.05 | U | 2.05 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 2 | U | NS | | NS | | NS | 2 | U | NS | | 2 | U | 2 | U | | | 27-Oct-08 | 2 | U | NS | | NS | | NS | | 2 | U | NS | | NS | NS | | 2 | U | NS | | 2 | U | | | 25-Nov-08
18-Dec-08 | NS
NS | | 3.5
NS | | NS
2 | U | NS
NS | | NS
NS | | 2
NS | U | NS
2 U | NS
NS | | NS | U | 2 2 | U
U | NS
2 | U | | | 21-Jan-09 | NS | | NS | | NS | | 2 | U | NS | | NS | | NS C | 2 | U | 2 | U | NS | 0 | 2 | U | | | 25-Feb-09 | 2 | U | NS | | NS | | NS | | 2 | U | NS | | NS | NS | | 2 | U | 2 | U | NS | | | | 26-Mar-09 | NS | | 10.2 | U | NS | | NS | | NS | | 20.5 | U | NS | NS | | NS | | 2.05 | U | 2.05 | U | | | 29-Apr-09 | NS | | NS | | 2.05 | U | NS | | NS | | NS | | 2.05 U | NS | | 2.05 | U | NS | | 2.05 | U | | | 22-Jul-09
9-Oct-09 | 10.2
NS | U | NS
2.05 | U | 10.2
NS | U | 20.5
NS | U | NS
2.05 | U | 10.2
NS | U | NS
2.05 U | NS
427 | U | 2.05
2.05 | U
U | 2.05
NS | U | NS
2.05 | U | | | 15-Jan-10 | 2.05 | U | NS | | 2.05 | U | 2.05 | U | NS | | 2.05 | U | NS C | NS | | 2.05 | U | 2.05 | U | NS | | | | 21-Apr-10 | NS | | 2.05 | U | NS | | NS | | 10.2 | U | NS | | 10.2 U | 10.2 | U | 2.05 | U | NS | | 2.05 | U | | | 16-Jul-10 | 2.05 | U | NS | | 2.05 | U | 2.05 | U | NS | | 15.4 | U | NS | NS | | 2.05 | U | 2.05 | U | NS | | | | 15-Oct-10 | NS
20.5 | *** | 2.05 | U
U | NS | | NS | * * * | 2.05 | U | NS | *** | 2.05 U | 2.05 | U
U | 2.05 | U
U | NS
10.2 | ** | 2.05 | U | | | 26-Jan-11
28-Feb-11 | 20.5
NS | U | 2.05
NS | | NS
20.5 | U | 2.05
NS | U | NS
NS | | 10.2
NS | U | NS
NS | 10.2
NS | 0 | 10.2
NS | U | 10.2
NS | U | NS
NS | | | | 27-Apr-11 | NS | | 2.05 | U | NS | | NS | | 2.05 | U | NS | | 2.05 U | 2.05 | U | 2.05 | U | NS | | 3.35 | | | | 26-Jul-11 | 6.84 | U | NS | | 0.684 | U | 2.05 | U | NS | | 10.2 | U | NS | NS | | 2.05 | U | 10.2 | U | NS | | | | 28-Oct-11 | NS | | 2 | U | NS | | NS | | 2 | U | NS | | 2 U | 2 | U | 2 | U | NS | | 2 | U | | | 23-Jan-12 | 0.41
NS | U | NS
0.41 | U | 0.44
NS | | 0.41
NS | U | NS
0.41 | U | 0.41 | U | NS
0.41 U | NS
0.41 | U | 0.41
0.41 | U
U | 1.8 | | NS
0.41 | U | | | 13-Apr-12
2-Jul-12 (resample) | NS
NS | | 0.41
NS | U | NS | | NS
NS | | NS | | NS
NS | | NS U | NS | 0 | NS | | NS
2 | U | NS | | | | 23-Jun-12 | 0.41 | U | NS | | 0.41 | U | 0.41 | U | NS | | 0.41 | U | NS | NS | | 0.41 | U | 0.46 | | NS | | | | 1-Nov-12 | NS | | 0.89 | | NS | | NS | | 0.65 | | NS | | 0.9 | 0.84 | | 1.1 | | NS | | 1.1 | | | | 1-Feb-13 | 0.12 | | NS | ** | 0.082 | U | 0.082 | U | NS | | 0.095 | | NS
0.21 | NS
0.002 | | 0.082 | U | 0.29 | | NS
0.70 | | | | 29-Apr-13
9-Jul-13 | NS
0.66 | | 0.2
NS | U | NS
0.55 | | NS
0.47 | | 0.21
NS | | NS
0.51 | | 0.21
NS | 0.082
NS | U | 0.86
0.92 | | NS
0.39 | | 0.78
NS | | | 4-Methyl-2-pentanone | 18-Oct-13 | NS | | 1.8 | | NS | | NS | | 2.7 | | NS | | 2.2 | 2.3 | | 3.0 | | NS | | 3.8 | | | | 9-Jan-14 | 0.18 | | NS | | 0.15 | | 0.21 | | NS | | 0.082 | U | NS | NS | | 0.21 | | 0.77 | | NS | | | | 24-Apr-14 | NS | | 0.087 | | NS | | NS | | 0.082 | U | NS | | 0.13 | 0.082 | U | 0.38 | | 0.32 | | 0.66 | | | | 1-Aug-14 | 0.64
NS | | NS
NS | | 1.0/0.74
NS | | 1.1/0.86
NS | | NS
NS | | NS
2.4 | | NS
NS | NS
NS | | 1.30
NS | | 2.4/2.0
NS | | NS | | | | 27-Aug-14
12-Sept-14 (resample) | NS
NS | | NS
NS | | NS
NS | | NS
NS | | NS
NS | | NS | | NS
NS | 0.44 | | NS
NS | | NS
NS | U | NS
NS | | | | 22-Oct-14 | NS | | 0.13 | | NS | | NS | | 0.12 | U | 0.12 | U | 0.26 | 0.12 | U | 0.78 | | 0.73 | | NS | | | | 20-Jan-15 | 0.087 | | NS | | 0.085 | | 0.12 | | NS | | 0.088 | | NS | NS | | 0.35 | | 5.8 | | NS | | | | 30-Mar-15 (resample) | NS | | NS | | NS | | NS | | NS | | NS | | NS
0.05 | NS | | NS
0.07 | | 0.77 | | NS | | | | 22-Apr-15
21-Jul-15 | NS
0.2 | U | 0.57
NS | | NS
0.8 | U | NS
4
 U | 0.34
NS | | NS
0.2 | U | 0.85
NS | 0.39/0.40
NS | | 0.87
1.4 ° | | NS
2.7 ° | | 0.88
NS | | | | 23-Sept-15 resample | NS | 0.2 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.2 | U | NS | | NS | | 0.2 | U | NS | | 0.3 U | 0.2 | U | 0.97 | | NS | | 0.42 | | | | 4-Dec-15 resample | NS | | 0.2 | U | NS | | NS | | NS | | NS | | NS | NS | | NS | | NS | | NS | | | | 27-Jan-16
20-Apr-16 | 0.082
NS | U | NS
0.082 | U | 0.082
NS | U | 0.082
NS | U | NS
0.084 | | 0.082
NS | U | NS
0.21 | NS
0.15 | | 0.61
0.7 | | 0.88
NS | | NS
0.74 | | | | 20-Jul-16 | 0.41 | U | NS | | 1.2 | | 0.59 | | NS | | 0.82 | | NS | NS | | 2.4 | | 1.7 | | NS | | | | 21-Oct-16 | NS | | 0.49 | | NS | | NS | | 0.56 | | NS | | 0.64 | 0.76 | | 2.5 | | NS | | 1.2 | | | | 31-Jan-17
17-Apr-17 | 0.1
NS | | NS
0.12 | U | 0.085
NS | | 0.082
NS | U | NS
0.17 | | 0.082
NS | U | NS
0.22 | NS
0.12 | U | 0.32
0.41 | | 0.83
NS | | NS
0.71 | | | | 26-Jul-17 | 0.64 | | NS | | 0.86 | | 0.76 | | NS | | 1.5 | | NS | NS | | 1.1 | | 1.4 | | NS | | | | 12-Oct-17 | NS
0.084 | | 0.15 | | NS | | NS
0.082 | | 0.082 | U | NS
0.15 | | 0.25 U | 0.32 | | 0.48 | | NS | | 0.39 | | | | 10-Jan-18
11-Apr-18 | 0.084
NS | | NS
0.082 | U | 0.082
NS | U | 0.082
NS | U | NS
0.82 | U | 0.15
NS | | NS
0.82 U | NS
0.82 | U | 0.28
0.19 ^M | | NS
NS | | 0.55
0.82 | U | | | 23-May-18 | NS | NS | | NS | | 0.12 | U | NS | | | | 27-Jul-18 | 0.41 | U | NS
0.41 | TT | 0.41 | U | 0.41 | U | NS
0.41 | 11 | 0.41
NS | U | NS
0.41 | NS
0.41 | 17 | 1.4 | 11 | 0.87 | | NS
0.41 | 11 | | | 24-Oct-18
16-Jan-19 | NS
0.082 | U | 0.41
NS | U | NS
0.082 | U | NS
0.082 | U | 0.41
NS | U | NS
0.082 | U | 0.41 U
NS | 0.41
NS | U | 0.41
0.082 | U | NS
0.082 | U | 0.41
NS | U | | | 12-Apr-19 | NS | | 0.082 | U | NS | | NS | | 0.31 | | NS | | 0.1 U | 0.12 | U | 0.12 | U | NS | | 0.12 | U | | | 29-Jul-19 | 0.4 | | NS
NC | | 0.12 | U | 0.74 ^V | | NS
NC | | 0.71 ^V | | NS
NC | NS
NE | | 0.082 ^V | U | 1.8 ^V | | NS | | | | 26-Sep-19
29-Oct-19 | NS
NS | | NS
0.082 | U | NS
NS | | NS
NS | | NS
0.082 | U | NS
NS | | NS
0.082 U | NS
0.082 | U | NS
0.41 ^D | U | 1.2
0.41 ^D | U | NS
0.41 ^D | U | | | 21-Jan-20 | 0.08 | U | NS | | 0.08 | U | 0.08 | U | NS | | 0.08 | U | NS | NS | | 0.08 | U | 0.08 | U | NS | | | | 22-Apr-20 | NS
0.082 | 11 | 0.082
NS | U | NS
0.082 | 11 | NS
0.082 | T T | 0.082 | U | NS
0.16 | 17 | 0.082 U | 0.082 | U | 0.082 | U
U | NS
0.16 | U | 0.082 | U | | | 23-Jul-20
29-Oct-20 | 0.082
NS | U | NS
0.082 | U | 0.082
NS | U | 0.082
NS | U | NS
0.082 | U | 0.16
NS | U | NS
0.082 U | NS
0.082 | U | 0.16
0.082 | U | 0.16
NS | 0 | NS
0.082 | U | | <u> </u> | | | | İ | | | | | 1 | | | | | | | | | | | | | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|-----------------------------------|--------------------|------|-------------|------|--------------------|------|-------------------|------|-------------|------|----------------|--------|-------------|-------|------------|------|-------------------|------|-------------------|------|------------------|------| | TO-15 | Sample Date | | Qual | 8-Feb-08 | 0.09 | U | NS | | NS | | NS | | 0.09 | U | NS | | NS | | NS | | 0.3 | | 3.15 | | NS | | | | 27-Mar-08 | NS | | 0.1 | | NS
0.244 | | NS | | NS | | 0.177 | | NS | | NS | | NS
0.550 | | 0.206 | | 0.404 | | | | 25-Apr-08
29-May-08 | NS
NS | | NS
NS | | 0.244
NS | | NS
0.17 | | NS
NS | | NS
NS | | 1.07
NS | | NS
0.3 | | 0.559
0.36 | | NS
0.27 | | 0.351
NS | | | | 27-Jun-08 | 0.732 | | NS | | NS | | NS | | 0.354 | | NS | | NS | | NS | | NS | | 0.598 | | 0.59 | | | | 31-Jul-08 | NS | | 0.276 | | NS | | NS | | NS | | NS | | NS | | NS | | 0.255 | | NS | | 0.17 | | | | 28-Aug-08 | NS | | NS | | 1.22 | | NS | | NS | | NS | | 0.754 | | NS | | 1.02 | | 1.01 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 2.1 | U | NS | | NS | | NS | | 2.1 | U | NS | | 2.1 | U | 2.1 | U | | | 27-Oct-08 | 2.1 | U | NS | | NS | | NS | | 2.1 | U | NS | | NS | | NS | | 2.1 | U | NS | | 2.1 | U | | | 25-Nov-08 | NS | | 2.1 | U | NS | | NS | | NS | | 2.1 | U | NS | | NS | | 2.1 | U | 2.1 | U | NS | | | | 18-Dec-08 | NS | | NS | | 2.1 | U | NS | | NS | | NS | | 2.1 | U | NS | | NS | | 2.1 | U | 2.1 | U | | | 21-Jan-09 | NS | | NS | | NS | | 2.1 | U | NS | | NS | | NS | | 2.1 | U | 2.1 | U | NS | | 2.1 | U | | | 25-Feb-09 | 2.1 | U | NS | | NS | | NS | | 2.1 | U | NS | | NS | | NS | | 2.1 | U | 2.1 | U | NS | | | | 26-Mar-09 | NS | | 0.851 | U | NS | | NS | | NS | | 1.7 | U | NS | | NS | | NS | | 0.292 | | 0.361 | | | | 29-Apr-09 | NS | U | NS | | 0.174 | U | NS
0.851 | U | NS | | NS
0.426 | U | 0.085 | U | NS | | 0.098 | | NS
0.149 | | 0.243 | | | | 22-Jul-09
9-Oct-09 | 0.426
NS | U | NS
0.085 | U | 0.426
NS | U | 0.851
NS | U | NS
0.098 | | 0.426
NS | U | NS
0.085 | U | NS
17.8 | U | 0.6
0.153 | | 0.149
NS | | NS
0.204 | | | | 15-Jan-10 | 0.106 | | NS | | 0.119 | | 0.089 | | NS | | 0.098 | | NS | | NS | | 0.128 | | 0.221 | | 0.204
NS | | | | 21-Apr-10 | NS | | 0.085 | U | NS | | NS | | 0.426 | U | NS | | 0.426 | U | 0.426 | U | 0.481 | | NS | | 0.579 | | | | 16-Jul-10 | 0.57 | | NS | _ | 0.911 | | 0.66 | | NS | _ | 0.643 | U | NS | | NS | _ | 0.34 | | 0.864 | | NS | | | | 15-Oct-10 | NS | | 0.698 | | NS | | NS | | 1.12 | | NS | | 0.779 | | 0.919 | | 0.877 | | NS | | 1.52 | | | | 26-Jan-11 | 0.851 | U | 0.162 | | NS | | 0.179 | | NS | | 0.426 | U | NS | | 0.426 | U | 0.426 | | 0.617 | | NS | | | | 28-Feb-11 | NS | | NS | | 0.851 | U | NS | | | 27-Apr-11 | NS | | 0.311 | | NS | | NS | | 0.302 | | NS | | 0.366 | | 0.4 | | 0.753 | | NS | | 0.749 | | | | 26-Jul-11 | 0.724 | | NS | | 0.779 | | 0.868 | | NS | | 0.788 | U | NS | | NS | | 1.23 | | 0.681 | | NS | | | | 28-Oct-11 | NS | | 2.1 | U | NS | | NS | | 2.1 | U | NS | | 2.1 | U | 2.1 | U | 2.1 | U | NS | | 2.1 | U | | | 23-Jan-12 | 0.84 | | NS | | 0.43 | U | 0.43 | U | NS | | 0.43 | U | NS | | NS | | 0.46 | | 16 | | NS | | | | 13-Apr-12 | NS | | 0.43 | U | NS | | NS | | 0.43 | U | NS | | 0.43 | U | 0.43 | U | 0.43 | U | NS | ** | 0.43 | U | | | 2-Jul-12 (resample) | NS | | NS
NS | | NS
1.4 | | NS
1.0 | | NS | | NS
1.0 | | NS | | NS
NS | | NS
2.4 | | 2.1
2.6 | U | NS | | | | 23-Jun-12
1-Nov-12 | 1.7
NS | | 0.14 | | NS | | 1.9
NS | | NS
0.15 | | 1.9
NS | | NS
0.46 | | 0.17 | | 0.3 | | NS | | NS
0.34 | | | | 1-Feb-13 | 0.085 | U | NS | | 0.085 | | 0.085 | U | NS | | 0.085 | U | NS | | NS | | 0.22 | | 0.26 | | NS | | | | 29-Apr-13 | NS | | 0.22 | | NS | | NS | | 0.27 | | NS | | 0.3 | | 0.36 | | 0.53 | | NS | | 0.53 | | | | 9-Jul-13 | 0.43 | | NS | | 0.60 | | 0.39 | | NS | | 0.43 | | NS | | NS | | 0.12 | | 0.48 | | NS | | | Styrene | 18-Oct-13 | NS | | 0.25 | | NS | | NS | | 0.26 | | NS | | 0.35 | | 0.35 | | 0.50 | | NS | | 0.57 | | | | 9-Jan-14 | 0.10 | | NS | | 0.10 | | 0.12 | | NS | | 0.14 | | NS | | NS | | 0.44 | | 0.53 | | NS | | | | 24-Apr-14 | NS | | 0.085 | | NS | | NS | | 0.085 | U | NS | | 0.085 | U | 0.085 | U | 0.21 | | 0.21 | | 0.28 | | | | 1-Aug-14 | 0.32 | | NS | | 0.64 | | 2.8/3.8 | | NS | | NS | | NS | | NS | | 0.45 | | 0.51 | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 2.7/2.9 | | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 0.81 | | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.13 | U | NS | | NS
0.005 | ** | 0.13 | U | 0.13 | U
U | 0.18 | | 0.13 | U | 1.1 | | 0.98 | ** | NS | | | | 20-Jan-15 | 0.085 | U | NS
NS | | 0.085
NS | U | 0.085 | U | NS
NS | | 0.085
NS | U | NS
NS | | NS
NS | | 0.67 | | 0.085
1.4 | U | NS
NS | | | | 30-Mar-15 (resample)
22-Apr-15 | NS
NS | | 0.098 | | NS
NS | | NS
NS | | 0.085 | U | NS
NS | | 0.099 | | 0.12 | U | NS
1.6 | | NS | | 0.80 | | | | 21-Jul-15 | 0.160 ^J | | 0.098
NS | | 0.460 ^J | | 4 | U | NS | 0 | 0.23 | | NS | | NS | | 1.3 ° | | 2.9 0 | | NS | | | | 23-Sept-15 resample | NS | 0.13 J | | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.2 | U | NS | | NS | | 0.21 J | | NS | | 0.4 | U | 0.2 | U | 0.71 | | NS | | 0.8 | | | | 4-Dec-15 resample | NS | | 0.2 | U | NS | | | 27-Jan-16 | 0.085 | U | NS | | 0.085 | U | 0.085 | U | NS | | 0.085 | U | NS | | NS | | 1.3 | | 3.7 | | NS | | | | 20-Apr-16 | NS | | 0.085 | U | NS | | NS | | 0.09 | | NS | | 0.13 | | 0.085 | U | 1.5 | | NS | | 0.52 | | | | 20-Jul-16 | 0.79 ^L | L | NS | | 0.88 ^L | | 0.97 ^L | | NS | | 1 ^L | | NS | | NS | | 3.9 ^L | | 5.9 ^L | | NS | | | | 21-Oct-16 | NS
0.085 | U | 0.12
NS | | NS
0.085 | U | NS
0.085 | U | 0.18
NS | | NS
0.085 | U | 0.17
NS | | 0.22
NS | | 3.2
0.97 | | NS
2.8 | | 0.63
NS | | | | 31-Jan-17
17-Apr-17 | 0.083
NS | 0 | 0.13 | U | 0.083
NS | 0 | 0.083
NS | 0 | 0.13 | | 0.083
NS | U | 0.15 | | 0.41 | | 0.68 | | NS
NS | | 0.61 | | | | 26-Jul-17 | 0.18 | | NS | _ | 0.22 | | 0.21 | | NS | | 0.32 | | NS | | NS | | 0.53 | | 2.3 | | NS | | | | 12-Oct-17 | NS | | 0.14 | | NS | | NS | | 0.17 | | NS | | 0.26 | U | 0.4 | | 0.43 | | NS | | 0.79 | | | | 10-Jan-18 | 0.085 | U | NS
0.085 | ** | 0.085 | U | 0.085 | U | NS
0.85 | *** | 0.085 | U | NS
0.85 | , , l | NS
0.85 | * * | 0.18 | * 7 | NS
NE | | 0.82 | ** | | | 11-Apr-18
23-May-18 | NS
NS | | 0.085
NS | U | NS
NS | | NS
NS | | 0.85
NS | U | NS
NS | | 0.85
NS | U | 0.85
NS | U | 0.085
NS | U | NS
0.42 | | 0.85
NS | U | | | 27-Jul-18 | 0.43 | U | NS | | 0.43 | U | 0.43 | U | NS | | 0.43 | U | NS | | NS | | 0.68 | | 0.43 | U | NS | | | | 24-Oct-18 | NS | | 0.43 | U | NS | | NS | | 0.43 | U | NS
| | 0.43 | U | 0.43 | U | 0.43 | U | NS | | 0.43 | U | | | 16-Jan-19 | 0.085 | U | NS | | 0.085 | U | 0.085 | U | NS
0.005 | ,. | 0.085 | U | NS | , | NS | | 0.25 | | 0.29 | | NS | | | | 12-Apr-19
29-Jul-19 | NS
0.61 | | 0.11
NS | | NS
0.78 | | NS
1.1 | | 0.085
NS | U | NS
1.3 | | 0.11
NS | U | 0.16
NS | | 0.42
0.48 | | NS
2.8 | | 0.88
NS | | | | 29-Jul-19
26-Sep-19 | NS | | NS
NS | | 0.78
NS | | NS | | NS
NS | | NS | | NS
NS | | NS
NS | | NS | | 0.43 | | NS
NS | | | | 29-Oct-19 | NS | | 0.085 | U | NS | | NS | | 0.19 | | NS | | 0.085 | U | 0.085 | U | 0.43 ^D | U | 0.43 ^D | U | 3.6 ^D | U | | | 21-Jan-20 | 0.09 | U | NS | | 0.16 | | 0.22 | | NS | | 0.12 | | NS | | NS | | 0.42 | | 1.20 | | NS | _ | | | 22-Apr-20 | NS | | 0.085 | U | NS | | NS
0.005 | | 0.085 | U | NS | | 0.085 | U | 0.085 | U | 0.12 | | NS | | 0.28 | | | | 23-Jul-20
29 Oct 20 | 0.25 | | NS
0.12 | | 0.085 | U | 0.085 | U | NS
0.13 | | 0.34 | | NS
0.11 | | NS
0.12 | | 0.54 | | 1.9
NS | | NS
0.4 | | | | 29-Oct-20 | NS | | 0.12 | | NS | | NS | | 0.13 | | NS | | 0.11 | | 0.13 | | 0.26 | | NS | | 0.4 | | | Volatile Organic Compounds via | | | | | | | | 140 1 | | 142 - | | 340 (| | 375 - | | 340.0 | | TP CP. C | | man a | T = T | 13.575.2 | | |--------------------------------|-------------------------|------------|-----------|-------------------|------|------------|------|-------------------|------|-------------------|-----------|-------------------|------|-------------------|------|-------------------|------|--------------------|--------|--------------------|--------|--------------------|------| | TO-15 | Sample Date | MP-1 | Qual | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Qual | MP-6 | Qual | MP-7 | Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | 10-13 | Sample Date
8-Feb-08 | 0.14 | Qual
U | NS | Qual | NS | Qual | NS | Quai | 0.14 | Qual
U | NS | Quai | NS | Quai | NS | Quai | 0.14 | U | 0.14 | U | NS | Qual | | | 27-Mar-08 | NS | | 0.137 | U | NS | | NS | | NS | · · | 0.137 | U | NS | | NS | | NS | | 0.137 | U | 0.137 | U | | | 25-Apr-08 | NS | | NS | | 0.137 | U | NS | | NS | | NS | _ | 0.137 | U | NS | | 0.137 | U | NS | | 0.137 | U | | | 29-May-08 | NS | | NS | | NS | | 0.14 | U | NS | | NS | | NS | | 0.14 | U | 0.14 | U | 0.14 | U | NS | | | | 27-Jun-08 | 0.214 | U | NS | | NS | | NS | | 0.137 | U | NS | | NS | | NS | | NS | | 0.137 | U | 0.137 | U | | | 31-Jul-08 | NS | | 0.137 | U | NS | | NS | | NS | | NS | | NS | | NS | | 0.137 | U | NS | | 0.137 | U | | | 28-Aug-08 | NS | | NS | | 0.137 | U | NS | | NS | | NS | | 0.137 | U | NS | | 0.137 | U | 0.137 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 0.14 | U | NS | | NS | | NS | | 0.14 | U | NS | | 0.14 | U | 0.14 | U | | | 27-Oct-08 | 0.14 | U | NS | | NS | | NS | | 0.14 | U | NS | | NS | | NS | | 0.14 | U | NS | | 0.14 | U | | | 25-Nov-08 | NS | | 0.14 | U | NS | | NS | | NS | | 0.14 | U | NS | | NS | | 0.14 | U | 0.14 | U | NS | | | | 18-Dec-08 | NS | | NS | | 0.14 | U | NS | | NS | | NS | | 0.14 | U | NS | | NS | | 0.14 | U | 0.14 | U | | | 21-Jan-09 | NS
0.14 | U | NS
NG | | NS | | 0.19 | | NS
0.14 | U | NS | | NS | | 0.14 | U | 0.14 | U
U | NS | | 0.14 | U | | | 25-Feb-09 | 0.14
NS | U | NS
0.686 | U | NS
NS | | NS
NS | | 0.14
NS | U | NS
1.37 | U | NS
NS | | NS
NS | | 0.14
NS | U | 0.14
0.137 | U
U | NS
0.137 | U | | | 26-Mar-09
29-Apr-09 | NS
NS | | 0.080
NS | 0 | 0.137 | U | NS
NS | | NS
NS | | NS | U | 0.137 | U | NS
NS | | 0.137 | U | 0.137
NS | 0 | 0.137 | U | | | 22-Jul-09 | 0.686 | U | NS
NS | | 28 | U | 1.37 | U | NS | | 0.686 | U | NS | 0 | NS | | 0.137 | U | 0.137 | U | NS | | | | 9-Oct-09 | NS | | 0.137 | U | NS | | NS | | 0.137 | U | NS | 0 | 0.137 | U | 28.6 | U | 0.137 | U | NS | | 0.137 | U | | | 15-Jan-10 | 0.109 | U | NS | | 0.137 | U | 1.37 | U | NS | | 0.137 | U | NS | | NS | | 0.137 | U | 0.137 | U | NS | | | | 21-Apr-10 | NS | | 0.137 | U | NS | | NS | | 0.686 | U | NS | _ | 0.686 | U | 0.686 | U | 0.137 | U | NS | | 0.137 | U | | | 16-Jul-10 | 0.137 | U | NS | | 0.137 | U | 0.137 | U | NS | | 1.04 | U | NS | | NS | | 0.137 | U | 0.137 | U | NS | | | | 15-Oct-10 | NS | | 0.137 | U | NS | | NS | | 0.137 | U | NS | | 0.137 | U | 0.137 | U | 0.137 | U | NS | | 0.137 | U | | | 26-Jan-11 | 1.37 | U | 0.137 | U | NS | | 0.137 | U | NS | | 0.686 | U | NS | | 0.686 | U | 0.686 | U | 0.686 | U | NS | | | | 28-Feb-11 | NS | | NS | | 1.37 | U | NS | | | 27-Apr-11 | NS | | 0.137 | U | NS | | NS | | 0.137 | U | NS | | 0.137 | U | 0.137 | U | 0.137 | U | NS | | 0.137 | U | | | 26-Jul-11 | 0.458 | U | NS | | 0.458 | U | 0.137 | U | NS | | 0.687 | U | NS | | NS | | 0.137 | U | 0.687 | U | NS | | | | 28-Oct-11 | NS | | 6.2 | U | NS | | NS | | 6.2 | U | NS | | 6.2 | U | 6.2 | U | 6.2 | U | NS | | 6.2 | U | | | 23-Jan-12 | 1.2 | U | NS | | 1.2 | U | 1.2 | U | NS | | 1.2 | U | NS | | NS | | 1.2 | U | 1.2 | U | NS | | | | 13-Apr-12 | NS | | 1.2 | U | NS | | NS | | 1.2 | U | NS | | 1.2 | U | 1.2 | U | 1.2 | U | NS | | 1.2 | U | | | 2-Jul-12 (resample) | NS | ** | NS | | NS | ** | NS | ** | NS | | NS | ** | NS | | NS | | NS | ** | 6.2 | U | NS | | | | 23-Jun-12 | 1.2 | U | NS
0.25 | U | 1.2 | U | 1.2 | U | NS
0.25 | U | 1.2
NS | U | NS
0.25 | U | NS
0.25 | U | 1.2 | U
U | 1.2
NS | U | NS
0.25 | U | | | 1-Nov-12
1-Feb-13 | NS
0.25 | U | 0.25
NS | U | NS
0.25 | U | NS
0.25 | U | NS | U | 0.25 | U | 0.25
NS | U | 0.25
NS | U | 0.25
0.25 | U | 0.25 | U | 0.25
NS | U | | 1,1,1,2-Tetrachloroethane | 29-Apr-13 | NS | 0 | 0.62 | U | NS | | NS | U | 0.25 | U | NS | U | 0.25 | U | 0.25 | U | 0.25 | U | NS | U | 0.25 | U | | | 9-Jul-13 | 0.37 | U | NS | 0 | 0.25 | U | 0.25 | U | NS | U | 0.25 | U | NS | | NS | | 0.036 | U | 0.25 | U | NS | | | | 18-Oct-13 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 9-Jan-14 | 0.25 | U | NS | _ | 0.25 | U | 0.25 | U | NS | _ | 0.25 | U | NS | | NS | _ | 0.25 | U | 0.25 | U | NS | | | | 24-Apr-14 | NS | | 0.25 | U | NS | | NS | | 0.25^{L} | U | NS | | 0.25 ^L | U | 0.25 | U | 0.25 ^L | U | 0.25 | U | 0.37 | U | | | 1-Aug-14 | 0.25 | U | NS | | 0.37 | U | 0.37 | U | NS | | NS | | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 0.25 | U | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 0.37 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.37 | U | NS | | NS | | 0.37 | U | 0.37 | U | 0.37 | U | 0.37 | U | 0.37 | U | 0.50 | U | NS | | | | 20-Jan-15 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.37 | U | 0.25 | U | NS | | | | 30-Mar-15 (resample) | NS | 0.28 | U | NS | | | | 22-Apr-15 | NS | | 0.29 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.36 | U | 0.25 | U | NS | | 0.29 | U | | | 27-Jan-16 | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | NS
0.25 | U | NS
0.25 | U | 0.25
0.25 | U
U | 0.25
NS | U | NS
0.25 | U | | | 20-Apr-16
20-Jul-16 | 1.2 | U | NS | 0 | 1.2 | IJ | 1.2 | U | NS | U | 1.2 | IJ | NS | 0 | NS | | 1.2 | U | 1.2 | IJ | NS | | | | 21-Oct-16 | NS | | 0.25 | U | NS | | NS | | 0.25 | U | NS | | 0.25 | U | 0.25 | U | 0.25 | U | NS | | 0.25 | U | | | 31-Jan-17 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | | 17-Apr-17 | NS | | 0.37 | U | NS | | NS | | 0.37 | U | NS | | 0.37 | U | 0.37 | U | 0.37 | U | NS | | 0.37 | U | | | 26-Jul-17 | 0.25
NS | U | NS
0.25 | U | 0.25 | U | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | NS
0.76 | U | NS
0.62 | U | 0.25 | U | 0.25
NS | U | NS
0.62 | U | | | 12-Oct-17
10-Jan-18 | 0.25 | U | 0.25
NS | 0 | NS
0.25 | U | 0.25 | U | 0.25
NS | U | 0.25 | U | NS | U | NS | U | 0.71
0.25 | U
U | NS
NS | | 0.02 | U | | | 11-Apr-18 | NS | _ | 0.25 | U | NS | | NS | _ | 2.5 | U | NS | _ | 2.5 | U | 2.5 | U | 0.25 | U | NS | | 2.5 | U | | | 23-May-18 | NS | 0.37 | U | NS | | | | 27-Jul-18 | 1.2 | U | NS | | 1.2 | U | 1.2 | U | NS | | 1.2 | U | NS | | NS | | 1.2 | U | 1.2 | U | NS | | | | 24-Oct-18
16-Jan-19 | NS
0.25 | U | 1.2
NS | U | NS
0.25 | U | NS
0.25 | U | 1.2
NS | U | NS
0.25 | U | 1.2
NS | U | 1.2
NS | U | 1.2
0.25 | U
U | NS
0.25 | U | 1.2
NS | U | | | 16-Jan-19
12-Apr-19 | NS | | 0.25 | U | 0.25
NS | | 0.25
NS | 0 | 0.25 | U | 0.25
NS | U | 0.31 | U | 0.37 | U | 0.25 | U | 0.25
NS | 0 | 0.37 | U | | | 29-Jul-19 | 0.37 | U | NS | [] | 0.37 | U | 0.25 ^L | U | NS | | 0.25 ^L | U | NS | | NS | | 0.25 ^L | U | 0.25 ^L | U | NS | | | | 26-Sep-19 | NS | < 0.37 | U | NS | | | | 29-Oct-19 | NS | | 0.25 ^L | U | NS | | NS | | 0.25 ^L | U | NS | | 0.25 ^L | U | 0.25 ^L | U | 1.2 ^{L,D} | U | 1.2 ^{L,D} | U | 1.2 ^{L,D} | U | | | 21-Jan-20 | 0.25 | U | NS | | 0.25 | U | 0.25 | U | NS | | 0.25 | U | NS | | NS | | 0.25 | U | 0.25 | U | NS | | | | 22-Apr-20 | NS
0.25 | * * | 0.25 | U | NS
0.25 | 1, | NS
0.25 | ** | 0.25 | U | NS
0.5 | *** | 0.25 | U | 0.25 | U | 0.25 | U | NS
0.5 | F.7 | 0.25 | U | | | 23-Jul-20
29-Oct-20 | 0.25
NS | U | NS
0.25 | U | 0.25
NS | U | 0.25
NS | U | NS
0.25 | U | 0.5
NS | U | NS
0.25 | U | NS
0.25 | U | 0.5
0.25 | U
U | 0.5
NS | U | NS
0.25 | U | | | 2, 551 20 | .10 | | 0.23 | | 110 | | 1.5 | | 0.23 | Ü | .10 | | 0.25 | | V.23 | L | 0.23 | | 1.0 | | 0.25 | | | | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |------------------------------|----------------------------------|-------------|------|-------------|------|-------------|------|-------------|------|--------------------------|------|--------------------|------|-------------------------|------
----------------------------|------|-----------------------------|--------|----------------------------|------|-------------------------|--------| | TO-15 | Sample Date | | Qual <u> </u> | 8-Feb-08 | 0.14 | U | NS | | NS | | NS | | 0.14 | U | NS | | NS | | NS | | 0.14 | U | 0.14 | U | NS | | | 1 | 27-Mar-08 | NS | | 0.137 | U | NS | | NS | | NS | | 0.137 | U | NS | | NS | | NS | | 0.137 | U | 0.137 | U | | 1 ' | 25-Apr-08 | NS | | NS | | 0.137 | U | NS | | NS | | NS | | 0.137 | U | NS | | 0.137 | U | NS | | 0.137 | U | | 1 | 29-May-08
27-Jun-08 | NS
0.214 | U | NS
NS | | NS
NS | | 0.14
NS | U | NS
0.137 | U | NS
NS | | NS
NS | | 0.14
NS | U | 0.14
NS | U | 0.14
0.137 | U | NS
0.137 | U | | | 31-Jul-08 | 0.214
NS | U | 0.137 | U | NS | | NS
NS | | NS | | NS
NS | | NS
NS | | NS | | 0.137 | U | NS | 0 | 0.137 | U | | 1 | 28-Aug-08 | NS | | NS | | 0.137 | U | NS | | NS | | NS | | 0.137 | U | NS | | 0.137 | U | 0.137 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 0.14 | U | NS | | NS | | NS | | 0.14 | U | NS | | 0.14 | U | 0.14 | U | | 1 | 27-Oct-08 | 0.14 | U | NS | | NS | | NS | | 0.14 | U | NS | | NS | | NS | | 0.14 | U | NS | | 0.14 | U | | | 25-Nov-08 | NS | | 0.14 | U | NS | | NS | | NS | | 0.14 | U | NS | | NS | | 0.14 | U | 0.14 | U | NS | | | | 18-Dec-08 | NS | | NS | | 0.14 | U | NS
0.14 | U | NS | | NS | | 0.14 | U | NS
0.14 | *** | NS
0.14 | U | 0.14 | U | 0.14 | U
U | | 1 | 21-Jan-09
25-Feb-09 | NS
0.14 | U | NS
NS | | NS
NS | | 0.14
NS | 0 | NS
0.14 | U | NS
NS | | NS
NS | | 0.14
NS | U | 0.14
0.14 | U | NS
0.14 | U | 0.14
NS | 0 | | | 26-Mar-09 | NS | Ü | 0.686 | U | NS | | NS | | NS | | 1.37 | U | NS | | NS | | NS | | 0.137 | U | 0.137 | U | | | 29-Apr-09 | NS | | NS | | 0.137 | U | NS | | NS | | NS | | 0.137 | U | NS | | 0.137 | U | NS | | 0.137 | U | | 1 | 22-Jul-09 | 0.686 | U | NS | | 28 | U | 0.137 | U | NS | | 0.686 | U | NS | | NS | | 0.137 | U | 0.137 | U | NS | | | 1 | 9-Oct-09 | NS | | 0.137 | U | NS | | NS | | 0.137 | U | NS | | 0.137 | U | 28.6 | U | 0.137 | U | NS | | 0.137 | U | | | 15-Jan-10 | 0.109 | U | NS | | 0.137 | U | 0.137 | U | NS | | 0.109 | U | NS | | NS | | 0.137 | U | 0.137 | U | NS | | | | 21-Apr-10 | NS
0.127 | U | 0.137 | U | NS
0.127 | U | NS
0.127 | | 0.686 | U | NS
1.04 | | 0.686 | U | 0.686 | U | 0.137 | U | NS
0.127 | | 0.137 | U | | | 16-Jul-10
15-Oct-10 | 0.137
NS | U | NS
0.137 | U | 0.137
NS | U | 0.137
NS | U | NS
0.137 | U | 1.04
NS | U | NS
0.137 | U | NS
0.137 | U | 0.137
0.137 | U | 0.137
NS | U | NS
0.137 | IJ | | | 26-Jan-11 | 1.37 | U | 0.137 | U | NS | | 0.137 | U | NS | | 0.686 | U | NS | U | 0.686 | U | 0.686 | U | 0.686 | U | NS | | | 1 | 28-Feb-11 | NS | | NS | | 1.37 | U | NS | | 1 | 27-Apr-11 | NS | | 0.137 | U | NS | | NS | | 0.137 | U | NS | | 0.137 | U | 0.137 | U | 0.137 | U | NS | | 0.137 | U | | | 26-Jul-11 | 0.458 | U | NS | | 0.458 | U | 0.137 | U | NS | | 0.687 | U | NS | | NS | | 0.137 | U | 0.687 | U | NS | | | | 28-Oct-11 | NS | | 3.4 | U | NS | | NS | | 3.4 | U | NS | | 3.4 | U | 3.4 | U | 3.4 | U | NS | | 3.4 | U | | 1 | 23-Jan-12 | 0.69 | U | NS | | 0.69 | U | 0.69 | U | NS | ** | 0.69 | U | NS | | NS | | 0.69 | U | 0.69 | U | NS | | | 1 | 13-Apr-12
2-Jul-12 (resample) | NS
NS | | 0.34
NS | U | NS
NS | | NS
NS | | 0.34
NS | U | NS
NS | | 0.34
NS | U | 0.34
NS | U | 0.34
NS | U | NS
1.7 | U | 0.34
NS | U | | | 23-Jun-12 | 0.69 | U | NS
NS | | 0.69 | U | 0.69 | U | NS
NS | | 0.69 | U | NS
NS | | NS
NS | | 0.69 | U | 0.69 | U | NS
NS | | | 1 | 1-Nov-12 | NS | _ | 0.069 | U | NS | | NS | | 0.069 | U | NS | | 0.069 | U | 0.069 | U | 0.069 | U | NS | | 0.069 | U | | 1 | 1-Feb-13 | 0.069 | U | NS | | 0.069 | U | 0.069 | U | NS | | 0.069 | U | NS | | NS | | 0.12 | | 0.069 | U | NS | | | | 29-Apr-13 | NS | | 0.17 | U | NS | | NS | | 0.069 | U | NS | | 0.069 | U | 0.69 | U | 0.069 | U | NS | | 0.069 | U | | 1,1,2,2-Tetrachloroethane | 9-Jul-13 | 0.10 | U | NS | | 0.069 | U | 0.069 | U | NS | | 0.069 | U | NS | | NS | | 0.010 | U | 0.069 | U | NS | | | 1,1,2,2-1 etracinor o etnane | 18-Oct-13 | NS | ** | 0.14 | U | NS | | NS | | 0.14 | U | NS | | 0.14 | U | 0.14 | U | 0.140 | U | NS | | 0.14 | U | | | 9-Jan-14
24-Apr-14 | 0.14
NS | U | NS
0.069 | U | 0.14
NS | U | 0.14
NS | U | NS
0.069 ^L | U | 0.14
NS | U | NS
.069 ^L | U | NS
0.069 ^{L,V} | U | 0.140
0.069 ^L | U | 0.14
0.069 | U | NS
0.21 | IJ | | | 1-Aug-14 | 0.14 | U | 0.069
NS | U | 0.21 | U | 0.21 | U | NS | | NS
NS | | NS | U | NS | U | 0.140 | U | 0.14 | U | NS | | | | 27-Aug-14 | NS | Ü | NS | | NS | | NS | | NS | | 0.069 ^L | U | NS | | NS | | NS | | NS | | NS | | | 1 | 12-Sept-14 (resample) | NS | 0.10 | U | NS | | NS | U | NS | | | 1 | 22-Oct-14 | NS | | 0.10 | U | NS | | NS | | 0.10 | U | 0.10 | U | 0.10 | U | 0.10 | U | 0.10 | U | 0.14 | U | NS | | | 1 | 20-Jan-15 | 0.069 | U | NS | | 0.069 | U | 0.069 | U | NS | | 0.069 | U | NS | | NS | | 0.10 | U | 0.069 | U | NS | | | | 30-Mar-15 (resample) | NS | | NS
0.070 | ** | NS | | NS | | NS | U | NS | | NS | ** | NS | ** | NS | ** | 0.077 | U | NS | | | | 22-Apr-15
21-Jul-15 | NS
0.3 | U | 0.070
NS | U | NS
1 | U | NS
7 | U | 0.069
NS | U | NS
0.4 | U | 0.069
NS | U | 0.10
NS | U | 0.069
0.300 ° | U | NS
0.400 ^O | U | 0.079
NS | U | | | 23-Sept-15 resample | NS | U | NS
NS | | NS | 0 | NS | U | NS
NS | | NS | U | NS
NS | | 0.3 | U | NS | U | NS | U | NS
NS | | | | 29-Oct-15 | NS | | 0.4 | U | NS | | NS | | 0.4 | U | NS | | 0.6 | U | 0.3 | U | 0.3 | U | NS | | 0.3 | U | | 1 | 4-Dec-15 resample | NS | | 0.3 | U | NS | | 1 | 27-Jan-16 | 0.069 | U | NS | | 0.069 | U | 0.069 | U | NS | | 0.069 | U | NS | | NS | | 0.069 | U | 0.069 | U | NS | | | | 20-Apr-16 | NS | | 0.069 | U | NS | | NS | | 0.069 | U | NS | | 0.069 | U | 0.069 | U | 0.069 | U | NS | | 0.069 | U | | | 20-Jul-16 | 0.34 | U | NS | U | 0.34 | U | 0.34 | U | NS
0.060 | U | 0.34 | U | NS | U | NS | *** | 0.34 | U | 0.34 | U | NS | IJ | | | 21-Oct-16
31-Jan-17 | NS
0.069 | U | 0.069
NS | U | NS
0.069 | U | NS
0.069 | U | 0.069
NS | 0 | NS
0.069 | U | 0.069
NS | U | 0.069
NS | U | 0.069
0.069 | U
U | NS
0.069 | U | 0.069
NS | 0 | | | 17-Apr-17 | NS | | 0.10 | U | NS | | NS | | 0.10 | U | NS | | 0.10 | U | 0.1 | U | 0.10 | U | NS | | 0.1 | U | | 1 | 26-Jul-17 | 0.069 | U | NS | | 0.069 | U | 0.069 | U | NS | | 0.069 | U | NS | | NS | | 0.069 | U | 0.069 | U | NS | | | 1 | 12-Oct-17
10-Jan-18 | NS
0.069 | U | 0.069
NS | U | NS
0.069 | U | NS
0.069 | U | 0.069
NS | U | NS
0.069 | U | 0.21
NS | U | 0.45
NS | | 0.2
0.069 | U
U | NS
NS | | 0.17
0.069 | U
U | | | 11-Apr-18 | NS | C | 0.14 | U | NS | | NS | | 1.4 | U | NS | | 1.4 | U | 1.4 | U | 0.14 | U | NS | | 1.4 | U | | | 23-May-18 | NS | 0.1 | U | NS | | | | 27-Jul-18
24-Oct-18 | 0.34
NS | U | NS
0.34 | U | 0.34
NS | U | 0.34
NS | U | NS
0.34 | U | 0.34
NS | U | NS
0.34 | U | NS
0.34 | U | 0.34 | U
U | 0.34
NS | U | NS
0.34 | U | | | 24-Oct-18
16-Jan-19 | NS
0.069 | U | 0.34
NS | 0 | NS
0.069 | U | 0.069 | U | 0.34
NS | | 0.069 | U | 0.34
NS | | 0.34
NS | U | 0.34
0.069 | U | NS
0.069 | U | 0.34
NS | | | | 12-Apr-19 | NS | | 0.069 | U | NS | | NS | | 0.069 | U | NS | | 0.086 | U | 0.1 | U | 0.1 | U | NS | | 0.1 | U | | 1 | 29-Jul-19 | 0.1 | U | NS | | 0.1 | U | 0.069 | U | NS | | 0.069 | U | NS | | NS | | 0.069 | U | 0.069 | U | NS | | | | 26-Sep-19 | NS
NS | | NS
0.069 | U | NS
NS | | NS
NS | | NS
0.22 | | NS
NS | | NS
0.069 | U | NS
0.069 | U | NS
0.34 ^D | U | <0.10
0.34 ^D | U | NS
0.34 ^D | U | | | 29-Oct-19
21-Jan-20 | NS
0.07 | U | 0.069
NS | 0 | NS
0.07 | U | 0.07 | U | 0.22
NS | | 0.07 | U | 0.069
NS | | 0.069
NS | U | 0.07 | U | 0.34 | U | 0.34
NS | | | | 22-Apr-20 | NS | | 0.069 | U | NS | | NS | | 0.069 | U | NS | | 0.069 | U | 0.069 | U | 0.069 | U | NS | | 0.069 | U | | | 23-Jul-20 | 0.069 | U | NS | | 0.069 | U | 0.069 | U | NS | | 0.14 | U | NS | | NS | | 0.14 | U | 0.14 | U | NS | | | | 29-Oct-20 | NS | | 0.069 | U | NS | | NS | | 0.069 | U | NS | | 0.069 | U | 0.069 | U | 0.069 | U | NS | | 0.069 | U | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|-----------------------------------|------------|------|-------------|------|-------------|------|------------|------|------------|------------------|-------------|------|--------------|----|------------|------|-------------------|------|----------------|------|-------------------|------| | TO-15 | Sample Date
8-Feb-08 | 0.25 | Qual | NIC | Qual | NC | Qual | NIC | Qual | 0.14 | Qual
U | NO | Qual | Qu | al | Nic | Qual | 0.52 | Qual | 5.05 | Qual | NIC | Qual | | | 8-Feb-08
27-Mar-08 | 0.35
NS | | NS
0.888 | | NS
NS | | NS
NS | | 0.14
NS | U | NS
0.875 | | NS
NS | | NS
NS | | 0.53
NS | | 5.05
6.99 | | NS
5.25 | | | | 25-Apr-08 | NS | | NS | | 0.322 | | NS | | NS | | NS | | 0.99 | | NS | | 0.83 | | NS | | 0.867 | | | | 29-May-08 | NS | | NS | | NS | | 1.36 | | NS | | NS | | NS | | 0.24 | | 0.3 | | 3.21 | | NS | | | | 27-Jun-08 | 1.32 | | NS | | NS | | NS | | 29.6 | | NS | | NS | | NS | | NS | | 5.08 | | 1.8 | | | | 31-Jul-08 | NS | | 0.667 | | NS | | NS | | NS | | NS | | NS | | NS | | 0.618 | | NS | | 0.572 | | | | 28-Aug-08 | NS | | NS | | 1.55 | | NS | | NS | | NS | | 1.52 | | NS | ** | 1.37 | | 6.26 | | NS | U | | | 30-Sep-08
27-Oct-08 | NS
4.2 | U | NS
NS | | NS
NS | | 3.4
NS | | NS
10 | | NS
NS | | NS
NS | | 3.4
NS | U | NS
4.2 | U | 6.1
NS | | 3.4
4.2 | U | |
 25-Nov-08 | NS | | 21.3 | | NS | | NS | | NS | | 4.6 | | NS
NS | | NS | | 3.4 | U | 8.9 | | NS | | | | 18-Dec-08 | NS | | NS | | 3.4 | U | NS | | NS | | NS | | 3.4 U | Г | NS | | NS | | 3.4 | U | 3.4 | U | | | 21-Jan-09 | NS | | NS | | NS | | 3.4 | U | NS | | NS | | NS | | 3.4 | U | 3.4 | U | NS | | 3.4 | U | | | 25-Feb-09 | 3.4 | U | NS | | NS | | NS | | 8.3 | | NS | | NS | | NS | | 3.4 | U | 3.7 | | NS | | | | 26-Mar-09 | NS | | 1.28 | | NS | | NS | | NS | | 1.36 | U | NS | | NS | | NS | | 7.11 | | 2.08 | | | | 29-Apr-09 | NS | | NS | | 0.271 | | NS | | NS | | NS | | 0.305 | | NS | | 0.237 | | NS | | 0.691 | | | | 22-Jul-09 | 1.63 | | NS
0.556 | | 1.63 | | 2.1 | | NS
2.07 | | 3.08 | | NS
0.678 | | NS | ** | 11.8 | | 3.25 | | NS | | | | 9-Oct-09
15-Jan-10 | NS
1.31 | | 0.556
NS | | NS
0.644 | | NS
1.35 | | 2.07
NS | | NS
0.691 | | 0.678
NS | | 28.3
NS | U | 1.17
0.447 | | NS
0.501 | | 1.46
NS | | | | 21-Apr-10 | NS | | 7.2 | | 0.044
NS | | NS | | 31.4 | | 0.691
NS | | 35.5 | | 36.8 | | 62.1 | | 0.301
NS | | 36.1 | | | | 16-Jul-10 | 12.4 | | NS | | 12.7 | | 10.9 | | NS | | 10 | | NS | | NS | | 15.4 | | 19.2 | | NS | | | | 15-Oct-10 | NS | | 21.9 | | NS | | NS | | 37.6 | | NS | | 21.3 | | 21.8 | | 22.1 | | NS | | 31.6 | | | | 26-Jan-11 | 1.36 | U | 0.691 | | NS | | 1.27 | | NS | | 0.678 | U | NS | | 0.813 | | 2.13 | | 8.3 | | NS | | | | 28-Feb-11 | NS | | NS | | 1.36 | U | NS | | | 27-Apr-11 | NS | | 1.44 | | NS | | NS | | 7.22 | | NS | | 1.53 | | 1.56 | | 1.46 | | NS | | 1.98 | | | | 26-Jul-11 | 3.34
NS | | NS
3.4 | U | 0.834
NS | | 2.59
NS | | NS
8.5 | | 9.29
NS | | NS
3.4 U | | NS
3.4 | U | 0.976 | U | 6.78
NS | | NS
3.4 | U | | | 28-Oct-11
23-Jan-12 | 1 | | NS | U | 0.68 | U | 1.7 | | NS | | 5.3 | | NS U | ' | NS | U | 3.4
0.76 | 0 | 26 | | NS | | | | 13-Apr-12 | NS | | 19 | | NS | | NS | | 18 | | NS | | 12 | | 18 | | 18 | | NS | | 15 | | | | 2-Jul-12 (resample) | NS | 9.6 | | NS | | | | 23-Jun-12 | 1.5 | | NS | | 0.68 | U | 3.5 | | NS | | 0.8 | | NS | | NS | | 0.68 | U | 8.9 | | NS | | | | 1-Nov-12 | NS | | 7.4 | | NS | | NS | | 11 | | NS | | 0.78 | | 0.57 | | 1.3 | | NS | | 1.6 | | | | 1-Feb-13 | 1.8 | | NS | | 0.76 | | 0.99 | | NS | | 4.5 | | NS | | NS | | 1.8 | | 7.7 | | NS | | | | 29-Apr-13 | NS
2.0 | | 8.1 | | NS
2.1 | | NS
3.1 | | 4.7
NS | | NS
2.9 | | 1.1
NG | | 1
NS | | 1.3 | | NS
8.8 | | 1.8 | | | Tetrachloroethene* | 9-Jul-13
18-Oct-13 | NS
NS | | NS
14 | | 2.1
NS | | NS | | 7.3 | | NS | | NS
0.61 | | 0.32 | | 2.6
0.32 | | NS | | NS
1.4 | | | | 9-Jan-14 | 0.6 | | NS | | 0.22 | | 1.1 | | NS | | 1.8 | | NS | | NS | | 0.46 | | 11 | | NS | | | | 24-Apr-14 | NS | | 4.7 | | NS | | NS | | 5.7 | | NS | | 0.41 | | 0.068 | U | 0.51 | | 10 | | 0.30 | | | | 1-Aug-01 | 2.3 | | NS | | 3.3/4.9 | | 2.1 | | NS | | NS | | NS | | NS | | 0.97 | | 4.0/5.9 | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 2.4/3.5 | | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 0.34 | | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 6.9 | | NS
0.20 | | NS
0.27 | | 5.0 | | 0.61 | | 0.43 | | 0.10 | U | 0.10 | U | 4.0 | | NS | | | | 20-Jan-15
30-Mar-15 (resample) | 0.9
NS | | NS
NS | | 0.20
NS | | 0.37
NS | | NS
NS | | 1.0
NS | | NS
NS | | NS
NS | | 0.52
NS | | 0.21
3.0 | | NS
NS | | | | 22-Apr-15 | NS | | 5.3 | | NS | | NS | | 2.6 | | NS | | 0.85 | | 0.48/0.52 | | 1.7 | | NS | | 1.5 | | | | 21-Jul-15 | 0.34 | | NS | | 1 | U | 7 | U | NS | | 3.2 | | NS | | NS | | 0.44 ^O | | 4.0 ° | | NS | | | | 23-Sept-15 resample | NS | 1.5 | | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 18 | | NS | | NS | | 3.6 | | NS | | 1.2 | | 6.6 | | 0.18 ^J | | NS | | 0.65 | | | | 4-Dec-15 resample | NS | | 14 | | NS | | 27-Jan-16 | 3.1 | | NS | | 0.19 | | 0.71 | | NS | | 0.63 | | NS
0.22 | | NS | | 0.19 | | 6.7 | | NS
0.47 | | | | 20-Apr-16
20-Jul-16 | NS
0.5 | | 9.7
NS | | NS
0.99 | | NS
1.6 | | 3.4
NS | | NS
4.8 | | 0.22
NS | | 0.11
NS | | 0.14
0.71 | | NS
5.6 | | 0.47
NS | | | | 21-Oct-16 | NS | | 40 | | NS | | NS | | 4.6 | | NS | | 0.75 | | 0.83 | | 0.39 | | NS | | 0.93 | | | | 31-Jan-17 | 0.33 | | NS | | 0.23 | | 0.79 | | NS | | 0.75 | | NS | | NS | | 0.15 | | 12 | | NS | | | | 17-Apr-17
26-Jul-17 | NS
0.26 | | 8.1
NS | | NS
0.34 | | NS
1.3 | | 3.2
NS | | NS
1.1 | | 0.99
NS | | 0.16
NS | | 0.21
0.22 | | NS
5.4 | | 1.1
NS | | | | 26-Jul-17
12-Oct-17 | NS | | 7.5 | | NS | | NS | | 4.2 | | NS | | 0.44 | | 0.43 | | 0.22 | | NS | | 1.7 | | | | 10-Jan-18 | 0.21 | | NS | | 0.15 | | 0.64 | | NS | | 2 | | NS | | NS | | 0.33 | | NS | | 4.9 | | | | 11-Apr-18 | NS
NG | | 10
NG | | NS | | NS | | 1.8 | | NS | | 1.4 U | Ī | 1.4 | U | 0.24 | | NS | | 2 | | | | 23-May-18
27-Jul-18 | NS
0.68 | U | NS
NS | | NS
0.68 | U | NS
2.5 | | NS
NS | | NS
2.2 | | NS
NS | | NS
NS | | NS
0.68 | U | 1.4
18 | | NS
NS | | | | 24-Oct-18 | NS | | 6.1 | | NS | | NS | | 6.8 | | NS | | 0.68 U | ı | 0.68 | U | 0.68 | U | NS | | 0.68 | U | | | 16-Jan-19 | 0.44 | | NS | | 0.27 | | 0.97 | | NS | | 1.8 | | NS | | NS | | 0.24 | | 5.9 | | NS | | | | 12-Apr-19
29-Jul-19 | NS
0.86 | | 11
NS | | NS
0.92 | | NS
1.4 | | 2.3
NS | | NS
6.7 | | 0.29
NS | | 0.2
NS | U | 0.2
0.4 | U | NS
5.9 | | 2.2
NS | | | | 26-Sep-19 | NS | | NS
NS | | NS | | NS | | NS
NS | | NS | | NS
NS | | NS
NS | | NS | | 4.7 | | NS
NS | | | | 29-Oct-19 | NS | | 21 | | NS | | NS | | 7.2 | | NS | | 0.14 | | 0.16 | | 0.68 ^D | U | 7 ^D | | 0.68 ^D | U | | | 21-Jan-20 | 0.20 | | NS | | 0.14 | | 0.41 | | NS | | 1.30 | | NS | | NS | | 1.20 | U | 7.30 | | NS | | | | 22-Apr-20 | NS
0.74 | | 2
NS | | NS
0.75 | | NS
0.84 | | 0.91
NS | | NS
4.5 | | 0.14 U
NS | | 0.14
NS | U | 0.53
0.84 | | NS
8.2 | | 0.88
NS | | | | 23-Jul-20
29-Oct-20 | 0.74
NS | | 7.3 | | 0.75
NS | | 0.84
NS | | NS
2.6 | | 4.5
NS | | NS
0.44 | | NS
1.6 | | 0.84 | | 8.2
NS | | NS
0.89 | | | | | | | | | | | | | | | | | · | 1 | * | | | | | 1 | | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------|------------------------|------|------------|------|------------------------|------|-------------------------|------|------------|------|------------------------|------|------------|------|------------|------|--------------------------|------|-------------------------|------|------------------------|------| | TO-15 | Sample Date | | Qual | 8-Feb-08 | 1.63 | | NS | | NS | | NS | | 1.8 | | NS | | NS | | NS | | 2.72 | | 455 | | NS | | | | 27-Mar-08 | NS | | 2.24 | | NS | | NS | | NS | | 1.45 | | NS | | NS | | NS | | 11.3 | | 16.1 | | | | 25-Apr-08 | NS | | NS | | 1.39 | | NS | | NS | | NS | | 1.34 | | NS | | 11.2 | | NS | | 21.8 | | | | 29-May-08 | NS | | NS | | NS | | 7.74 | | NS | | NS | | NS | | 11.6 | | 21 | | 13 | | NS | | | | 27-Jun-08 | 14.7 | | NS | | NS | | NS | | 2.33 | | NS | | NS | | NS | | NS | | 10.6 | | 22.2 | | | | 31-Jul-08 | NS | | 4.15 | | NS | | NS | | NS | | NS | | NS | | NS | | 10.2 | | NS | | 6.11 | | | | 28-Aug-08 | NS | | NS
NS | | 6.48
NS | | NS | U | NS | | NS | | 3.44 | | NS
6.1 | | 10
NS | | 11.2
7.5 | | NS | | | | 30-Sep-08
27-Oct-08 | NS
56.3 | | NS
NS | | NS
NS | | 1.9
NS | U | NS
3.2 | | NS
NS | | NS
NS | | NS | | 6.6 | | NS | | 8.6
8.2 | | | | 25-Nov-08 | NS | | 7.8 | | NS | | NS | | NS | | 7.8 | | NS | | NS
NS | | 29.9 | | 18.6 | | NS | | | | 18-Dec-08 | NS
NS | | NS | | 2 | | NS | | NS | | NS | | 1.9 | U | NS
NS | | NS | | 4.8 | | 4.9 | | | | 21-Jan-09 | NS | | NS | | NS | | 1.9 | U | NS | | NS | | NS | | 1.9 | U | 1.9 | U | NS | | 1.9 | U | | | 25-Feb-09 | 7 | | NS | | NS | | NS | | 1.9 | U | NS | | NS | | NS | | 1.9 | U | 13.8 | | NS | Ü | | | 26-Mar-09 | NS | | 3.53 | | NS | | NS | | NS | | 3.92 | | NS | | NS | | NS | | 7.23 | | 9.75 | | | | 29-Apr-09 | NS | | NS | | 1.99 | | NS | | NS | | NS | | 0.651 | | NS | | 0.149 | | NS | | .4.56 | | | | 22-Jul-09 | 38.7 | | NS | | 38.7 | | 2.22 | | NS | | 4.71 | | NS | | NS | | 80.1 | | 5.32 | | NS | | | | 9-Oct-09 | NS | | 3.53 | | NS | | NS | | 3.06 | | NS | | 1.07 | | 23.6 | | 3.12 | | NS | | 3.67 | | | | 15-Jan-10 | 12.8 | | NS | | 4.17 | | 4.33 | | NS | | 5.81 | | NS | | NS | | 4.81 | | 4.85 | | NS | | | | 21-Apr-10 | NS | | 0.9 | | NS | | NS | | 2.97 | | NS | | 3.75 | | 5.2 | | 2.84 | | NS | | 5.08 | | | | 16-Jul-10 | 22.2 | | NS | | 17.9 | | 5.98 | | NS | | 5.54 | | NS | | NS | | 5.77 | | 5.85 | | NS | | | | 15-Oct-10 | NS | | 1.67 | | NS | | NS | | 2.1 | | NS | | 1.72 | | 3.37 | | 2.23 | | NS | | 3.26 | | | | 26-Jan-11 | 6.06 | | 6.82 | | NS | | 6.82 | | NS | | 4.74 | | NS | | 5.95 | | 12.1 | | 11.9 | | NS | | | | 28-Feb-11 | NS | | NS | | 1.88 | | NS | | 27-Apr-11 | NS | | 0.836 | | NS | | NS | | 0.682 | | NS | | 1.25 | | 3.62 | | 2.08 | | NS | | 1.62 | | | | 26-Jul-11 | 8.29 | | NS | | 3.96 | | 1.15 | | NS | | 1.62 | | NS | | NS | | 2.31 | | 1.68 | | NS | | | | 28-Oct-11 | NS | | 1.9 | U | NS | | NS | | 1.9 | U | NS | | 1.9 | U | 3.3 | | 4.7 | | NS | | 3.8 | | | | 23-Jan-12 | 7.9 | | NS | | 3.8 | | 1.9 | | NS | | 3.4 | | NS | | NS | | 5.2 | | 15 | | NS | | | | 13-Apr-12 | NS | | 0.75 | | NS | | NS | | 0.38 | U | NS | | 0.38 | U | 1.3 | | 2.4 | | NS | | 1.5 | | | | 2-Jul-12 (resample) | NS | 1.9 | U | NS | | | | 23-Jun-12 | 8.5 | | NS | | 3.5 | | 1.5 | | NS | | 2.5 | | NS | | NS | | 2.4 | | 1.8 | | NS | | | | 1-Nov-12 | NS | | 2 | | NS | | NS | | 1.7 | | NS | | 2.3 | | 2.8 | | 2.8 | | NS | | 4.5 | | | | 1-Feb-13 | 2.4 | | NS | | 0.69 | | 0.69 | | NS | | 0.71 | | NS | | NS | | 1.4 | | 1.6 | | NS | | | | 29-Apr-13 | NS | | 1.7 | | NS | | NS | | 1.3 | | NS | | 1.7 | |
2.1 | | 3.1 | | NS | | 3.9 | | | Toluene | 9-Jul-13 | 11
NC | | NS
2.3 | | 3.0
NS | | 2.0 | | NS
3.1 | | 2.5 | | NS
2.8 | | NS
7.5 | | 6.8
1.3 | | 3.4
NC | | NS
1.9 | | | | 18-Oct-13
9-Jan-14 | NS
10 | | NS
NS | | 7.6 | | NS
8.6 | | NS | | NS
10 | | NS | | NS | | 20 | | NS
16 | | NS | | | | 24-Apr-14 | NS | | 0.23 | | NS | | NS | | 0.22 | | NS | | 0.25 | | 0.36 | | 0.28 | | 0.25 | | 1.1 | | | | 1-Aug-14 | 2.7 | | NS | | 2.8/3.2 | | 1.3/1.4 | | NS | | NS | | NS | | NS | | 1.6 | | 1.9 | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 2.2/2.8 | | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 1.5 | | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.34 | | NS | | NS | | 0.32 | | 0.48 | | 0.94 | | 0.51 | | 1.2 | | 1.2 | _ | NS | | | | 20-Jan-15 | 1.5 | | NS | | 0.6 | | 0.6 | | NS | | 0.44 | | NS | | NS | | 1.4 | | 1.5 | | NS | | | | 30-Mar-15 (resample) | NS | 1.2 | | NS | | | | 22-Apr-15 | NS | | 0.95 | | NS | | NS | | 0.59 | | NS | | 1.2 | | 1.4/1.6 | | 3.4 | | NS | | 4.3 | | | | 21-Jul-15 | 3.8 | | NS | | 4.5 | | 4 | U | NS | | 2 | | NS | | NS | | 5.4 ° | | 7.6 ° | | NS | | | | 23-Sept-15 resample | NS | 1.4 | | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.41 | | NS | | NS | | 0.55 | | NS | | 0.64 | | 1.1 | | 1.2 | | NS | | 2.8 | | | | 4-Dec-15 resample | NS | | 0.42 | | NS | | 27-Jan-16 | 1.5 | | NS | | 0.5 | | 0.4 | | NS | | 0.44 | | NS | | NS | | 1.2 | | 0.89 | | NS | | | | 20-Apr-16 | NS
1.2 ^W | | 0.62 | | NS
1.0 ^W | | NS
0.77 ^W | | 0.77 | | NS
1.2 ^W | | 1.3 | | 0.85 | | 3.5 | | NS
44W | | 1.8 | | | | 20-Jul-16 | 1.2 ^W | | NS
0.56 | | 1.9 ^W | | 0.77 ^W | | NS
2.6 | | 1.2 ^W | | NS | | NS | | 1.6 ^w | | 44 ^W | | NS
2.5 | | | | 21-Oct-16
31-Jan-17 | NS
1.1 | | 0.56
NS | | NS
1.2 | | NS
1.0 | | 2.6
NS | | NS
0.98 | | 1.8
NS | | 4.2
NS | | 1.9
2.2 | | NS
1.8 | | 2.5
NS | | | | 17-Apr-17 | NS | | 1.0 | | NS | | NS | | NS
1.1 | | 0.98
NS | | 1.3 | | 1.5 | | 1.0 | | NS | | 1.5 | | | | 26-Jul-17 | 1.1 | | NS | | 1.5 | | 0.73 | | NS | | 1.2 | | NS | | NS | | 1.8 | | 1.4 | | NS | | | | 12-Oct-17 | NS | | 0.41 | | NS | | NS | | 0.47 | | NS | | 0.55 | | 1 | | 0.99 | | NS | | 0.81 | | | | 10-Jan-18 | 0.88 | | NS | | 0.99 | | 1.1 | | NS
0.75 | ** | 1 | | NS
0.75 | | NS
0.75 | ļ ,, | 2.4 | | NS | | 1.7 | | | | 11-Apr-18 | NS
NS | | 0.61
NS | | NS
NS | | NS
NS | | 0.75
NS | U | NS
NS | | 0.75
NS | U | 0.75
NS | U | 3.4
NS | | NS
0.72 | | 1.9
NS | | | | 23-May-18
27-Jul-18 | 1.2 | | NS
NS | | NS
1.9 | | 0.75 | | NS
NS | | NS
1.6 | | NS
NS | | NS
NS | | NS
1.4 | | 0.72 | | NS
NS | | | | 24-Oct-18 | NS | | 0.49 | | NS | | NS | | 0.38 | U | NS | | 0.47 | | 1.2 | | 1.4 | | NS | | 1.5 | | | | 16-Jan-19 | 1.4 | | NS | | 0.65 | | 0.7 | | NS | | 0.77 | | NS | | NS | | 1.6 | | 1.2 | | NS | | | | 12-Apr-19 | NS | | 0.48 | | NS | | NS | | 0.34 | | NS | | 0.24 | | 1.1 | | 1.5 | | NS | | 0.88 | | | | 29-Jul-19 | 1.6 | | NS | | 2 | | 1.9 | | NS | | 3.2 | | NS | | NS | | 1.3 | | 2.2 | | NS | | | | 26-Sep-19 | NS
NG | | NS
2 | | NS | | NS | | NS
0.80 | | NS | | NS
0.70 | | NS
2.4 | | NS
2.7 ^D | | 2.2
4.5 ^D | | NS
2.7 ^D | | | | 29-Oct-19
21-Jan-20 | NS
0.82 | | 3
NS | | NS
1.30 | | NS
1.50 | | 0.89
NS | | NS
1.00 | | 0.79
NS | | 3.4
NS | | 2.7 ⁵
3.40 | | 4.5 | | 2.7°
NS | | | | 21-Jan-20
22-Apr-20 | 0.82
NS | | 0.13 | | NS | | NS | | 0.59 | | NS | | 0.081 | U | | | 3.40
1.1 | | 4.20
NS | | 1.4 | | | | 23-Jul-20 | 4.2 | | NS | | 2.8 | | 2.3 | | NS | | 3.8 | | NS | | NS | | 3.5 | | 4.8 | | NS | | | | 29-Oct-20 | NS | | 0.92 | | NS | | NS | | 0.9 | | NS | | 0.88 | | 3.2 | | 2 | | NS | | 2.5 | | | ш | ı | 1 | 1 | 1 | 1 | | 1 | | 11 | | 1 | | | | 1 | 1 | 1 | 1 | | | | | 1 | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------|--------------------------|------|-------------------|------|--------------------------|------|--------------------------|------|-------------|------|-------------------------|------|-------------|------|----------------|--------|-----------------------------|--------|---------------------------|------|--------------------------|------| | TO-15 | Sample Date | 1724 - 1 | Qual | 1111-2 | Qual | 1,11-5 | Qual | | Qual | ./11-5 | Qual | 1111 -0 | Qual | | Qual | 1111-0 | Qual | 1 | Qual | 11711 -2 | Qual | 21721 -5 | Qual | | | 8-Feb-08 | 0.11 | U | NS | | NS | | NS | | 0.11 | U | NS | | NS | | NS | | 0.11 | U | 0.56 | | NS | | | | 27-Mar-08 | NS | | 0.109 | U | NS | | NS | | NS | | 0.109 | U | NS | | NS | | NS | | 0.522 | | 0.266 | | | | 25-Apr-08 | NS
NS | | NS
NS | | 0.109
NS | U | NS
0.12 | | NS
NS | | NS
NS | | 0.109
NS | U | NS
0.11 | U | 0.109
0.11 | U
U | NS
0.54 | | 0.119
NS | | | | 29-May-08
27-Jun-08 | 0.17 | U | NS
NS | | NS
NS | | NS | | 0.458 | | NS | | NS | | NS | | NS | U | 0.34 | | 0.138 | | | | 31-Jul-08 | NS | _ | 0.109 | U | NS | | NS | | NS | | NS | | NS | | NS | | 0.109 | U | NS | | 0.109 | U | | | 28-Aug-08 | NS | | NS | | 0.109 | U | NS | | NS | | NS | | 0.153 | | NS | | 0.109 | U | 0.492 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 2.7 | U | NS | | NS | | NS | | 2.7 | U | NS | | 2.7 | U | 2.7 | U | | | 27-Oct-08
25-Nov-08 | 3.4
NS | U | NS
2.7 | U | NS
NS | | NS
NS | | 3.4
NS | U | NS
2.7 | U | NS
NS | | NS
NS | | 3.4
2.7 | U
U | NS
2.7 | U | 3.4
NS | U | | | 18-Dec-08 | NS | | NS | U | 2.7 | U | NS | | NS | | NS | | 2.7 | U | NS | | NS | 0 | 2.7 | U | 2.7 | U | | | 21-Jan-09 | NS | | NS | | NS | | 2.7 | U | NS | | NS | | NS | | 2.7 | U | 2.7 | U | NS | | 2.7 | U | | | 25-Feb-09 | 2.7 | U | NS | | NS | | NS | | 2.7 | U | NS | | NS | | NS | | 2.7 | U | 2.7 | U | NS | | | | 26-Mar-09 | NS | | 1.59 | | NS | | NS | | NS | | 1.09 | U | NS | | NS | | NS | | 0.682 | | 0.213 | | | | 29-Apr-09
22-Jul-09 | NS
0.545 | U | NS
NS | | 0.174
22.2 | U | NS
1.09 | U | NS
NS | | NS
0.545 | U | 0.147
NS | | NS
NS | | 0.158
0.109 | U | NS
0.278 | | 0.191
NS | | | | 9-Oct-09 | NS | | 0.109 | U | NS | | NS | | 0.158 | | NS | | 0.191 | | 22.8 | U | 0.109 | U | NS | | 0.136 | | | | 15-Jan-10 | 0.109 | U | NS | | 0.109 | U | 1.09 | U | NS | | 0.109 | U | NS | | NS | | 0.109 | U | 0.692 | | NS | | | | 21-Apr-10 | NS | | 0.109 | U | NS | | NS | | 0.545 | U | NS | | 0.545 | U | 0.545 | U | 0.109 | | NS | | 1.09 | U | | | 16-Jul-10 | 0.109 | U | NS
0.272 | | 0.109 | U | 0.109 | U | NS | | 0.824 | U | NS
0.100 | | NS
0.100 | .,, | 0.109 | U | 0.562 | | NS
0.100 | ** | | | 15-Oct-10
26-Jan-11 | NS
1.09 | U | 0.272
0.109 | U | NS
NS | | NS
0.109 | U | 0.349
NS | | NS
0.545 | U | 0.109
NS | U | 0.109
0.545 | U
U | 0.109
0.545 | U
U | NS
0.845 | | 0.109
NS | U | | | 28-Feb-11 | NS | | NS | | 1.09 | U | NS | | NS | | 0.545
NS | | NS | | NS | | 0.545
NS | | NS | | NS | | | | 27-Apr-11 | NS | | 0.109 | U | NS | | NS | | 0.109 | U | NS | | 0.109 | U | 0.109 | U | 0.109 | U | NS | | 0.109 | U | | | 26-Jul-11 | 0.364 | U | NS | | 0.364 | U | 0.109 | U | NS | | 0.873 | | NS | | NS | | 0.109 | U | 0.546 | U | NS | | | | 28-Oct-11 | NS | ** | 2.7 | U | NS | ** | NS | *** | 2.7 | U | NS | | 2.7 | U | 2.7 | U | 2.7 | U | NS | | 2.7 | U | | | 23-Jan-12
13-Apr-12 | 0.55
NS | U | NS
0.27 | U | 0.55
NS | U | 0.55
NS | U | NS
0.27 | U | 1.5
NS | U | NS
0.27 | U | NS
0.27 | U | 0.55
0.27 | U
U | 1.3
NS | | NS
0.27 | U | | | 2-Jul-12 (resample) | NS | | NS | C | NS | 1.4 | U | NS | | | | 23-Jun-12 | 0.55 | U | NS | | 0.55 | U | 0.55 | U | NS | | 0.55 | U | NS | | NS | | 0.55 | U | 0.7 | | NS | , | | | 1-Nov-12 | NS | | 0.25 | | NS | | NS | | 0.27 | | NS | | 0.055 | U | 0.055 | U | 0.055 | U | NS | | 0.14 | , | | | 1-Feb-13
29-Apr-13 | 0.055
NS | U | NS
0.15 | | 0.055
NS | U | 0.055
NS | U | NS
0.076 | | 0.83
NS | | NS
0.055 | U | NS
0.061 | | 0.055
0.055 | U
U | 0.23
NS | | NS
0.055 | U | | | 9-Jul-13 | 0.082 | U | NS | | 0.055 | U | 0.061 | | 0.076
NS | | 0.33 | | 0.033
NS | | NS | | 0.055 | U | 0.26 | | NS | | | 1,1,1-Trichloroethane* | 18-Oct-13 | NS | | 0.23 | | NS | | NS | | 0.19 | | NS | | 0.11 | U | 0.11 | U | 0.11 | U | NS | | 0.28 | , | | | 9-Jan-14 | 0.11 | U | NS | | 0.11 | U | 0.11 | U | NS | | 0.41 | | NS | | NS | | 0.11 | U | 0.46 | | NS | , | | | 24-Apr-14 | NS | | 0.055 | U | NS | | NS | | 0.055 | U | NS | | 0.055 | U | 0.055 | U | 0.055 | U | 0.42 | | 0.16 | U | | | 1-Aug-14
27-Aug-14 | 0.11
NS | U | NS
NS | | 0.16
NS | U | 0.16
NS | U | NS
NS | | NS
0.35 | | NS
NS | | NS
NS | | 0.11
NS | U | 0.22
NS | | NS
NS | , | | | 12-Sept-14 (resample) | NS | 0.082 | U | NS | | NS | U | NS | , | | | 22-Oct-14 | NS | | 0.19 | | NS | | NS | | 0.19 | | 0.082 | U | 0.082 | U | 0.082 | U | 0.082 | U | 0.28 | | NS | , | | | 20-Jan-15 | 0.055 | U | NS | | 0.055 | U | 0.055 | U | NS | | 0.31 | | NS | | NS | | 0.082 | U | 0.055 | U | NS | | | | 30-Mar-15 (resample) | NS
NS | | NS
0.056 | U | NS
NS | | NS
NS | | NS
0.055 | U | NS
NS | | NS
0.055 | U | NS
0.079 | U | NS
0.055 | U | 0.14
NS | | NS
0.063 | U | | | 22-Apr-15
21-Jul-15 | 0.3 | U | 0.036
NS | U | 1 | U | 5 | U | 0.033
NS | U | 0.27 ^J | | 0.055
NS | | 0.079
NS | | 0.033
0.3 ° | U | 0.3 ° | U | 0.063
NS | 0 | | | 23-Sept-15 resample | NS | | NS | | NS | _ | NS | | NS | | NS | | NS | | 0.3 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.36 | | NS | | NS | | 0.3 | U | NS | | 0.5 | U | 0.3 | U | 0.3 | U | NS | | 0.3 | U | | | 4-Dec-15 resample | NS
0.055 | U | 0.23 ¹ | | NS | U | NS | *** | NS | | NS | | NS | | NS
| | NS
0.055 | | NS | | NS | | | | 27-Jan-16
20-Apr-16 | 0.055
NS | U | NS
0.2 | | 0.055
NS | U | 0.055
NS | U | NS
0.098 | | 0.24
NS | | NS
0.055 | U | NS
0.055 | U | 0.055
0.055 | U
U | 0.4
NS | | NS
0.074 | | | | 20-Jul-16 | 0.27 | U | NS | | 0.27 | U | 0.27 | U | NS | | 0.59 | U | NS | | NS | _ | 0.28 | | 0.4 | | NS | | | | 21-Oct-16 | NS | | 0.59 | | NS | | NS | | 0.19 | | NS | | 0.083 | | 0.094 | | 0.089 | | NS | | 1.4 | | | | 31-Jan-17
17-Apr-17 | 0.13
NS | | NS
0.12 | | 0.055
NS | U | 0.055
NS | U | NS
0.082 | U | 0.2
NS | | NS
0.082 | U | NS
0.082 | U | 0.055
0.082 | U
U | 0.57
NS | | NS
0.082 | U | | | 26-Jul-17 | 0.055 | U | NS | | 0.055 | U | 0.055 | U | NS | | 0.12 | | NS | | NS | | 0.055 | U | 0.22 | | NS | | | | 12-Oct-17 | NS | | 0.12 | | NS | | NS | | 0.15 | | NS | | 0.17 | U | 0.28 | | 0.16 | U | NS | | 0.14 | U | | | 10-Jan-18
11-Apr-18 | 0.055 ^L
NS | U | NS
0.12 | | 0.055 ^L
NS | U | 0.055 ^L
NS | U | NS
1.1 | U | 0.29 ^L
NS | | NS
1.1 | U | NS
1.1 | U | 0.055 ^L
0.110 | U
U | NS
NS | | 0.37 ^L
1.1 | U | | | 23-May-18 | NS | | NS | | NS | | NS | | NS | | NS
NS | | NS | | NS | | NS
NS | 0 | 0.082 | U | NS | | | | 27-Jul-18 | 0.27 | U | NS
0.27 | 7. | 0.27 | U | 0.27 | U | NS
0.27 | ,,, | 0.27 | U | NS
0.27 | | NS
0.27 | .,, | 0.27 | U | 0.56 | | NS
0.27 | ** | | | 24-Oct-18
16-Jan-19 | NS
0.055 | U | 0.27
NS | U | NS
0.055 | U | NS
0.055 | U | 0.27
NS | U | NS
0.2 | | 0.27
NS | U | 0.27
NS | U | 0.27
0.055 | U
U | NS
0.26 | | 0.27
NS | U | | | 12-Apr-19 | NS | | 0.16 | | NS | - | NS | | 0.055 | U | NS | | 0.068 | U | 0.082 | U | 0.082 | U | NS | | 0.082 | U | | | 29-Jul-19
26-Sep-19 | 0.082
NS | U | NS
NS | | 0.082
NS | | 0.1
NS | | NS
NS | | 0.36
NS | | NS
NS | | NS
NS | | 0.076
NS | | 1.3
0.29 | | NS
NS | | | | 29-Oct-19 | NS | | 0.22 | | NS
NS | | NS | | 0.055 | U | NS | | 0.055 | U | 0.055 | U | 0.27 ^D | U | 0.29
0.27 ^D | U | 0.27 ^D | U | | | 21-Jan-20 | 0.06 | U | NS | | 0.06 | U | 0.06 | U | NS | | 0.15 | | NS | | NS | | 0.06 | U | 0.24 | | NS | | | | 22-Apr-20
23-Jul-20 | NS
0.055 | U | 0.055
NS | U | NS
0.055 | U | NS
0.055 | U | 0.055
NS | U | NS
0.11 | U | 0.055
NS | U | 0.055
NS | U | 0.055
0.11 | U
U | NS
0.27 | | 0.055
NS | U | | | 29-Oct-20 | NS | | 0.055 | U | NS | | NS | _ | 0.098 | | NS | _ | 0.055 | U | 0.055 | U | 0.055 | U | NS | | 0.055 | | | <u> </u> | | | | | | | | | | | | | | | | | 1 | | 1 | | | | | | TV 1 (1 O) C | | · | | 1 | | | | | | 1 en - | | | | 1 | | 7 en a | | | | | | | | |---|----------------------------------|-------------|------|----------------|---------|-------------|------|-------------|--------------------------|-------------|------|-------------|--------|-------------|------|----------------|--------|-------------------|--------|-------------------|--------|-------------------|------| | Volatile Organic Compounds via
TO-15 | Sample Date | MP-1 | Qual | MP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MP-5 | Qual | MP-6 | Qual | MP-7 | Qual | MP-8 | Qual | IMP-1 | Qual | IMP-2 | Qual | IMP-3 | Qual | | | 8-Feb-08 | 0.11 | U | NS | - Quiii | NS | | NS | \ \(\tau_{\text{um}} \) | 0.11 | U | NS | - Quin | NS | 7 | NS | Quui | 0.11 | U | 0.11 | U | NS | | | | 27-Mar-08 | NS | | 0.109 | U | NS | | NS | | NS | | 0.109 | U | NS | | NS | | NS | | 0.109 | U | 0.109 | U | | | 25-Apr-08 | NS | | NS | | 0.109 | U | NS | | NS | | NS | | 0.109 | U | NS | | 0.109 | U | NS | | 0.109 | U | | | 29-May-08 | NS | | NS | | NS | | 0.11 | U | NS | | NS | | NS | | 0.11 | U | 0.11 | U | 0.11 | U | NS | | | | 27-Jun-08 | 0.17 | U | NS | | NS | | NS | | 0.109 | U | NS | | NS | | NS | | NS | | 0.109 | U | 0.109 | U | | | 31-Jul-08
28-Aug-08 | NS
NS | | 0.109
NS | U | NS
0.109 | U | NS
NS | | NS
NS | | NS
NS | | NS
0.109 | U | NS
NS | | 0.109
0.109 | U
U | NS
0.109 | U | 0.109
NS | U | | | 30-Sep-08 | NS | | NS | | 0.109
NS | | 0.11 | U | NS | | NS | | NS | | 0.11 | U | NS | U | 0.11 | U | 0.11 | U | | | 27-Oct-08 | 0.11 | U | NS | | NS | | NS | | 0.11 | U | NS | | NS | | NS | | 0.11 | U | NS | 1 - 1 | 0.11 | U | | | 25-Nov-08 | NS | | 0.11 | U | NS | | NS | | NS | | 0.11 | U | NS | | NS | | 0.11 | U | 0.11 | U | NS | | | | 18-Dec-08 | NS | | NS | | 0.11 | U | NS | | NS | | NS | | 0.11 | U | NS | | NS | | 0.11 | U | 0.11 | U | | | 21-Jan-09 | NS | | NS | | NS | | 0.11 | U | NS | | NS | | NS | | 0.11 | U | 0.11 | U | NS | | 0.11 | U | | | 25-Feb-09
26-Mar-09 | 0.11 | U | NS
0.545 | U | NS
NS | | NS
NS | | 0.11
NS | U | NS
1.09 | U | NS
NS | | NS
NS | | 0.11
NS | U | 0.11
0.109 | U | NS
0.109 | U | | | 29-Apr-09 | NS
NS | | 0.343
NS | U | 0.109 | U | NS
NS | | NS
NS | | NS | 0 | 0.109 | U | NS
NS | | 0.109 | U | 0.109
NS | | 0.109 | U | | | 22-Jul-09 | 0.545 | U | NS | | 22.2 | U | 1.09 | U | NS | | 0.545 | U | NS | | NS | | 0.109 | U | 0.109 | U | NS | | | | 9-Oct-09 | NS | | 0.109 | U | NS | | NS | | 0.109 | U | NS | | 0.109 | U | 22.8 | U | 0.109 | U | NS | | 0.109 | U | | | 15-Jan-10 | 0.109 | U | NS | | 0.109 | U | 1.09 | U | NS | | 0.081 | U | NS | | NS | | 0.109 | U | 0.109 | U | NS | | | | 21-Apr-10 | NS | | 0.109 | U | NS | | NS | | 0.545 | U | NS | | 0.545 | U | 0.545 | U | 0.109 | U | NS | | 0.109 | U | | | 16-Jul-10 | 0.109 | U | NS | | 0.109 | U | 0.109 | U | NS | | 0.824 | U | NS | , | NS | | 1.09 | U | 0.109 | U | NS | | | | 15-Oct-10
26-Jan-11 | NS
1.09 | U | 0.109
0.109 | U | NS
NS | | NS
0.109 | U | 0.109
NS | U | NS
0.545 | U | 0.109
NS | U | 0.109
0.547 | U
U | 0.109
0.545 | U
U | NS
0.545 | U | 0.109
NS | U | | | 26-Jan-11
28-Feb-11 | 1.09
NS | | 0.109
NS | U | NS
1.09 | U | 0.109
NS | | NS
NS | | 0.545
NS | | NS
NS | | 0.547
NS | 0 | 0.545
NS | U | 0.545
NS | | NS
NS | | | | 27-Apr-11 | NS | | 0.109 | U | NS | | NS | | 0.109 | U | NS | | 0.109 | U | 0.109 | U | 0.109 | U | NS | | 0.109 | U | | | 26-Jul-11 | 0.364 | U | NS | | 0.364 | U | 0.109 | U | NS | | 0.546 | U | NS | | NS | | 0.109 | U | 0.546 | U | NS | | | | 28-Oct-11 | NS | | 2.7 | U | NS | | NS | | 2.7 | U | NS | | 2.7 | U | 2.7 | U | 2.7 | U | NS | | 2.7 | U | | | 23-Jan-12 | 0.55 | U | NS | | 0.55 | U | 0.55 | U | NS | | 0.55 | U | NS | | NS | | 0.55 | U | 4.2 | | NS | | | | 13-Apr-12 | NS | | 0.27 | U | NS | | NS | | 0.27 | U | NS | | 0.27 | U | 0.27 | U | 0.27 | U | NS | | 0.27 | U | | | 2-Jul-12 (resample)
23-Jun-12 | NS
0.55 | U | NS
NS | | NS
0.55 | U | NS
0.55 | U | NS
NS | | NS
0.5 | U | NS
NS | | NS
NS | | NS
0.55 | U | 1.4
0.55 | U | NS
NS | | | | 1-Nov-12 | NS | | 0.055 | U | NS | | NS | | 0.055 | U | NS | | 0.055 | U | 0.055 | U | 0.055 | U | NS | | 0.055 | U | | | 1-Feb-13 | 0.055 | U | NS | | 0.055 | U | 0.055 | U | NS | | 0.055 | U | NS | | NS | | 0.055 | U | 0.055 | U | NS | | | | 29-Apr-13 | NS | | 0.14 | U | NS | | NS | | 0.055 | U | NS | | 0.055 | U | 0.055 | U | 0.055 | U | NS | | 0.055 | U | | 112711 | 9-Jul-13 | 0.082 | U | NS | | 0.055 | U | 0.055 | U | NS | | 0.055 | U | NS | | NS | | 0.055 | U | 0.055 | U | NS | | | 1,1,2-Trichloroethane | 18-Oct-13 | NS | | 0.11 | U | NS | | NS | | 0.11 | U | NS | | 0.11 | U | 0.11 | U | 0.11 | U | NS | | 0.11 | U | | | 9-Jan-14 | 0.11 | U | NS
0.055 | U | 0.11 | U | 0.11 | U | NS
0.055 | U | 0.11 | U | NS
0.055 | U | NS
0.055 | U | 0.11 | U | 0.11 | U | NS | U | | | 24-Apr-14
1-Aug-14 | NS
0.11 | U | 0.055
NS | U | NS
0.16 | U | NS
0.16 | U | 0.055
NS | U | NS
NS | | 0.055
NS | U | 0.055
NS | U | 0.055
0.11 | U
U | 0.055
0.11 | U | 0.16
NS | 0 | | | 27-Aug-14 | NS | | NS | | NS | | NS
NS | | NS | | 0.055 | U | NS | | NS | | NS | 0 | NS | | NS | | | | 12-Sept-14 (resample) | NS | 0.082 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.082 | U | NS | | NS | | 0.082 | U | 0.082 | U | 0.082 | U | 0.082 | U | 0.082 | U | 0.11 | U | NS | | | | 20-Jan-15 | 0.055 | U | NS | | 0.055 | U | 0.055 | U | NS | | 0.055 | U | NS | | NS | | 0.082 | U | 0.055 | U | NS | | | | 30-Mar-15 (resample) | NS | | NS | ** | NS | | NS | | NS | ** | NS | | NS
0.055 | | NS
0.070 | ** | NS
0.055 | ** | 0.061 | U | NS
0.062 | | | | 22-Apr-15
21-Jul-15 | NS
0.3 | U | 0.056
NS | U | NS
1 | II | NS
5 | U | 0.055
NS | U | NS
0.3 | U | 0.055
NS | U | 0.079
NS | U | 0.055
0.3 ° | U
U | NS
0.3 ° | U | 0.063
NS | U | | | 23-Sept-15 resample | NS | 0.3 | U | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.3 | U | NS | | NS | | 0.3 | U | NS | | 0.5 | U | 0.3 | U | 0.3 | U | NS | | 0.3 | U | | | 4-Dec-15 resample | NS | | 0.3 | U | NS | | | 27-Jan-16 | 0.055 | U | NS | | 0.055 | U | 0.055 | U | NS | | 0.055 | U | NS | | NS | | 0.055 | U | 0.055 | U | NS | | | | 20-Apr-16 | NS
0.27 | * T | 0.055 | U | NS
0.27 | U | NS
0.27 | 1, | 0.055 | U | NS
0.27 | | 0.055 | U | 0.055 | U | 0.055 | U | NS
0.27 | U | 0.055 | U | | | 20-Jul-16
21-Oct-16 | 0.27
NS | U | NS
0.055 | U | 0.27
NS | 0 | 0.27
NS | U | NS
0.055 | U | 0.27
NS | U | NS
0.055 | U | NS
0.055 | U | 0.27
0.055 | U
U | 0.27
NS | 0 | NS
0.055 | U | | | 31-Jan-17 | 0.055 | U | NS | | 0.055 | U | 0.055 | U | NS | | 0.055 | U | NS | | NS | | 0.055 | U | 0.055 | U | NS | | | | 17-Apr-17 | NS | | 0.082 | U | NS | | NS | | 0.082 | U | NS | | 0.082 | U | 0.082 | U | 0.082 | U | NS | | 0.082 | U | | | 26-Jul-17
12-Oct-17 | 0.055
NS | U | NS
0.055 | U | 0.055
NS | U | 0.055
NS | U | NS
0.055 | U | 0.055
NS | U | NS
0.17 | U | NS
0.14 | U | 0.055
0.16 | U
U | 0.055
NS | U | NS
0.14 | U | | | 10-Jan-18 | 0.055 | U | NS | | 0.055 | U | 0.055 | U |
NS | | 0.055 | U | NS | | NS | | 0.055 | U | NS | | 0.055 | U | | | 11-Apr-18 | NS | | 0.11 | U | NS | | NS | | 1.1 | U | NS | | 1.1 | U | 1.1 | U | 0.11 | U | NS | | 1.1 | Ū | | | 23-May-18
27-Jul-18 | NS
0.27 | U | NS
NS | | NS
0.27 | U | NS
0.27 | U | NS
NS | | NS
0.27 | U | NS
NS | | NS
NS | | NS
0.27 | U | 0.082
0.27 | U
U | NS
NS | | | | 2/-Jul-18
24-Oct-18 | 0.27
NS | | 0.27 | U | NS | | NS | 0 | NS
0.27 | U | NS | | 0.27 | U | 0.27 | U | 0.27 | U | NS | | NS
0.27 | U | | | 16-Jan-19 | 0.055 | U | NS | | 0.055 | U | 0.055 | U | NS | | 0.055 | U | NS | | NS | | 0.055 | U | 0.055 | U | NS | | | | 12-Apr-19 | NS
0.082 | U | 0.055 | U | NS
0.082 | U | NS
0.055 | U | 0.055 | U | NS
0.055 | U | 0.068 | U | 0.082 | U | 0.082 | U
U | NS
1.5 | | 0.082 | U | | | 29-Jul-19
26-Sep-19 | 0.082
NS | | NS
NS | | 0.082
NS | 0 | 0.055
NS | 0 | NS
NS | | 0.055
NS | | NS
NS | | NS
NS | | 0.055
NS | U | <0.082 | U | NS
NS | | | | 29-Oct-19 | NS | | 0.055 | U | NS | | NS | | 0.055 | U | NS | | 0.055 | U | 0.055 | U | 0.27 ^D | U | 0.27 ^D | U | 0.27 ^D | U | | | 21-Jan-20 | 0.06 | U | NS | | 0.06 | U | 0.06 | U | NS | | 0.06 | U | NS | | NS | | 0.06 | U | 0.06 | U | NS | | | | 22-Apr-20
23-Jul-20 | NS
0.055 | U | 0.055
NS | U | NS
0.055 | U | NS
0.055 | II I | 0.055
NS | U | NS
0.11 | U | 0.055
NS | U | 0.055
NS | U | 0.055
0.11 | U
U | NS
0.11 | T. | 0.055
NS | U | | | 29-Oct-20 | 0.033
NS | | 0.055 | U | NS | | NS | | 0.055 | U | NS
NS | | 0.055 | U | 0.055 | U | 0.055 | U | NS | | 0.055 | U | | | | | | | | | Ì | | 1 | - | | | 1 | 1 | 1 1 | | | 1 | 1 | İ | | | Ì | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------|------------|------|------------|------|-------------|------|------------|-----------|------|-----------|------|------------|------|-------------|------|-------------------|--------|------|-----------------|------|------------------|------| | TO-15 | Sample Date | | Qual | | Qual | | Qual | | Qual | Qual | | Qual | | Qual | | Qual | | Qual | Qual | | Qual | | Qual | | | 8-Feb-08 | 0.12 | | NS | | NS | | NS | 0.11 | U | NS | | NS | | NS | | 0.2 | | | 19.6 | | NS | | | | 27-Mar-08 | NS | | 0.107 | U | NS | | NS | NS | | 0.152 | | NS | | NS | | NS | | | 13.4 | | 5.34 | | | | 25-Apr-08 | NS | | NS | | 0.199 | | NS | NS | | NS | | 1.35 | | NS | | 0.668 | | | NS | | 3.39 | | | | 29-May-08 | NS | | NS | | NS | | 26.5 | NS | | NS | | NS | | 0.15 | | 0.37 | | | 13.6 | | NS | | | | 27-Jun-08 | 0.408 | | NS | | NS | | NS | 258 | | NS | | NS | | NS | | NS | | | 13.6 | | 6.56 | | | | 31-Jul-08 | NS | | 1.24 | | NS | | NS | NS | | NS | | NS
2.56 | | NS | | 0.126 | | | NS | | 3.26 | | | | 28-Aug-08 | NS | | NS | | 0.558 | | NS
56.2 | NS | | NS | | 3.56 | | NS
0.8 | U | 0.432 | | | 18.4 | | NS | | | | 30-Sep-08
27-Oct-08 | NS
0.8 | IJ | NS
NS | | NS
NS | | 56.2
NS | NS
117 | | NS
NS | | NS
NS | | NS | U | NS
2.99 | | | 22.7
NS | | 3.95
0.8 | U | | | 25-Nov-08 | NS | | 2.92 | | NS | | NS
NS | NS | | 1.89 | | NS
NS | | NS
NS | | 0.54 | U | II | 39.8 | | NS | 0 | | | 18-Dec-08 | NS | | NS | | 0.54 | U | NS | NS | | NS | | 0.54 | U | NS | | NS | | | 4.56 | | 2.48 | | | | 21-Jan-09 | NS | | NS | | NS | | 19.6 | NS | | NS | | NS | | 0.54 | U | 0.54 | U | IJ | NS | | 4.99 | | | | 25-Feb-09 | 0.44 | | NS | | NS | | NS | 99.5 | | NS | | NS | | NS | | 0.56 | | | 10.7 | | NS | | | | 26-Mar-09 | NS | | 9.2 | | NS | | NS | NS | | 3.88 | | NS | | NS | | NS | | | 25.1 | | 5.49 | | | | 29-Apr-09 | NS | | NS | | 0.22 | | NS | NS | | NS | | 1.2 | | NS | | 0.392 | | | NS | | 2.96 | | | | 22-Jul-09 | 0.537 | U | NS | | 0.537 | U | 12.7 | NS | | 3.19 | | NS | | NS | | 0.354 | | | 10.3 | | NS | | | | 9-Oct-09 | NS | | 0.091 | U | NS | | NS | 26 | | NS | | 1.24 | | 22.4 | U | 0.182 | | | NS | | 3.26 | | | | 15-Jan-10 | 0.591 | | NS | | 0.242 | | 17.7 | NS | | 0.172 | | NS | | NS | | 0.107 | U | U | 18.5 | | NS | | | | 21-Apr-10 | NS | | 0.107 | U | NS | | NS | 34 | | NS | | 0.94 | | 0.537 | U | 0.891 | | | NS | | 2.01 | | | | 16-Jul-10 | 0.333 | | NS | | 0.333 | | 8.14 | NS | | 0.811 | U | NS | | NS | | 0.107 | | | 27.8 | | NS | | | | 15-Oct-10 | NS | | 2.26 | | NS | | NS | 129 | | NS | | 1.92 | | 0.177 | | 0.317 | | | NS | | 1.3 | | | | 26-Jan-11 | 1.07 | U | 1.63 | | NS | | 9.94 | NS | | 0.537 | U | NS | | 0.617 | | 1.23 | | | 27.1 | | NS | | | | 28-Feb-11 | NS | | NS | | 1.07 | U | NS | NS | | NS | | NS | | NS | | NS | | | NS | | NS | | | | 27-Apr-11 | NS | | 0.231 | | NS | | NS | 78.1 | | NS | | 0.891 | | 0.107 | U | 0.107 | U | U | NS | | 1.56 | | | | 26-Jul-11 | 1.18 | | NS | | 0.358 | U | 29.6 | NS | | 10.5 | | NS | | NS | | 0.247 | | | 20.5 | | NS | | | | 28-Oct-11 | NS | | 2.7 | U | NS | | NS | 110 | | NS | | 2.7 | U | 2.7 | U | 2.7 | U | U | NS | | 2.7 | U | | | 23-Jan-12 | 0.88 | | NS | | 0.54 | U | 6.8 | NS | | 7.8 | | NS | | NS | | 0.54 | U | U | 44 | | NS | | | | 13-Apr-12 | NS | | 0.27 | U | NS | | NS | 83 | | NS | | 1.5 | | 0.27 | U | 0.27 | U | U | NS | | 4.1 | | | | 2-Jul-12 (resample) | NS | | NS | | NS | | NS | NS | | NS | | NS | | NS | | NS | | | 32 | | NS | | | | 23-Jun-12 | 1.1 | | NS | | 0.54 | U | 92 | NS | | 0.75 | | NS | | NS | | 0.54 | U | U | 35 | | NS | | | | 1-Nov-12 | NS | | 2.4 | | NS | | NS | 92 | | NS | | 1.9 | | 0.32 | | 0.28 | | | NS | | 6.9 | | | | 1-Feb-13 | 0.85 | | NS | | 0.064 | | 21 | NS | | 5.6 | | NS | | NS | | 0.077 | | | 20 | | NS | | | | 29-Apr-13 | NS | | 1.7 | | NS | | NS | 46 | | NS | | 0.84 | | 0.12 | | 0.44 | | | NS | | 1.9 | | | Trichloroethene* | 9-Jul-13 | 0.60 | | NS | | 0.22 | | 27 | NS | | 2.6 | | NS | | NS | | 0.14 | | | 22 | U | NS | | | Tremorocticie | 18-Oct-13 | NS | | 3.3 | | NS | | NS | 76 | | NS | | 2.2 | | 0.48 | | 0.66 | | | NS | | 15 | | | | 9-Jan-14 | 0.49 | | NS | | 0.11 | U | 36 | NS | | 1.8 | | NS | | NS | | 0.13 | | | 43 | | NS | | | | 24-Apr-14 | NS | | 1.0 | | NS | | NS | 58 | | NS | | 0.81 | | 0.13 | | 1.0 | | | 31 | | 2.4 | | | | 1-Aug-14 | 2.70 | | NS | | 0.23 | | 15/19 | NS | | NS | | NS | | NS | | 1.2 | | | 16/18 | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | NS | | 2.6/3.4 | | NS | | NS | | NS | | | NS | | NS | | | | 12-Sept-14 (resample) | NS | | NS | | NS | | NS | NS | | NS | | NS | | 0.30 | | NS
0.17 | | | NS | U | NS | | | | 22-Oct-14 | NS
0.52 | | 1.3
NS | | NS
0.054 | U | NS
24 | 88
NG | | 0.97 | | 1.4 | | 0.19 | | 0.17 | U | | 18 | U | NS | | | | 20-Jan-15 | 0.52 | | NS
NS | | 0.054 | U | 24
NG | NS
NC | | 1.3 | | NS | | NS
NC | | 0.081 | U | U | 0.054
15 | U | NS | | | | 30-Mar-15 (resample) | NS
NC | | NS
0.96 | | NS
NS | | NS
NS | NS
35 | | NS
NS | | NS
0.80 | | NS
0.078 | U | NS
0.57 | | | NS | | NS
3.6 | | | | 22-Apr-15
21-Jul-15 | NS
0.2 | U | NS | | 1 | U | 15 | NS | | 3.1 | | NS | | NS | 0 | 0.99 ° | | | 24 ^o | | NS | | | | 23-Sept-15 resample | NS | | NS | | NS | | NS | NS | | NS | | NS | | 0.44 | | NS | | | NS | | NS | | | | 29-Oct-15 | NS | | 4.1 | | NS | | NS | 54 | | NS | | 3.3 | | 0.89 | | 0.55 | | | NS | | 7.3 | | | | 4-Dec-15 resample | NS | | 2.1 | | NS | | NS | NS | | NS | | NS | | NS | | NS | | | NS | | NS | | | | 27-Jan-16 | 2.3 | | NS | | 0.13 | | 25 | NS | | 0.98 | | NS | | NS | | 0.27 | | | 36 | | NS | | | | 20-Apr-16 | NS | | 1.8 | | NS | | NS | 76 | | NS | | 0.8 | | 0.17 | | 0.39 | | | NS | | 9.4 | | | | 20-Jul-16 | 0.47 | | NS | | 0.6 | | 28 | NS | | 3.8 | | NS | | NS | | 0.63 | | | 21 | | NS | | | | 21-Oct-16 | NS | | 7.6 | | NS | | NS | 66 | | NS | | 1.1 | | 0.31 | | 0.18 | | | NS | | 5.7 | | | | 31-Jan-17 | 0.23 | | NS | | 0.11 | | 32 | NS | | 0.71 | | NS | | NS | | 0.054 | U | | 44 | | NS | | | | 17-Apr-17 | NS
0.22 | | 1.4 | | NS
0.12 | | NS
22 | 58 | | NS | | 0.66 | | 0.081 | U | 0.081 | U | U | NS
25 | | 11 | | | | 26-Jul-17
12-Oct-17 | 0.23
NS | | NS
1.8 | | 0.13
NS | | 33
NS | NS
88 | | 1.4
NS | | NS
0.76 | | NS
0.38 | | 0.31
0.15 | U | TT | 25
NS | | NS
2.1 | | | | 10-Jan-18 | 0.19 | | NS | | 0.054 | U | 29 | NS | | 2.1 | | NS | | NS | | 0.43 | | U | NS | | 65 | | | | 11-Apr-18 | NS | | 2.1 | | NS | _ | NS | 41 | | NS | | 1.1 | U | 1.1 | U | 0.13 | | | NS | | 37 | | | | 23-May-18 | NS | | NS | | NS | | NS | NS | | NS | | NS | | NS | | NS | | | 7.0 | | NS | | | | 27-Jul-18 | 0.27 | U | NS | | 0.27 | U | 140 | NS | | 0.68 | | NS | | NS | | 0.27 | U | | 74 | | NS | | | | 24-Oct-18 | NS
0.20 | | 1.7 | | NS
0.054 | | NS
47 | 110 | | NS | 1 | 0.69 | | 0.27 | U | 0.27 | U | | NS
42 | | 4.9 | | | | 16-Jan-19 | 0.29
NS | | NS
1.8 | | 0.054
NS | U | 47
NS | NS
45 | | 1.4
NS | | NS
0.38 | | NS
0.081 | U | 0.054
0.081 | U
U | | 42
NS | | NS
21 | | | | 12-Apr-19
29-Jul-19 | NS
0.4 | | 1.8
NS | | NS
0.15 | | NS
23 | NS
NS | | NS
4.7 | | 0.38
NS | | 0.081
NS | U | 0.081 | | U | NS
21 | | 21
NS | | | | 26-Sep-19 | NS | | NS | | NS | | NS
NS | NS
NS | | NS | 1 | NS | | NS | | NS
NS | | | 22 | | NS
NS | | | | 29-Oct-19 | NS | | 4.8 | | NS | | NS | 33 | | NS | | 0.054 | U | 0.11 | | 0.27 ^D | U | U | 23 ^D | | 1.1 ^D | | | | 21-Jan-20 | 0.15 | | NS | | 0.05 | U | 10.00 | NS | | 1.10 | 1 | NS | | NS | | 0.06 | | | 24 | | NS | | | | 22-Apr-20 | NS | | 0.54 | | NS | | NS | 20 | | NS | | 0.19 | | 0.054 | U | 0.25 | | | NS | | 1.4 | | | | 23-Jul-20 | 0.69 | | NS | | 0.12 | | 18 | NS | | 2.6 | | NS | | NS | | 0.11 | U | U | 32 | | NS | | | i l | 29-Oct-20 | NS | | 2.3 | 1 | NS | 1 | NS | 45 | | NS | | 0.6 | 1 1 | 0.2 | | 0.18 | | | NS | 1 | 1.9 | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | |
--------------------------------|-----------------------------------|--------------------|------|------------------------|------|--------------------|------|-------------------|------|-----------------------|------|--------------------|------|------------|---------------|------|--------------------|--------|--------------------|------|------------------|------| | TO-15 | Sample Date | | Qual | | Qual | | Qual | | Qual | | Qual | | Qual | Qua | 1 | Qual | | Qual | | Qual | | Qual | | | 8-Feb-08 | 1.22 | | NS | | NS | | NS | | 1.22 | | NS | | NS | NS | | 1.06 | | 15.9 | | NS | | | | 27-Mar-08
25-Apr-08 | NS
NS | | 1.27
NS | | NS
1.18 | | NS
NS | | NS
NS | | 1.18
NS | | NS
5.2 | NS
NS | | NS
1.66 | | 12
NS | | 9.02
3.83 | | | | 29-May-08 | NS | | NS | | NS | | 33.5 | | NS | | NS | | NS | 0.98 | | 1.05 | | 10.6 | | NS | | | | 27-Jun-08 | 1.29 | | NS | | NS | | NS | | 75.2 | | NS | | NS | NS | | NS | | 8.85 | | 8.89 | | | | 31-Jul-08 | NS | | 1.01 | | NS | | NS | | NS | | NS | | NS | NS | | 0.958 | | NS | | 5.1 | | | | 28-Aug-08 | NS | | NS | | 2.53 | | NS | | NS | | NS | | 18 | NS | | 1.79 | | 15.6 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 53.8 | | NS | | NS | | NS | 2.8 | U | NS | | 14.5 | | 10.4 | | | | 27-Oct-08 | 2.8 | U | NS | | NS | | NS | | 44.4 | | NS | | NS
NG | NS | | 6.1 | | NS | | 2.8 | U | | | 25-Nov-08
18-Dec-08 | NS
NS | | 10
NS | | NS
2.8 | U | NS
NS | | NS
NS | | 12.2
NS | | NS
4.9 | NS
NS | | 2.8
NS | U | 34
4.8 | | NS
7.1 | | | | 21-Jan-09 | NS | | NS | | NS | | 26.9 | | NS | | NS | | NS | 7.2 | | 2.8 | U | NS | | 10.4 | | | | 25-Feb-09 | 2.8 | U | NS | | NS | | NS | | 14.8 | | NS | | NS | NS | | 2.8 | U | 7.1 | | NS | | | | 26-Mar-09 | NS | | 1.43 | | NS | | NS | | NS | | 2.81 | U | NS | NS | | NS | | 19.6 | | 10.3 | | | | 29-Apr-09 | NS | | NS | | 1.45 | | NS | | NS | | NS | | 4.23 | NS | | 1.27 | | NS | | 3.17 | | | | 22-Jul-09 | 1.46 | | NS | | 1.46 | | 19.9 | | NS | | 3.42 | | NS | NS | | 1.28 | | 6.46 | | NS | | | | 9-Oct-09 | NS | | 0.156 | | NS | | NS | | 20
NG | | NS | | 11
NG | 58.6 | U | 1,65 | | NS | | 9.32 | | | | 15-Jan-10
21-Apr-10 | 1.39
NS | | NS
0.466 | | 2.1
NS | | 16.6
NS | | NS
10.1 | | 1.78
NS | | NS
4.83 | NS
1.4 | U | 1.34
4.95 | | 15.4
NS | | NS
5.47 | | | | 21-Apr-10
16-Jul-10 | 2.6 | | 0.466
NS | | 1.84 | | 16.4 | | NS | | 2.12 | U | 4.83
NS | NS | | 2.23 | | 19.8 | | NS | | | | 15-Oct-10 | NS | | 9.63 | | NS | | NS | | 72.2 | | NS | - | 13.7 | 5.65 | | 9.85 | | NS | | 10 | | | | 26-Jan-11 | 2.81 | U | 1.16 | | NS | | 13.8 | | NS | | 1.4 | U | NS | 1.4 | U | 1.71 | | 26 | | NS | | | | 28-Feb-11 | NS | | NS | | 2.81 | U | NS | | NS | | NS | | NS | NS | | NS | | NS | | NS | | | | 27-Apr-11 | NS | | 1.12 | | NS | | NS | | 12.8 | | NS | | 3.24 | 1.27 | | 1.17 | | NS | | 2.53 | | | | 26-Jul-11 | 4.27 | | NS | | 1.31 | | 41.2 | U | NS | | 15.3 | | NS | NS | | 1.62 | | 10 | | NS | | | | 28-Oct-11
23-Jan-12 | NS
2.1 | | 2.8
NS | U | NS
1.5 | | NS
28 | | 30
NS | | NS
29 | | 5.1
NS | 2.8
NS | U | 2.9
1.4 | | NS
16 | | 4.2
NS | | | | 23-Jan-12
13-Apr-12 | NS | | 1.9 | | NS | | NS | | 15 | | NS | | 6.4 | 2.1 | | 2 | | NS | | 8.8 | | | | 2-Jul-12 (resample) | NS | NS | | NS | | 21 | | NS | | | | 23-Jun-12 | 2.4 | | NS | | 1.1 | | 85 | | NS | | 2.2 | | NS | NS | | 1.2 | | 15 | | NS | | | | 1-Nov-12 | NS | | 3.3 | | NS | | NS | | 33 | | NS | | 6.7 | 1.2 | | 1.2 | | NS | | 7.2 | | | | 1-Feb-13 | 2.1 | | NS | | 1.6 | | 15 | | NS | | 17 | | NS | NS | | 1.6 | | 5.6 | | NS | | | | 29-Apr-13 | NS | | 2.6 | | NS | | NS | | 8.3 | | NS | | 3.1 | 1.5 | | 1.6 | | NS | | 2.7 | | | Trichlorofluoromethane | 9-Jul-13 | 1.4
NS | | NS | | 2.2 | | 33
NG | | NS | | 3.3 | | NS | NS
3.0 | | 3.6 | | 5.5 | | NS
20 | | | | 18-Oct-13
9-Jan-14 | 1.6 | | 4.0
NS | | NS
1.8 | | NS
21 | | 19
NS | | NS
11 | | 6.9
NS | NS | | 1.6
1.8 | | NS
11 | | NS | | | | 24-Apr-14 | NS | | 2.3 | | NS | | NS | | 10 | | NS | | 3.5 | 1.7 | | 2.4 | | 9.3 | | 4.3 | | | | 1-Aug-14 | 2.9 | | NS | | 1.7/1.6 | | 23/26 | | NS | | NS | | NS | NS | | 2.4 | | 6.2 | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 7.0/6.6 | | NS | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 1.5 | | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 2.7 | | NS | | NS | | 28 | | 4.2 | | 7.0 | 1.7 | | 1.4 | | 7.4 | | NS | | | | 20-Jan-15 | 1.6 | | NS | | 1.5 | | 9.1 | | NS | | 5.2 | | NS | NS | | 1.3 | | 1.4 | | NS | | | | 30-Mar-15 (resample)
22-Apr-15 | NS
NS | | NS
7.8 ^V | | NS
NS | | NS
NS | | NS
15 ^v | | NS
NS | | NS
3.5 | NS
1.7/2.0 | | NS
1.9 | | 2.8
NS | | NS
3.4 | | | | 21-Jul-15 | 0.87 | | NS | | 1.0 ^J | | 19 | | NS | | 3.2 | | NS | NS | | 0.98 ° | | 2.9 ° | | NS | | | | 23-Sept-15 resample | NS | 0.98 | | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 4.3 | | NS | | NS | | 11 | | NS | | 2.6 | 0.93 | | 0.8 | | NS | | 1.8 | | | | 4-Dec-15 resample | NS | | 2.5 | | NS | | NS | | NS | | NS | | NS | NS | | NS | | NS | | NS | | | | 27-Jan-16 | 2.5 ^{M,V} | | NS | | 1.9 ^{M,V} | | 19 ^{M,V} | | NS | | 7.6 ^{M,V} | | NS | NS | | 2.4 ^{M,V} | | 7.6 ^{M,V} | | NS | | | | 20-Apr-16
20-Jul-16 | NS
1.3 | | 2.3
NS | | NS
1.6 | | NS
16 | | 8.8
NS | | NS
4.2 | | 2.5
NS | 1.6
NS | | 1.4
1.7 | | NS
4 | | 4.3
NS | | | | 21-Oct-16 | NS | | 4.7 | | NS | | NS | | 15 | | NS | | 3.8 | 1.5 | | 1.7 | | NS | | 5.9 | | | | 31-Jan-17 | 1.4 | | NS | | 1.5 | | 35 | | NS | | 3.9 | | NS | NS | | 1.4 | | 9.1 | | NS | | | | 17-Apr-17 | NS | | 2.7 | | NS | | NS | | 8.6 | | NS | | 3.1 | 1.7 | | 1.7 | | NS | | 8.2 | | | | 26-Jul-17 | 0.98
NS | | NS
2.3 | | 0.98
NS | | 19
NS | | NS
18 | | 1.9
NS | | NS
3.8 | NS
1.8 | | 1.1
1.5 | | 3.4
NS | | NS
2.2 | | | | 12-Oct-17
10-Jan-18 | 1.2 | | NS | | 1.3 | | 9.1 | | NS | | 4.6 | | NS | NS | | 1.1 | | NS
NS | | 11 | | | | 11-Apr-18 | NS | | 2.1 | | NS | | NS | | 5.3 | | NS | | 4.5 U | 4.5 | U | 1.4 | | NS | | 9.9 | | | | 23-May-18 | NS
2.2 | *** | NS | | NS
2.2 | 1, | NS
24 | | NS | | NS | ,, | NS
NC | NS | | NS
2.2 | 7.7 | 2.2 | | NS
NG | | | | 27-Jul-18
24-Oct-18 | 2.2
NS | U | NS
2.6 | | 2.2
NS | U | 24
NS | | NS
14 | | 2.2
NS | U | NS
3.4 | NS
2.2 | U | 2.2
2.2 | U
U | 6
NS | | NS
2.9 | | | | 16-Jan-19 | 1.1 | | NS | | 1.2 | | 16 | | NS | | 2.9 | | NS | NS | | 1.2 | | 5.1 | | NS | | | | 12-Apr-19 | NS | | 1.8 | | NS | | NS | | 4.5 | | NS | | 2 | 1.2 | | 1.1 | | NS | | 7.8 | | | | 29-Jul-19
26-Sep-19 | 1.6
NS | | NS
NS | | 1.2
NS | | 13
NS | | NS
NS | | 3.9
NS | | NS
NS | NS
NS | | 1.3
NS | | 4.3
4.6 | | NS
NS | | | | 26-Sep-19
29-Oct-19 | NS
NS | | 3.6 | | NS
NS | | NS
NS | | 5.6 | | NS
NS | | 1.7 | 1.7 | | 2.2 ^D | U | 3.9 ^D | | 2.2 ^D | U | | | 21-Jan-20 | 1.30 | | NS | | 1.20 | | 7.70 | | NS | | 3.10 | | NS | NS | | 1.20 | | 4.90 | | NS | | | | 22-Apr-20 | NS | | 2 | | NS | | NS | | 4.6 | | NS | | 2.1 | 1.6 | | 1.7 | | NS | | 2.5 | | | | 23-Jul-20 | 1.7 | | NS
2.2 | | 1.8 ^W | | 19 ^W | | NS
0.5 | | 3.3 | | NS
3 | NS | | 1.4 | | 5 | | NS | | | ı I | 29-Oct-20 | NS | 1 | 2.2 | 1 | NS | 1 1 | NS | 1 | 9.5 | 1 | NS | 1 | 3 | 1.5 | ĺ | 1.4 | | NS | 1 | 2.7 | 1 | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|----------------------------------|-------------|------|-------------------------|------|-------------|------|-------------|--------|-------------|------|-------------|------|-------------|------|-------------|------|------------------|--------|-------------------------|------|----------------|------| | TO-15 | Sample Date | | Qual | 8-Feb-08 | 0.21 | | NS | | NS | | NS | | 0.23 | | NS | | NS | | NS | | 0.69 | | 1.93 | | NS | | | | 27-Mar-08 | NS | | 0.304 | | NS | | NS | | NS | | 0.152 | | NS | | NS | | NS
0.517 | | 0.958 | | 0.681 | | | | 25-Apr-08
29-May-08 | NS
NS | | NS
NS | | 1.72
NS | | NS
0.6 | | NS
NS | | NS
NS | | 0.644
NS | | NS
1 | | 0.517
1.26 | | NS
0.48 | | 0.338
NS | | | | 27-Jun-08 | 7.46 | | NS | | NS | | NS | | 1.15 | | NS | | NS | | NS | | NS | | 0.638 | | 0.736 | | | | 31-Jul-08 | NS | | 1.86 | | NS | | NS | | NS | | NS | | NS | | NS | | 0.885 | | NS | | 0.685 | | | | 28-Aug-08 | NS | | NS | | 0.838 | | NS | | NS | | NS | | NS | | NS | | 0.669 | | 0.653 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 2.5 | U | NS | | NS | | NS | | 2.5 | U | NS | | | | 2.5 | U | | | 27-Oct-08 | 11.4 | | NS | | NS | | NS | | 2.5 | U | NS | | NS | | NS | | 2.5 | U | NS | | 2.9 | | | | 25-Nov-08 | NS | | 2.5 | U | NS | | NS | | NS | | 2.5 | U | NS | | NS | | 6.4 | | 5.2 | | NS | | | | 18-Dec-08 | NS | | NS | | 2.5 | U | NS | | NS | | NS | | 2.5 | U | NS | | NS | | 2.5 | U | 2.5 | U | | | 21-Jan-09 | NS | | NS | | NS | | 2.5 | U | NS | | NS | | NS | | 2.5 | U | 2.5 | U | NS | | 2.5 | U | | | 25-Feb-09
26-Mar-09 | 17.5
NS | | NS
0.491 | U | NS
NS | | NS
NS | | 4
NS | | NS
0.982 | U | NS
NS | | NS
NS | | 6.2
NS | | 2.9
1.09 | | NS
1.55 | | | | 29-Apr-09 | NS | | 0.491
NS | | 0.265 | | NS | | NS | | NS | | 0.378 | | NS | | 0.707 | | NS | | 0.801 | | | | 22-Jul-09 | 3.49 | | NS | | 20 | U | 0.982 | U | NS | | 0.737 | | NS | | NS | | 56.4 | | 0.86 | | NS | | | | 9-Oct-09 | NS | | 0.707 | | NS | _ | NS | _ | 0.781 | | NS | | 0.648 | | 20.5 | U | 1.36 | | NS | | 0.584 | | | | 15-Jan-10 | 2.87 | | NS | | 0.354 | | 0.29 | | NS | | 0.314 | | NS | | NS | | 1.06 | | 1.17 | | NS | | | | 21-Apr-10 | NS | | 0.211 | | NS | | NS | | 0.933 | | NS | | 1.42 | | 1.13 | | 0.653 | | NS | | 0.702 | | | | 16-Jul-10 | 8.3 | | NS | | 8.23 | | 8.09 | | NS | | 6.27 | | NS | | NS | | 4.28 | | 5.05 | | NS | | | |
15-Oct-10 | NS | | 1.29 | | NS | | NS | | 1.61 | | NS | | 1.1 | | 1.38 | | 1.86 | | NS | | 2.35 | | | | 26-Jan-11 | 1.23 | | 1.4 | | NS | | 1.6 | | NS | | 0.491 | U | NS | | 1.35 | | 6.93 | | 10.4 | | NS | | | | 28-Feb-11 | NS | | NS
0.845 | | 0.982 | U | NS | | NS
0.055 | | NS | | NS | | NS | | NS
2.06 | | NS | | NS | | | | 27-Apr-11 | NS
1.29 | | 0.845
NS | | NS
2.67 | | NS
0.61 | | 0.855
NS | | NS
0.541 | | 1.24
NS | | 1.06
NS | | 2.06
2.48 | | NS
0.541 | | 1.09
NS | | | | 26-Jul-11
28-Oct-11 | NS | | 2.5 | U | NS | | NS | | 2.5 | U | 0.341
NS | | 2.5 | U | 2.5 | U | 3.7 | | 0.341
NS | | 3.1 | | | | 23-Jan-12 | 3 | | NS | | 0.76 | | 0.49 | U | NS | Ü | 0.71 | | NS | | NS | Ü | 2.7 | | 2.8 | | NS | | | | 13-Apr-12 | NS | | 0.49 | U | NS | | NS | | 0.49 | U | NS | | 0.49 | U | 1.1 | | 3.9 | | NS | | 1.3 | | | | 2-Jul-12 (resample) | NS | 2.5 | U | NS | | | | 23-Jun-12 | 4.1 | | NS | | 1.3 | | 1.2 | | NS | | 1.1 | | NS | | NS | | 2.1 | | 1.1 | | NS | | | | 1-Nov-12 | NS | | 1.7 | | NS | | NS | | 2.5 | | NS | | 3.1 | | 3 | | 3.2 | | NS | | 3.3 | | | | 1-Feb-13 | 1.2 | | NS | | 0.23 | | 0.21 | | NS | | 0.3 | | NS | | NS | | 1 | | 0.86 | | NS | | | | 29-Apr-13 | NS | | 0.54 | | NS | | NS | | 0.74 | | NS | | 0.66 | | 0.83 | | 1 | | NS
2.0 | | 0.84 | | | 1,2,4-Trimethylbenzene | 9-Jul-13
18-Oct-13 | 4.2
NS | | NS
4.8 | | 1.6
NS | | 1.8
NS | | NS
4.3 | | 1.8
NS | | NS
5.6 | | NS
6.4 | | 2
5.0 | | 2.0
NS | | NS
5.7 | | | | 9-Jan-14 | 2.7 | | NS | | 2.7 | | 3.8 | | NS | | 3.8 | | NS | | NS | | 12.0 | | 13.0 | | NS | | | | 24-Apr-14 | NS | | 0.098 | U | NS | | NS | | 0.098 | U | NS | | 0.13 | | 0.098 | U | 0.5 | | 0.1 | | 2.6 | | | | 1-Aug-14 | 4.1 | | NS | | 6.5/5.1 | | 3.0/3.6 | | NS | | NS | | NS | | NS | | 2.6 | | 6.3/4.3 | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 1.1 | | NS | | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 1.2 | | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.37 | | NS | | NS | | 0.28 | | 0.6 | | 0.59 | | 0.50 | | 1.0 | | 1.2 | | NS | | | | 20-Jan-15 | 0.19 | | NS | | 0.098 | U | 0.098 | U | NS | | 0.098 | U | NS | | NS | | 0.3 | | 0.4 | | NS | | | | 30-Mar-15 (resample) | NS | 0.55 | | NS | | | | 22-Apr-15 | NS
0.44 | | 0.27
NS | | NS
1.1 | | NS
5 | U | 0.17 | | NS
0.80 | | 0.24 | | 0.33/0.37 | | 0.33
0.47 ° | | NS
0.66 ^o | | 0.43 | | | | 21-Jul-15
23-Sept-15 resample | 0.44
NS | | NS
NS | | NS | | S
NS | | NS
NS | | 0.89
NS | | NS
NS | | NS
1.7 | | NS | | 0.66
NS | | NS
NS | | | | 29-Oct-15 | NS | | 0.43 | | NS | | NS | | 0.78 | | NS | | 0.87 | | 0.64 | | 0.48 | | NS | | 0.76 | | | | 4-Dec-15 resample | NS | | 0.2 | U | NS | | | 27-Jan-16 | 0.32 | | NS | | 0.098 | U | 0.17 | | NS | | 0.098 | U | NS | | NS | | 0.55 | | 0.38 | | NS | | | | 20-Apr-16 | NS | | 0.39 | | NS | | NS | | 0.57 | | NS | | 0.79 | | 0.49 | | 1 | | NS | | 0.94 | | | | 20-Jul-16 | 2.2 | | NS | | 2.6 | | 2.3 | | NS | | 2.4 | | NS | | NS
1.2 | | 3.2 | | 2.6 | | NS | | | | 21-Oct-16
31-Jan-17 | NS
1.3 | | 0.8
NS | | NS
0.61 | | NS
0.69 | | 0.74
NS | | NS
0.74 | | 1.1
NS | | 1.2
NS | | 1.6
5.1 | | NS
4.9 | | 1.3
NS | | | | 17-Apr-17 | NS | | 0.16 | | NS | | NS | | 0.21 | | NS | | 0.2 | | 0.2 | | 0.29 | | NS | | 0.33 | | | | 26-Jul-17 | 0.28 | | NS | | 0.098 | U | 0.3 | | NS | | 0.36 | | NS | | NS | | 0.34 | | 0.29 | | NS | | | | 12-Oct-17 | NS
0.14 | | 0.95 | | NS
0.009 | *** | NS
0.18 | | 0.58 | | NS
0.12 | | 2.6 | | 2.1 | | 1.9 | | NS | | 1.6 | | | | 10-Jan-18 | 0.14
NS | | NS
0.31 ^M | | 0.098
NS | U | 0.18
NS | | NS
0.98 | U | 0.12
NS | | NS
0.98 | U | NS
0.98 | U | 0.88
0.098 | U | NS
NS | | 0.76
0.98 | U | | | 11-Apr-18
23-May-18 | NS
NS | | NS | | NS
NS | | NS
NS | | 0.98
NS | U | NS
NS | | 0.98
NS | | 0.98
NS | " | 0.098
NS | 0 | 0.15 | U | 0.98
NS | | | | 27-Jul-18 | 0.49 | U | NS | | 0.49 | U | 0.49 | U | NS | | 0.49 | U | NS | | NS | | 0.49 | U | 0.49 | U | NS | | | | 24-Oct-18 | NS | | 0.49 | U | NS | | NS | ļ ,, l | 0.49 | U | NS | | 0.49 | U | 0.49 | U | 0.49 | U | NS | | 0.49 | U | | | 16-Jan-19 | 0.098
NS | U | NS
0.098 | U | 0.098
NS | U | 0.098
NS | U | NS
0.098 | U | 0.098
NS | U | NS
0.12 | U | NS
0.15 | U | 0.098
0.15 | U
U | 0.098
NS | U | NS
0.15 | U | | | 12-Apr-19
29-Jul-19 | NS
2.9 | | 0.098
NS | U | 3.1 | | 4.3 | | 0.098
NS | U | 5.3 | | NS | | NS
NS | | 1.9 | 0 | 3.3 | | NS | U | | | 26-Sep-19 | NS | 0.5 | | NS | | | | 29-Oct-19 | NS | | 1.9 | | NS | | NS | | 1.5 | | NS | | 0.3 | | 1.7 | | 2.2 ^D | | 2.7 ^D | | 2 ^D | | | | 21-Jan-20 | 0.17 | | NS | | 0.25 | | 0.24 | | NS | | 0.22 | | NS | | NS | | 2.10 | , | 3.10 | | NS | | | | 22-Apr-20
23-Jul-20 | NS
0.098 | U | 0.098
NS | U | NS
0.098 | U | NS
0.098 | U | 0.098
NS | U | NS
0.2 | U | 0.098
NS | U | 0.098
NS | U | 0.098
3.9 | U | NS
4.9 | | 0.098
NS | U | | | 29-Oct-20 | NS | | 0.098 | U | NS | 5 | NS | | 0.098 | U | NS | | 0.098 | U | 0.098 | U | 0.098 | U | NS | | 0.098 | U | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|----------------------------------|-------------|------|-------------|------|-------------|------|-------------|------|-------------------|------|-------------|------|---------------|---------------------------|------|-------------------|--------|----------------------------|-------|-------------------|------| | TO-15 | Sample Date | MIP-I | Qual | MIP-2 | Qual | MP-3 | Qual | MP-4 | Qual | MIP-5 | Qual | MP-0 | Qual | Qual | | Qual | | Qual | IMP-2 | Qual | IMP-3 | Qual | | | 8-Feb-08 | 0.1 | U | NS | | NS | | NS | | 0.1 | U | NS | | NS | NS | | 0.47 | | 0.66 | | NS | | | | 27-Mar-08 | NS | | 0.14 | | NS | | NS | | NS | | 0.098 | U | NS | NS | | NS | | 0.349 | | 0.275 | | | | 25-Apr-08 | NS | | NS | | 1.6 | | NS | | NS | | NS | | 0.228 | NS | | 0.192 | | NS | | 0.134 | | | | 29-May-08 | NS | | NS | | NS | | 0.18 | | NS | | NS | | NS | 0.32 | | 0.43 | | 0.15 | | NS | | | | 27-Jun-08 | 5.16 | | NS | | NS | | NS | | 0.463 | | NS | | NS | NS | | NS | | 0.236 | | 0.25 | | | | 31-Jul-08 | NS | | 0.713 | | NS | | NS | | NS | | NS | | NS | NS | | 0.276 | | NS | | 0.224 | | | | 28-Aug-08 | NS | | NS | | 0.497 | | NS | | NS | | NS | | 0.215 | NS | | 0.248 | | 0.233 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 2.5 | U | NS | | NS | | NS | 2.5 | U | NS | | 2.5 | | 2.5 | U | | | 27-Oct-08 | 7.8 | | NS | | NS | | NS | | 2.5 | U | NS | | NS | NS | | 2.5 | U | NS | | 2.5 | U | | | 25-Nov-08 | NS | | 2.5 | U | NS | | NS | | NS | | 2.5 | U | NS | NS | | 2.5 | U | 2.5 | U | NS | | | | 18-Dec-08 | NS | | NS | | 2.5 | U | NS | | NS | | NS | | 2.5 U | NS | | NS | | NS | U | 2.5 | U | | | 21-Jan-09 | NS | | NS | | NS | | 2.5 | U | NS | | NS | | NS | 2.5 | U | 2.5 | U | NS | | 2.5 | U | | | 25-Feb-09 | 9.1 | | NS | | NS | | NS | | 2.5 | U | NS | | NS | NS | | 2.5 | U | 2.5 | U | NS | | | | 26-Mar-09 | NS | | 0.491 | U | NS
0.147 | | NS | | NS | | 0.982 | U | NS
0.120 | NS | | NS | | 0.337 | | 0.425 | | | | 29-Apr-09 | NS | | NS | | 0.147 | *** | NS | | NS | | NS
0.401 | ** | 0.128 | NS | | 0.211 | | NS
0.275 | | 0.241 | | | | 22-Jul-09 | 3
NG | | NS
0.216 | | 20
NG | U | 0.982 | U | NS
0.241 | | 0.491 | U | NS
0.187 | NS | | 22.7 | | 0.275 | | NS
0.226 | | | | 9-Oct-09 | NS
2.15 | | 0.216 | | NS | | NS | | 0.241 | | NS
0.108 | | 0.187 | 20.5 | U | 0.388 | | NS
0.224 | | 0.226 | | | | 15-Jan-10 | 2.15
NS | | NS
0.098 | U | 0.118
NS | | 0.098
NS | U | NS
0.491 | U | 0.108
NS | | NS
0.491 U | NS
0.491 | U | 0.29
0.177 | | 0.334
NS | | NS
0.206 | | | | 21-Apr-10
16-Jul-10 | 2.76 | | 0.098
NS | U | 1.88 | | NS
1.81 | | 0.491
NS | | 1.67 | | 0.491 U
NS | 0.491
NS | 0 | 1.08 | | 1.25 | | 0.206
NS | | | | 15-Oct-10 | 2.76
NS | | 0.418 | | 1.88
NS | | NS | | 0.383 | | NS | | 0.275 | 0.324 | | 0.545 | | NS | | 0.54 | | | | 26-Jan-11 | 0.982 | U | 0.418 | | NS
NS | | 0.472 | | 0.383
NS | | 0.491 | U | 0.273
NS | 0.491 | U | 1.99 | | 2.87 | | NS | | | | 28-Feb-11 | 0.982
NS | | 0.437
NS | | 0.982 | U | 0.472
NS | | NS
NS | | 0.491
NS | | NS
NS | 0.491
NS | | NS | | NS | | NS | | | | 27-Apr-11 | NS
NS | 1 | 0.255 | | 0.982
NS | | NS | | 0.27 | | NS
NS | | 0.368 | 0.329 | | 0.599 | | NS
NS | | 0.354 | | | | 26-Jul-11 | 0.688 | | 0.233
NS | | 0.885 | | 0.182 | | NS | | 0.492 | U | 0.308
NS | NS | | 0.664 | | 0.492 | U | 0.334
NS | | | | 28-Oct-11 | NS | | 2.5 | U | NS | | NS | | 2.5 | U | NS | | 2.5 U | 2.5 | U | 2.5 | U | NS | | 2.5 | U | | | 23-Jan-12 | 0.99 | | NS | | 0.49 | U | 0.49 | U | NS | | 0.49 | U | NS S | NS | | 0.71 | | 0.83 | | NS | | | | 13-Apr-12 | NS | | 0.49 | U | NS | | NS | _ | 0.49 | U | NS | _ | 0.49 U | 0.49 | U | 1.1 | | NS | | 0.49 | U | | | 2-Jul-12 (resample) | NS | NS | | NS | | 2.5 | U | NS | | | | 23-Jun-12 | 1.6 | | NS | | 0.49 | U | 0.49 | U | NS | | 0.49 | U | NS | NS | | 0.49 | | 0.49 | U | NS | | | | 1-Nov-12 | NS | | 0.25 | | NS | | NS | | 0.39 | | NS | | 0.53 | 0.5 | | 0.56 | | NS | | 0.63 | | | | 1-Feb-13 | 0.42 | | NS | | 0.098 | U | 0.098 | U | NS | | 0.098 | U | NS | NS | | 0.3 | | 0.24 | | NS | | | | 29-Apr-13 | NS | | 0.25 | U | NS | | NS | | 0.22 | | NS | | 0.18 | 0.22 | | 0.3 | | NS | | 0.27 | | | | 9-Jul-13 | 1.5 | | NS | | 0.39 | | 0.37 | | NS | | 0.38 | | NS | NS | | 0.43 | | 0.44 | | NS | | | 1,3,5-Trimethylbenzene | 18-Oct-13 | NS | | 0.53 | | NS | | NS | | 0.52 | | NS | | 0.75 | 0.99 | | 0.44 | | NS | | 0.53 | | | | 9-Jan-14 | 0.77 | | NS | | 0.69 | | 0.96 | | NS | | 0.98 | | NS | NS | | 2.9 | | 3.1 | | NS | | | | 24-Apr-14
 NS | | 0.098 | U | NS | | NS | | 0.098 | U | NS | | 0.098 U | 0.098 | U | 0.14 | | 0.098 | U | 0.50 | | | | 1-Aug-14 | 0.90 | | NS | | 1.00 | | 0.60 | | NS | | NS | | NS | NS | | 0.46 | | 0.86 | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 0.23 | | NS | NS | | NS | | NS | | NS | | | | 12-Sept-14 (resample) | NS | 0.15 | | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.15 | U | NS | | NS | | 0.15 | U | 0.15 | U | 0.15 U | 0.15 | U | 0.15 | U | 0.20 | U | NS | | | | 20-Jan-15 | 0.098 | U | NS | | 0.098 | U | 0.098 | U | NS | | 0.098 | U | NS | NS | | 0.15 | U | 0.11 | | NS | | | | 30-Mar-15 (resample) | NS | NS | | NS | | 0.11 | U | NS | | | | 22-Apr-15 | NS | | 0.10 | U | NS | *** | NS | | 0.098 | U | NS
0.2 | ** | 0.098 U | 0.14 | U | 0.098
0.20 ° | U | NS
0.14 ^{J, O} | | 0.12 | | | | 21-Jul-15 | 0.2
NS | U | NS
NS | | NS | U | NS | U | NS
NS | | 0.3
NS | U | NS
NS | NS
0.48 | | 0.20
NS | U | NS | | NS
NS | | | | 23-Sept-15 resample
29-Oct-15 | NS
NS | 1 | 0.3 | U | NS
NS | | NS
NS | | 0.16 ^J | | NS
NS | | 0.4 U | 0.48
0.13 ^J | | 0.15 ^J | | NS
NS | | 0.17 ^J | | | | 4-Dec-15 resample | NS
NS | | 0.3 | U | NS | | NS | | NS | | NS
NS | | NS | NS | | NS | | NS | | NS | | | | 27-Jan-16 | 0.1 | | NS | | 0.098 | U | 0.098 | U | NS | | 0.098 | U | NS | NS | | 0.13 | | 0.098 | U | NS | | | | 20-Apr-16 | NS | 1 | 0.098 | U | NS | | NS | 1 | 0.098 | U | NS | | 0.18 | 0.098 | | 0.26 | | NS | 1 - 1 | 0.18 | | | | 20-Jul-16 | 0.78 | | NS | | 1.2 | | 0.88 | | NS | | 0.96 | | NS | NS | | 1.3 | | 1 | | NS | | | | 21-Oct-16 | NS | 1 | 0.17 | | NS | | NS | | 0.18 | | NS | | 0.19 | 0.28 | | 0.53 | | NS | | 0.34 | | | | 31-Jan-17 | 0.36 | | NS | | 0.13 | | 0.15 | | NS | | 0.15 | | NS | NS | | 1.3 | | 1.2 | | NS | | | | 17-Apr-17 | NS | | 0.15 | U | NS | | NS | | 0.15 | U | NS | | 0.15 U | 0.15 | U | 0.15 | U | NS | 1 | 0.15 | U | | | 26-Jul-17
12-Oct-17 | 0.098
NS | U | NS
0.16 | | 0.098
NS | U | 0.098
NS | U | NS
0.16 | | 0.098
NS | U | NS
0.3 U | NS
0.4 | | 0.098
0.28 | U
U | 0.098
NS | U | NS
0.25 | U | | | 12-Oct-17
10-Jan-18 | 0.098 | U | 0.16
NS | | NS
0.098 | U | NS
0.098 | U | 0.16
NS | 1 | NS
0.098 | U | NS U | 0.4
NS | | 0.28 | | NS
NS | | 0.25
0.12 | U | | | 11-Apr-18 | NS | | 0.098 | U | NS | | NS | | 0.98 | U | NS | | 0.98 U | 0.98 | U | 0.098 | U | NS | | 0.98 | U | | | 23-May-18 | NS | NS | | NS | | 0.15 | U | NS | | | | 27-Jul-18 | 0.49 | U | NS | | 0.49 | U | 0.49 | U | NS | 1 | 0.49 | U | NS | NS | | 0.49 | U | 0.49 | U | NS | | | | 24-Oct-18 | NS
0.1 | | 0.49 | U | NS
0.008 | 11 | NS
0.009 | *** | 0.49 | U | NS
0.008 | *** | 0.49 U | 0.49 | U | 0.49 | U | NS
0.12 | | 0.49 | U | | | 16-Jan-19
12-Apr-19 | 0.1
NS | | NS
0.098 | U | 0.098
NS | U | 0.098
NS | U | NS
0.098 | U | 0.098
NS | U | NS
0.12 U | NS
0.15 | U | 0.098
0.15 | U
U | 0.12
NS | | NS
0.25 | | | | 12-Apr-19
29-Jul-19 | 0.68 | | 0.098
NS | 0 | 0.75 | | NS
1 | | 0.098
NS | | 1.2 | | 0.12 U
NS | NS
NS | 0 | 0.13 | U | 1.8 | | 0.25
NS | | | | 26-Sep-19 | NS | NS | | NS | | < 0.15 | U | NS | | | | 29-Oct-19 | NS | | 0.4 | | NS | | NS | | 0.47 | | NS | | 0.098 U | 0.38 | | 0.55 ^D | | 0.73 ^D | | 0.49 ^D | U | | | 21-Jan-20 | 0.10 | U | NS | | 0.10 | U | 0.10 | U | NS | 1 | 0.10 | U | NS | NS | | 0.54 | | 0.87 | | NS | | | | 22-Apr-20 | NS | | 0.098 | U | NS | | NS | | 0.098 | U | NS | | 0.098 U | 0.098 | U | 0.29 | | NS | | 0.41 | | | | 23-Jul-20
29 Oct 20 | 0.3 | 1 | NS
0.008 | 11 | 0.098 | U | 0.098 | U | NS
0.008 | U | 0.2 | U | NS
0.008 | NS
0.008 | U | 0.2 | U | 1.1
NC | | NS
0.37 | | | | 29-Oct-20 | NS | | 0.098 | U | NS | | NS | 1 | 0.098 | 1 0 | NS | | 0.098 U | 0.098 | U | 0.34 | U | NS | | 0.37 | 1 1 | | Volatile Organic Compounds via | I I | MP-1 | | MP-2 | | MP-3 | | MP-4 | T 1 | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------|--------------------------|------|--------------------------|------|-------------------------|------|-------------------------|------|-------------------|------|--------------------------|------|-------------------|------|-------------------|------|--------------------------------|--------|--------------------------|--------|-------------------|------| | TO-15 | Sample Date | 1411-1 | Qual | 1411 -2 | Qual | WII -5 | Qual | 1411 -4 | Qual | WH -3 | Qual | 1411-0 | Qual | IVII -7 | Qual | 1411 -0 | Qual | 1:V11 -1 | Qual | 11411-2 | Qual | 1011-5 | Qual | | | 8-Feb-08 | 0.05 | U | NS | | NS | | NS | | 0.05 | U | NS | | NS | | NS | | 0.05 | U | 0.05 | U | NS | | | | 27-Mar-08 | NS | | 0.051 | U | NS | | NS | | NS | | 0.051 | U | NS | | NS | | NS | | 0.051 | U | 0.051 | U | | | 25-Apr-08 | NS | | NS | | 0.051 | U | NS
0.05 | U | NS | | NS | | 0.75 | | NS
0.05 | U | 0.051 | U | NS
0.05 | U | 0.051 | U | | | 29-May-08
27-Jun-08 | NS
0.08 | U | NS
NS | | NS
NS | | 0.05
NS | 0 | NS
0.051 | U | NS
NS | | NS
NS | | 0.05
NS | U | 0.05
NS | U | 0.05
0.051 | II U | NS
0.051 | U | | | 31-Jul-08 | NS | | 0.051 | U | NS | | NS | | NS | | NS | | NS | | NS | | 0.051 | U | NS | | 0.051 | U | | | 28-Aug-08 | NS | | NS | | 0.051 | U | NS | | NS | | NS | | 0.051 | U | NS | | 0.051 | U | 0.051 | U | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 0.1 | U | NS | | NS | | NS | | 0.1 | U | NS | | 0.1 | | 0.1 | U | | | 27-Oct-08 | 0.1 | U | NS | | NS | | NS | | 0.1 | U | NS | | NS | | NS | | 0.1 | U | NS | | 0.1 | U | | | 25-Nov-08 | NS | | 0.1 | U | NS | U | NS | | NS | | 0.1 | U | NS
0.1 | U | NS | | 0.1 | U | 0.1 | U | NS | U | | | 18-Dec-08
21-Jan-09 | NS
NS | | NS
NS | | 0.1
NS | U | NS
0.1 | U | NS
NS | | NS
NS | | NS | 0 | NS
0.1 | U | NS
0.1 | U | 0.1
NS | 0 | 0.1
0.1 | IJ | | | 25-Feb-09 | 0.1 | U | NS | | NS | | NS | | 0.1 | U | NS | | NS | | NS | | 0.1 | U | 0.1 | U | NS | | | | 26-Mar-09 | NS | | 0.255 | U | NS | | NS | | NS | | 0.511 | U | NS | | NS | | NS | | 0.051 | U | 0.051 | U | | | 29-Apr-09 | NS | | NS | | 0.061 | | NS | | NS | | NS | | 0.051 | U | NS | | 0.051 | U | NS | | 0.051 | U | | | 22-Jul-09 | 0.255 | U | NS | | 0.255 | U | 0.511 | U | NS | | 0.255 | U | NS | | NS | | 0.051 | U | 0.051 | U | NS | | | | 9-Oct-09
15-Jan-10 | NS
0.051 | U | 1.72
NS | | NS
0.061 | | NS
0.051 | U | 0.051
NS | U | NS
0.051 | U | 0.102
NS | | 10.7
NS | U | 0.051
0.051 | U
U | NS
0.051 | U | 0.051
NS | U | | | 21-Apr-10 | 0.031
NS | 0 | 0.051 | U | 0.061
NS | | 0.031
NS | 0 | 0.255 | U | 0.031
NS | 0 | 0.256 | U | 0.255 | U | 0.051 | U | 0.031
NS | 0 | 0.051 | U | | | 16-Jul-10 | 0.051 | U | NS | | 1.98 | | 0.051 | U | NS | | 0.386 | U | NS | | NS | | 0.051 | U | 0.051 | U | NS | | | | 15-Oct-10 | NS | | 0.051 | U | NS | | NS | | 0.051 | U | NS | | 0.051 | U | 0.051 | U | 0.051 | U | NS | | 0.051 | U | | | 26-Jan-11 | 0.511 | U | 0.051 | U | NS | | 0.051 | U | NS | | 0.255 | U | NS | | 0.255 | U | 0.255 | U | 0.255 | U | NS | | | | 28-Feb-11 | NS | | NS | | 0.511 | U | NS | | | 27-Apr-11
26-Jul-11 | NS
0.17 | U | 0.051
NS | U | NS
0.17 | U | NS
0.051 | U | 0.051 | U | NS
0.256 | U | 0.051
NS | U | 0.051
NS | U | 0.051 | U
U | NS
0.256 | | 0.051 | U | | | 28-Oct-11 | NS | 0 | 1.3 | U | NS | 0 | 0.031
NS | 0 | NS
1.3 | U | 0.236
NS | 0 | 1.3 | U | 1.3 | U | 0.051
1.3 | U | 0.236
NS | | NS
1.3 | U | | | 23-Jan-12 | 0.26 | U | NS | | 0.26 | U | 0.26 | U | NS | | 0.26 | U | NS | | NS | | 0.26 | U | 0.26 | U | NS | | | | 13-Apr-12 | NS | | 0.13 | U | NS | | NS | | 0.13 | U | NS | | 0.13 | U | 0.13 | U | 0.13 | U | NS | | 0.13 | U | | | 2-Jul-12 (resample) | NS | 0.64 | U | NS | | | | 23-Jun-12 | 0.26 | U | NS | | 0.26 | U | 0.26 | U | NS | | 0.26 | U | NS | | NS | | 0.26 | U | 0.26 | U | NS | | | | 1-Nov-12
1-Feb-13 | NS
0.065 | | 0.026
NS | U | NS
0.026 | U | NS
0.026 | U | 0.026
NS | U | NS
0.026 | U | 0.026
NS | U | 0.026
NS | U | 0.026
0.026 | U
U | NS
0.026 | U | 0.026
NS | U | | | 29-Apr-13 | 0.063
NS | | 0.41 | | 0.026
NS | 0 | 0.026
NS | 0 | 0.045 | | 0.026
NS | | 0.026 | U | 0.026 | U | 0.026 | U | 0.026
NS | 0 | 0.026 | U | | | 9-Jul-13 | 0.038 | U | NS | | 0.026 | U | 0.085 | | NS | | 0.026 | U | NS | | NS | | 0.026 | U | 0.026 | U | NS | | | Vinyl chloride* | 18-Oct-13 | NS | | 0.051 | U | NS | | NS | | 0.074 | | NS | | 0.051 | U | 0.063 | | 0.051 | U | NS | | 0.051 | U | | | 9-Jan-14 | 0.092 | | NS | | 0.051 | U | 0.051 | U | NS | | 0.051 | U | NS | | NS | | 0.051 | U | 0.051 | U | NS | | | | 24-Apr-14 | NS | | 0.026 | U | NS | | NS
0.077 | ** | 0.026 | U | NS | | 0.026 | U | 0.10 | | 0.026 | U | 0.026 | U | 0.077 | U | | | 1-Aug-14
27-Aug-14 | 0.21
NS | | NS
NS | | 0.38
NS | U | 0.077
NS | U | NS
NS | | NS
0.026 | U | NS
NS | | NS
NS | | 0.051
NS | U | 0.051
NS | U | NS
NS | | | | 12-Sept-14 (resample) | NS | 0.038 | U | NS | | NS | U | NS | | | | 22-Oct-14 | NS | | 0.038 | U | NS | | NS | | 0.038 | U | 0.038 | U | 0.24 | | 0.038 | U | 0.038 | U | 0.051 | U | NS | | | | 20-Jan-15 | 0.093 ^V | | NS | | 0.14 ^V | | 0.026 | U | NS | | 0.072^{V} | | NS | | NS | | 0.038 ^V | U | 0.026 | U | NS | | | | 30-Mar-15 (resample) | NS | 0.029 | U | NS | | | | 22-Apr-15
21-Jul-15 | NS
0.090 ^J | | 0.069 ^V
NS | | NS
0.5 | 11 | NS
3 | U | 0.060 V | | NS
0.097 ^J | | 0.026
NS | U | 0.037
NS | U | 0.026
0.096 ^{J, O} | U | NS
0.100 ^o | II. | 0.029 | U | | | 23-Sept-15 resample | 0.090
NS | | NS | | NS | 0 | NS | 0 | NS
NS | | NS | | NS
NS | | 0.1 | U | NS | | 0.100
NS | 0 | NS
NS | | | | 29-Oct-15 | NS | | 0.13 ^J | | NS | | NS | | 0.1 | U | NS | | 0.2 | U | 0.1 | U | 0.1 | U | NS | | 0.1 | U | | | 4-Dec-15
resample | NS | | 0.14 | | NS | | 27-Jan-16 | 0.026 | U | NS | | 0.2 | | 0.026 | U | NS | | 0.064 | | NS | | NS | | 0.026 | U | 0.026 | U | NS | | | | 20-Apr-16 | NS
0.13 ^L | | 0.23 | | NS
0.29 ^L | | NS
0.13 ^L | | 0.072 | | NS
0.54 ^L | | 0.026 | U | 0.026 | U | 0.026
0.13 ^L | U | NS
0.13 ^L | U | 0.026 | U | | | 20-Jul-16
21-Oct-16 | 0.13
NS | U | NS
0.34 | | 0.29
NS | | NS | U | NS
0.026 | U | 0.54
NS | | NS
0.026 | U | NS
0.026 | U | 0.026 | U
U | 0.13
NS | U | NS
0.035 | | | | 31-Jan-17 | 0.11 | | NS | | 0.27 | | 0.026 | U | NS | | 0.15 | | NS | | NS | | 0.026 | U | 0.026 | U | NS | | | | 17-Apr-17 | NS | | 0.19 | | NS | | NS | | 0.038 | U | NS | | 0.038 | U | 0.038 | U | 0.038 | U | NS | | 0.038 | U | | | 26-Jul-17
12-Oct-17 | 0.026
NS | U | NS
0.31 | | 0.3
NS | | 0.026
NS | U | NS
0.026 | U | 0.026
NS | U | NS
0.077 | U | NS
0.17 | | 0.026
0.073 | U
U | 0.026
NS | U | NS
0.064 | U | | | 10-Jan-18 | 0.19 | | NS | | 0.24 | | 0.026 | U | NS | | 0.32 | | NS | | NS | | 0.026 | U | NS | | 0.026 | U | | | 11-Apr-18 | NS | | 0.051 | U | NS | | NS | | 0.51 ^D | U | NS | | 0.51 ^D | U | 0.51 ^D | U | 0.051 | U | NS | | 0.51 ^D | U | | | 23-May-18 | NS
0.26 | T T | NS | | NS
0.26 | 17 | NS
0.26 | *** | NS | | NS
0.26 | ** | NS
NC | | NS | | NS
0.26 | ** | 0.077 | U | NS | | | | 27-Jul-18
24-Oct-18 | 0.26
NS | U | NS
0.26 | U | 0.26
NS | U | 0.26
NS | U | NS
0.26 | U | 0.26
NS | U | NS
0.26 | U | NS
0.26 | U | 0.26
0.26 | U
U | 0.26
NS | U | NS
0.26 | U | | | 16-Jan-19 | 0.27 | | NS | - | 0.2 | | 0.051 | U | NS | | 0.33 | | NS | | NS | | 0.051 | U | 0.051 | U | NS | | | | 12-Apr-19 | NS
0.077 | 1.1 | 0.35 | | NS
0.077 | ,,, | NS
0.051 | 1,1 | 0.051 | U | NS
0.051 | *** | 0.064 | U | 0.077 | U | 0.077 | U | NS
0.051 | *** | 0.077 | U | | | 29-Jul-19
26-Sep-19 | 0.077
NS | U | NS
NS | | 0.077
NS | U | 0.051
NS | U | NS
NS | | 0.051
NS | U | NS
NS | | NS
NS | | 0.051
NS | U | 0.051
<0.077 | U
U | NS
NS | | | | 29-Oct-19 | NS | | 0.051 | U | NS | | NS | | 0.051 | U | NS | | 0.051 | U | 0.051 | U | 0.26 ^D | U | 0.26 ^D | U | 0.26 ^D | U | | | 21-Jan-20 | 0.05 | U | NS | | 0.05 | U | 0.05 | U | NS | | 0.05 | U | NS | | NS | | 0.05 | U | 0.05 | U | NS | | | | 22-Apr-20
23-Jul-20 | NS
0.051 | U | 0.051
NS | U | NS
0.68 | | NS
0.051 | U | 0.051
NS | U | NS
0.1 | U | 0.051
NS | U | 0.051
NS | U | 0.051
0.1 | U
U | NS
0.1 | U | 0.051
NS | U | | | 29-Oct-20 | NS | | 0.051 | U | NS | | NS | | 0.051 | U | NS | | 0.051 | U | 0.051 | U | 0.051 | U | NS | | 0.051 | U | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------------------|------------|------|------------|------|------------------|------|------------|------|-------------------|------|------------|------|--------------|-------------|------|------------------|------|------------------|------|----------------|------| | TO-15 | Sample Date | WIF-I | Qual | | Qual | MIF-3 | Qual | WIF-4 | Qual | MIF-5 | Qual | WIF-0 | Qual | Qual | | Qual | | Qual | INIT-2 | Qual | IIVIF-3 | Qual | | | 8-Feb-08 | 0.55 | Quui | NS | | NS | | NS | | 0.63 | Quui | NS | | NS | NS | | 1.04 | | 18.3 | | NS | | | | 27-Mar-08 | NS | | 0.893 | | NS | | NS | | NS | | 0.389 | | NS | NS | | NS | | 2.17 | | 1.33 | | | | 25-Apr-08 | NS | | NS | | 0.815 | | NS | | NS | | NS | | 0.97 | NS | | 2.54 | | NS | | 1.81 | | | | 29-May-08 | NS | | NS | | NS | | 5 | | NS | | NS | | NS | 7.58 | | 10.1 | | 3.34 | | NS | | | | 27-Jun-08 | 12.6 | | NS | | NS | | NS | | 1.5 | | NS | | NS | NS | | NS | | 1.91 | | 2.33 | | | | 31-Jul-08 | NS | | 2.4 | | NS | | NS | | NS | | NS | | NS | NS | | 2.08 | | NS | | 1.55 | | | | 28-Aug-08 | NS | | NS | | 2.33 | | NS | | NS | | NS | | 1.44 | NS | | 2.13 | | 1.94 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 4.3 | U | NS | | NS | | NS | 4.3 | U | NS | | 4.3 | U | 4.3 | U | | | 27-Oct-08 | 41.6 | | NS | | NS | | NS | | 4.3 | U | NS | | NS | NS | | 4.3 | U | NS | | 4.3 | U | | | 25-Nov-08 | NS | | 4.7 | | NS | | NS | | NS | | 4.3 | U | NS | NS | | 8.5 | | 8.9 | | NS | | | | 18-Dec-08 | NS | | NS | | 4.3 | U | NS | | NS | | NS | | 4.3 U | NS | | NS | | 4.3 | U | 4.3 | U | | | 21-Jan-09 | NS | | NS | | NS | | 4.3 | U | NS | ** | NS | | NS | 4.3 | U | 4.3 | U | NS | | 4.3 | U | | | 25-Feb-09 | 37.6 | | NS | | NS | | NS | | 4.3 | U | NS | | NS
NG | NS | | NC NC | | 9.3 | | NS | | | | 26-Mar-09 | NS
NS | | 1.35 | | NS
0.468 | | NS | | NS
NS | | 1.74 | U | NS
0.516 | NS
NS | | NS
0.933 | | 2.59
NS | | 3.56
1.06 | | | | 29-Apr-09 | 25.6 | | NS
NS | | 25.6 | | NS
1.74 | U | NS
NS | | NS
3.88 | | 0.516
NS | NS
NS | | 165 | | 3.52 | | NS | | | | 22-Jul-09
9-Oct-09 | NS
NS | | 1.62 | | NS | | NS | 0 | 1.63 | | NS | | 0.915 | 36.2 | U | 1.74 | | 3.32
NS | | 1.7 | | | | 15-Jan-10 | 18.4 | | NS | | 1.52 | | 1.48 | | NS | | 1.76 | | NS | NS | | 2.35 | | 2.65 | | NS | | | | 21-Apr-10 | NS | | 0.703 | | NS | | NS | | 3.28 | | NS | | 4.58 | 4.34 | | 6.22 | | NS | | 4.77 | | | | 16-Jul-10 | 21.8 | | NS | | 7.01 | | 6.36 | | NS | | 4.82 | | NS | NS | 1 | 4.95 | | 4.91 | | NS | 1 | | | 15-Oct-10 | NS
NS | | 1.81 | | NS | | NS | | 2.18 | | NS | | 1.7 | 1.88 | 1 | 3.4 | | NS | | 2.88 | 1 | | | 26-Jan-11 | 3.08 | | 4.24 | | NS | | 4.37 | | NS | | 3.06 | | NS | 3.17 | | 11.5 | | 13.6 | | NS | | | | 28-Feb-11 | NS | | NS | | 1.74 | U | NS | | NS | | NS | | NS | NS | | NS | | NS | | NS | | | | 27-Apr-11 | NS | | 0.694 | | NS | | NS | | 0.707 | | NS | | 0.889 | 1.15 | | 1.09 | | NS | | 1.44 | | | | 26-Jul-11 | 9.99 | | NS | | 3.96 | | 1.02 | | NS | | 0.999 | | NS | NS | | 0.956 | | 1.26 | | NS | | | | 28-Oct-11 | NS | | 4.3 | U | NS | | NS | | 4.3 | U | NS | | 4.3 U | 4.3 | U | 9.8 | | NS | | 4.3 | U | | | 23-Jan-12 | 7.9 | | NS | | 2 | | 1.3 | | NS | | 2 | | NS | NS | | 4.4 | | 14 | | NS | | | | 13-Apr-12 | NS | | 0.87 | U | NS | | NS | | 0.87 | U | NS | | 0.87 U | 0.87 | | 3.6 | | NS | | 1.1 | | | | 2-Jul-12 (resample) | NS | NS | | NS | | 4.3 | U | NS | | | | 23-Jun-12 | 12 | | NS | | 1.1 | | 0.87 | U | NS | | 0.94 | | NS | NS | | 1.7 | | 1.1 | | NS | | | | 1-Nov-12 | NS | | 2.1 | | NS | | NS | | 2.4 | | NS | | 3.3 | 2.9 | | 3.6 | | NS | | 5.3 | | | p/m-Xylene | 1-Feb-13 | 3.4 | | NS | | 0.44 | | 0.38 | | NS | | 0.59 | | NS | NS | | 1.5 | | 1.4 | | NS | | | | 29-Apr-13 | NS | | 1 | | NS | | NS | | 1.2 | | NS | | 1.2 | 1.5 | | 1.9 | | NS | | 2.4 | | | | 9-Jul-13 | 12 | | NS | | 1.9 | | 1.8 | | NS | | 1.7 | | NS | NS | | 3.2 | | 0.70 | | NS | | | | 18-Oct-13 | NS | | 5.0 | | NS | | NS | | 5.6 | | NS | | 6.3 | 8.0 | | 4.7 | | NS | | 5.9 | | | | 9-Jan-14 | 8.6 | | NS | | 7.2 | | 9.3 | | NS | | 9.7 | | NS | NS | | 23 | | 22.00 | | NS | | | | 24-Apr-14 | NS | | 0.17 | U | NS | | NS | | 0.17 | U | NS | | 0.17 U | 0.17 | U | 0.28 | | 0.17 | U | 2.6 | | | | 1-Aug-14 | 4.8 | | NS | | 2.8/3.0 | | 1.8/2.1 | | NS | | NS | | NS | NS | | 1.5 | | 2.4/2.8 | | NS | | | | 27-Aug-14 | NS | | NS | | NS | | NS | | NS | | 3.6 | | NS
NG | NS
1.2 | | NS | | NS | | NS | | | | 12-Sept-14 (resample)
22-Oct-14 | NS
NS | | NS
0.26 | U | NS
NS | | NS
NS | | NS
0.26 | U | NS
0.30 | | NS
0.5 | 1.3
0.26 | U | NS
0.76 | | NS
0.92 | U | NS
NS | | | | 20-Jan-15 | 1.1 | | NS | U | 0.21 | | 0.30 | | NS | | 0.20 | | NS | NS | | 0.70 | | 0.92 | | NS | | | | 30-Mar-15 (resample) | NS | NS | | NS | | 1.1 | | NS | | | | 22-Apr-15 | NS | | 0.71 | | NS | | NS | | 0.40 | | NS | | 0.8 | 0.66/0.76 | | 1.3 | | NS | | 1.6 | | | | 21-Jul-15 | 1.5 | | NS | | 1.7 ^J | | 9 | U | NS | | 1.9 | | NS | NS | | 1.8 ° | | 2.3 ° | | NS | | | | 23-Sept-15 resample | NS | | NS | | NS | | NS | 1 | NS | | NS | | NS | 0.71 | 1 | NS | | NS | | NS | 1 | | | 29-Oct-15 | NS | | 0.29 J | | NS | | NS | | 0.47 ^J | | NS | | 0.73 | 0.90 | | 0.8 | | NS | | 1 | | | | 4-Dec-15 resample | NS | | 0.4 | U | NS | | NS | | NS | | NS | | NS | NS | | NS | | NS | | NS | | | | 27-Jan-16 | 2.4 | | NS | | 0.51 | | 0.64 | | NS | | 0.64 | | NS | NS | 1 | 2.5 | | 2.7 | | NS | 1 | | | 20-Apr-16 | NS | | 1 | | NS | | NS | | 1.5 | | NS | | 2.1 | 1.4 | | 2.7 | | NS | | 2.5 | | | | 20-Jul-16 | 16 | | NS | | 1.4 | | 0.91 | | NS | | 1.3 | | NS | NS | 1 | 9.3 | | 3.2 | | NS | 1 | | | 21-Oct-16 | NS | | 0.43 | | NS
0.5 | | NS
0.55 | | 1.1 | | NS
0.45 | | 0.77 | 2 | | 4.1 | | NS | | 1.7 | | | | 31-Jan-17
17-Apr-17 | 2
NS | | NS
0.26 | U | 0.5
NS | | 0.55
NS | | NS
0.27 | | 0.45
NS | | NS
0.27 | NS
0.26 | 1 | 3.3
0.57 | | 1.9
NS | | NS
0.49 | 1 | | | 26-Jul-17 | 1.6 | | NS | U | 0.93 | | 0.74 | | NS | | 1.4 | | NS | NS | | 1.3 | | 0.96 | | NS | | | | 12-Oct-17 | NS | | 0.58 | | NS | | NS | | 0.68 | | NS | | 0.83 | 1 | | 0.89 | | NS | | 0.96 | | | | 10-Jan-18 | 1.4 | | NS | | 0.33 | | 0.62 | | NS | | 0.53 | | NS | NS | | 3.4 | | NS | | 1.3 | | | | 11-Apr-18 | NS | | 0.35 | | NS | | NS | | 1.7 | U | NS | | 1.7 U | 1.7 | U | 0.97 | | NS | | 1.7 | U | | | 23-May-18 | NS
0.87 | U | NS
NS | | NS
0.87 | U | NS
0.87 | U | NS
NS | | NS
0.87 | U | NS
NS | NS
NS | 1 | NS
0.87 | U | 0.31
0.87 | U | NS
NS | 1 | | | 27-Jul-18
24-Oct-18 | 0.87
NS | U | 0.87 | U | 0.87
NS | U | 0.87
NS | | 0.87 | U | NS | 0 | NS
2 | 0.87 | U | 1.6 | 0 | 0.87
NS | 0 | NS
1.3 | | | | 16-Jan-19 | 1.5 | | NS | | 0.24 | | 0.35 | | NS | | 0.42 | | NS | NS | | 0.88 | | 1.1 | | NS | | | | 12-Apr-19 | NS | | 0.3 | | NS | | NS | | 0.36 | | NS | | 0.28 | 0.52 | | 0.6 | | NS | | 1.2 | | | | 29-Jul-19 | 17 | | NS | | 17 | | 21 | | NS | | 25 | | NS | NS | | 12 | | 13 | | NS | | | | 26-Sep-19 | NS | NS | | NS
D | | 4
D
| | NS | | | | 29-Oct-19 | NS
0.82 | | 2.4 | | NS | | NS
0.04 | | 1.8 | | NS
0.60 | | 0.64 | 2.6 | 1 | 4.4 ^D | | 6.1 ^D | | 4 ^D | 1 | | | 21-Jan-20 | 0.83
NS | | NS
0.17 | U | 1.10
NS | | 0.94
NS | | NS
0.17 | U | 0.69
NS | | NS
0.17 U | NS
0.17 | U | 3.30
1.2 | | 3.80
NS | | NS
1.6 | | | | 22-Apr-20
23-Jul-20 | 2.7 | | 0.17
NS | 0 | 0.99 | | NS
0.99 | | NS | | 1.2 | | 0.17 U
NS | 0.17
NS | | 2.5 | | NS
4.6 | | NS | 1 | | | 29-Oct-20 | NS | | 0.53 | | NS | | NS | | 0.55 | | NS | | 0.45 | 0.71 | | 1.5 | | NS | | 2.3 | | | II I | | | 1 | 1 | 1 | | | | | | 1 | 1 | 1 | | 1 | 1 | 1 | 1 1 | | 1 | - | 1 1 | | Volatile Organic Compounds via | | MP-1 | | MP-2 | | MP-3 | | MP-4 | | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|------------------------------------|------------------------|------|-------------------|----------|-------------------------|------|--------------------------|----------|-------------|----------|------------------------|----------|-------------------|------|--------------|------|--------------------------|------|------------------------|----------|------------------|------| | TO-15 | Sample Date | | Qual | 8-Feb-08 | 0.2 | | NS | | NS | | NS | | 0.23 | | NS | | NS | | NS | | 0.48 | | 7.73 | | NS | | | | 27-Mar-08 | NS | | 0.273 | | NS | | NS | | NS | | 0.142 | | NS | | NS | | NS | | 0.844 | | 0.478 | | | | 25-Apr-08 | NS | | NS | | 0.37 | | NS | | NS | | NS | | 0.406 | | NS
2.26 | | 0.735 | | NS | | 0.62 | | | | 29-May-08
27-Jun-08 | NS
4.12 | | NS
NS | | NS
NS | | 1.48
NS | | NS
0.55 | | NS
NS | | NS
NS | | 2.26
NS | | 2.84
NS | | 1.02
0.672 | | NS
0.794 | | | | 27-Jul-08
31-Jul-08 | 4.12
NS | | 0.835 | | NS | | NS | | NS | | NS | | NS
NS | | NS
NS | | 0.748 | | NS | | 0.564 | | | | 28-Aug-08 | NS | | NS | | 0.804 | | NS | | NS | | NS | | 0.511 | | NS | | 0.797 | | 0.725 | | NS | | | | 30-Sep-08 | NS | | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | 2.2 | U | 2.2 | U | | | 27-Oct-08 | 9.8 | | NS | | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | 4 | | | | 25-Nov-08 | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | NS | | 3.1 | N | 2.2 | U | NS | | | | 18-Dec-08 | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | NS | | NS | | 2.2 | U | 2.2 | U | | | 21-Jan-09 | NS | | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | U | 2.2 | U | NS | | 2.2 | U | | | 25-Feb-09 | 8.9 | | NS | | NS | | NS | | 2.2 | U | NS | | NS | | NS | | 2.2 | | 3.2 | | NS | | | | 26-Mar-09 | NS | | 0.486 | | NS | | NS | | NS | | 0.868 | U | NS | | NS | | NS | | 0.922 | | 1.28 | | | | 29-Apr-09 | NS
5.34 | | NS
NS | | 0.174
5.34 | | NS
0.868 | U | NS | | NS | | 0.208 | | NS | | 0.369
72.7 | | NS | | 0.499 | | | | 22-Jul-09
9-Oct-09 | NS | | 0.542 | | 3.34
NS | | 0.868
NS | U | NS
0.586 | | 1.39
NS | | NS
0.343 | | NS
18.1 | U | 0.629 | | 1.27
NS | | NS
0.616 | | | | 15-Jan-10 | 4.51 | | NS | | 0.49 | | 0.49 | | NS | | 0.56 | | NS | | NS | | 0.833 | | 0.846 | | NS | | | | 21-Apr-10 | NS | | 0.256 | | NS | | NS | | 1.17 | | NS | | 1.56 | | 1.41 | | 1.24 | | NS | | 1.14 | | | | 16-Jul-10 | 5.07 | | NS | | 2.84 | | 2.63 | | NS | | 2.1 | | NS | | NS | | 1.88 | | 2.05 | | NS | | | | 15-Oct-10 | NS | | 0.672 | | NS | | NS | | 0.837 | | NS | | 0.659 | | 0.729 | | 1.22 | | NS | | 1.14 | | | | 26-Jan-11 | 1.08 | | 1.5 | | NS | | 1.54 | | NS | | 1.11 | | NS | | 1.15 | | 4.32 | | 5.16 | | NS | | | | 28-Feb-11 | NS | | NS | | 0.868 | U | NS | ľ | | | 27-Apr-11 | NS | | 0.286 | | NS | | NS | | 0.286 | | NS | | 0.369 | | 0.456 | | 0.451 | | NS | | 0.551 | ľ | | | 26-Jul-11 | 1.87 | | NS | | 1.45 | | 0.334 | | NS | | 0.434 | U | NS | | NS | | 0.365 | | 0.434 | | NS | ľ | | | 28-Oct-11 | NS | | 2.2 | U | NS | | NS | | 2.2 | U | NS | | 2.2 | U | 2.2 | U | 3.3 | | NS | | 2.2 | U | | | 23-Jan-12 | 2.3 | | NS
0.42 | ** | 0.76 | | 0.54 | | NS | ** | 0.79 | | NS | | NS
0.42 | ** | 1.7 | | 4.6 | | NS
0.42 | | | | 13-Apr-12
2-Jul-12 (resample) | NS
NS | | 0.43
NS | U | NS
NS | | NS
NS | | 0.43
NS | U | NS
NS | | 0.43
NS | U | 0.43
NS | U | 1.4
NS | | NS
2.2 | U | 0.43
NS | U | | | 23-Jun-12 | 3 | | NS | | 0.43 | U | 0.43 | U | NS | | 0.43 | U | NS | | NS
NS | | 0.59 | | 0.44 | | NS | ľ | | | 1-Nov-12 | NS | | 0.72 | | NS | | NS | | 0.85 | | NS | | 1.1 | | 1.1 | | 1.3 | | NS | | 1.8 | ľ | | | 1-Feb-13 | 1 | | NS | | 0.19 | | 0.17 | | NS | | 0.24 | | NS | | NS | | 0.64 | | 0.52 | | NS | ľ | | | 29-Apr-13 | NS | | 0.43 | | NS | | NS | | 0.46 | | NS | | 0.41 | | 0.52 | | 0.065 | | NS | | 0.86 | ľ | | | 9-Jul-13 | 3.2 | | NS | | 0.86 | | 0.90 | | NS | | 0.84 | | NS | | NS | | 1.3 | | 0.28 | | NS | ľ | | o-Xylene | 18-Oct-13 | NS | | 1.7 | | NS | | NS | | 1.9 | | NS | | 2.1 | | 2.9 | | 1.4 | | NS | | 1.7 | ľ | | | 9-Jan-14 | 3.4 | | NS | | 3.0 | | 4.00 | | NS | | 4.1 | | NS | | NS | | 9.8 | | 9.6 | | NS | ľ | | | 24-Apr-14 | NS | | 0.087 | U | NS | | NS | | 0.087 | U | NS | | 0.087 | U | 0.087 | U | 0.11 | | 0.087 | U | 1.2 | ľ | | | 1-Aug-14 | 1.9 | | NS | | 1.6/1.8 | | 1.10 | | NS | | NS | | NS | | NS | | 0.79 | | 1.2/1.6 | | NS | ľ | | | 27-Aug-14 | NS | | NS
NG | | NS | | NS | | NS | | 1.3 | | NS | | NS
0.52 | | NS | | NS | U | NS | | | | 12-Sept-14 (resample)
22-Oct-14 | NS
NS | | NS
0.13 | U | NS
NS | | NS
NS | | NS
0.13 | U | NS
0.13 | U | NS
0.2 | | 0.52
0.13 | U | NS
0.28 | | NS
0.35 | U | NS
NS | ľ | | | 20-Jan-15 | 0.29 | | NS | | 0.087 | U | 0.10 | | NS | 0 | 0.087 | U | NS | | NS
NS | | 0.23 | | 0.34 | | NS | ľ | | | 30-Mar-15 (resample) | NS | 0.36 | | NS | ľ | | | 22-Apr-15 | NS | | 0.26 | | NS | | NS | | 0.13 | | NS | | 0.25 | | 0.22/0.25 | | 0.38 | | NS | | 0.54 | ľ | | | 21-Jul-15 | 0.48 | | NS | | 0.59 ^J | | 4 | U | NS | | 0.53 | | NS | | NS | | 0.54 ° | | 0.73 ° | | NS | ľ | | | 23-Sept-15 resample | NS | 1.3 | | NS | | NS | | NS | | | | 29-Oct-15 | NS | | 0.16 ^J | | NS | | NS | | 0.21 | | NS | | 0.34 ^J | | 0.28 | | 0.32 | | NS | | 0.44 | | | | 4-Dec-15 resample | NS | | 0.4 | U | NS | | | 27-Jan-16 | 0.51 | | NS | | 0.13 | | 0.17 | | NS | | 0.17 | | NS | | NS | | 0.63 | | 0.84 | | NS | | | | 20-Apr-16 | NS
3.4 ^W | | 0.36 | | NS
0.84 ^w | | NS
0.43 ^{FW} | U | 0.52 | | NS
0.6 ^W | w | 0.77 | | 0.49 | | 0.92
2.7 ^w | | NS
1.3 ^V | | 0.78 | | | | 20-Jul-16
21-Oct-16 | NS | | NS
0.18 | | NS | | 0.43
NS | U | NS
0.38 | | NS | W | NS
0.27 | | NS
0.72 | | 1.3 | | NS | | NS
0.62 | | | | 31-Jan-17 | 0.88 | | NS | | 0.31 | | 0.32 | | NS | | 0.27 | | NS | | NS | | 1.7 | | 1.2 | | NS | | | | 17-Apr-17 | NS | | 0.13 | U | NS | | NS | | 0.13 | U | NS | | 0.13 | U | 0.13 | U | 0.25 | | NS | | 0.2 | | | | 26-Jul-17 | 0.45 | | NS | | 0.28 | | 0.25 | | NS | | 0.46 | | NS | | NS | | 0.41 | | 0.34 | | NS | | | | 12-Oct-17
10-Jan-18 | NS
0.44 | | 0.36
NS | | NS
0.12 | | NS
0.2 | | 0.44
NS | | NS
0.2 | | 0.52
NS | | 0.56
NS | | 0.46
1.2 | | NS
NS | | 0.42
0.53 | | | | 10-Jan-18
11-Apr-18 | 0.44
NS | | 0.13 | | NS | | NS | | 0.87 | U | NS | | 0.87 | U | 0.87 | U | 0.35 | | NS
NS | | 0.53 | U | | | 23-May-18 | NS | 0.16 | | NS | | | | 27-Jul-18 | 0.43 | U | NS | | 0.43 | U | 0.43 | U | NS | | 0.43 | U | NS | 1 - | NS | | 0.43 | U | 0.43 | U | NS | | | | 24-Oct-18 | NS
0.44 | | 0.43
NS | U | NS
0.080 | | NS
0.13 | | 0.43 | U | NS
0.16 | | 0.43
NS | U | 0.43 | U | 0.63 | | NS
0.38 | | 0.57 | | | | 16-Jan-19
12-Apr-19 | 0.44
NS | | 0.11 | | 0.089
NS | | 0.13
NS | | NS
0.12 | | 0.16
NS | | NS
0.11 | U | NS
0.19 | | 0.31
0.25 | | 0.38
NS | | NS
0.51 | | | | 29-Jul-19 | 6.7 | | NS | | 6.9 | | 8 | | NS | | 10 | | NS | | NS | | 4.6 | | 5.3 | | NS | | | | 26-Sep-19 | NS | 1.7 | | NS | | | | 29-Oct-19 | NS | | 1.2 | | NS | | NS | | 0.96 | | NS | | 0.32 | | 1.2 | | 1.8 ^D | | 2.8 ^D | | 1.7 ^D | 1 | | | 21-Jan-20 | 0.33 | | NS
0.087 | 1.7 | 0.44 | | 0.41 | | NS
0.087 | | 0.32 | | NS
0.087 | *** | NS
0.097 | U | 1.5
0.47 | | 1.8 | | NS
0.62 | | | | 22-Apr-20
23-Jul-20 | NS
0.8 | | 0.087
NS | U | NS
0.42 | | NS
0.41 | | 0.087
NS | U | NS
0.72 | | 0.087
NS | U | 0.087
NS | | 1.2 | | NS
2.1 | | 0.62
NS | | | | 29-Oct-20 | NS | | 0.24 | | NS | | NS | | 0.29 | | NS | | 0.21 | | 0.31 | | 0.66 | | NS | | 1 | | | | l l | | 1 | <u> </u> | <u> </u> | | 1 | | <u> </u> | | <u> </u> | | <u> </u> | | | 1 | | | | | <u> </u> | | | | Volatile Organic Compounds via | | MP-1 | | MP-2 | MP-3 | | MP-4 | MP-5 | | MP-6 | | MP-7 | | MP-8 | | IMP-1 | | IMP-2 | | IMP-3 | | |--------------------------------|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|-------|------|-------|------| | TO-15 | Sample Date | | Qual | | Qual | Qual | | Qual | Qual | Site Specific Compound of Concern per ATSDR Health Consultation, December 4, 2006. M Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the high side. Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the low side. Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side. W Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side. Reported result is estimated due to value over calibration range Estimated result as the result was between the
MDL and the RDL. One or more method internal standards were recovered outside of the contol limits. Sample re-analysis not possibe due to sample volume and detection limit constraints. D Elevated method reporting limits due to diluted matrices. Con-test internal standards failed and samples were re-pressurized and diluted. #### OTES. All data presented in micrograms per cubic meter (ug/m³). Two values displayed with a slash indicates dilutions resulting in two different concentrations. Where two reporting limits were given for multilple dilutions, the lower RL was documented in this table. U = Designation indicates that the compound was not detected by the laboratory. Reporting limit shown in the data column. NS = Not sampled Page 48 of 48 Date Modified: 12/10/2020 # APPENDIX D Rooftop Emission Analytical Summary ### **Sub Slab Depressurization System Emissions Calculations** Alvarez School Sample Date: 23 July 2020 | | | | ROO | FTOP FAN 1 | | | | ROC | OFTOP FAN 2 | | | | ROOI | FTOP FAN 3 | | CUMUL | ATIVE EMISSION | S (3 fans combined) | |---------------------------|---------------------------|----|-----------------------------|------------------------------|--------------------------|---------------------------|-----|-----------------|------------------------------|--------------------------|-------------------------------|----------|-----------------|------------------------------|--------------------------|-----------------|----------------|--------------------------| | | Measured Fl
Speed (fpm | | 2357 | Measured Flow
Rate (cfm): | 115.7 | Measured Fl
Speed (fpm | | 2556 | Measured Flow
Rate (cfm): | 125.5 | Measured Flow
Speed (fpm): | | 2022 | Measured Flow
Rate (cfm): | 99.3 | | | (* | | Volatile Organic | Concentration | ,. | Hourly Emission | Daily Emission | Yearly Emission | Concentration | .,. | Hourly Emission | Daily Emission | Yearly Emission | Concentration | _ | Hourly Emission | Daily Emission | Yearly Emission | Hourly Emission | Daily Emission | Yearly Emission | | Compounds | (ug/m ³) | | (lbs/hour) | (lbs/day) | (lbs/year) | (ug/m ³) | | (lbs/hour) | (lbs/day) | (lbs/year) | (ug/m³) | | (lbs/hour) | (lbs/day) | (lbs/year) | (lbs/hour) | (lbs/dav) | (lbs/year) | | Acetone | 51 | | 2.21E-05 | 5.29E-04 | 1.93E-01 | 26 | | 1.22E-05 | 2.93E-04 | 1.07E-01 | 120 | <u> </u> | 4.45E-05 | 1.07E-03 | 3.90E-01 | 7.88E-05 | 1.89E-03 | 6.90E-01 | | Acrylonitrile | 0.23 | U | 9.95E-08 | 2.39E-06 | 8.71E-04 | 0.23 | U | 1.08E-07 | 2.59E-06 | 9.45E-04 | | U | 8.53E-08 | 2.05E-06 | 7.48E-04 | 2.93E-07 | 7.02E-06 | 2.56E-03 | | Benzene | 0.15 | | 6.49E-08 | 1.56E-06 | 5.68E-04 | 0.15 | | 7.04E-08 | 1.69E-06 | 6.16E-04 | 0.19 | _ | 7.05E-08 | 1.69E-06 | 6.18E-04 | 2.06E-07 | 4.94E-06 | 1.80E-03 | | Bromodichloromethane | 0.02 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | Bromoform | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.04 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | 0.04 | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | 2-Butanone | 1.6 | U | 6.92E-07 | 1.66E-05 | 6.06E-03 | 1.6 | U | 7.50E-07 | 1.80E-05 | 6.57E-03 | | U | 5.94E-07 | 1.42E-05 | 5.20E-03 | 2.04E-06 | 4.89E-05 | 1.78E-02 | | n-Butylbenzene | 0.12 | U | 5.19E-08 | 1.25E-06 | 4.55E-04 | 0.12 | U | 5.63E-08 | 1.35E-06 | 4.93E-04 | | U | 4.45E-08 | 1.07E-06 | 3.90E-04 | 1.53E-07 | 3.67E-06 | 1.34E-03 | | sec-Butylbenzene | 0.091 | U | 3.94E-08 | 9.45E-07 | 3.45E-04 | 0.091 | U | 4.27E-08 | 1.02E-06 | 3.74E-04 | | U | 3.38E-08 | 8.10E-07 | 2.96E-04 | 1.16E-07 | 2.78E-06 | 1.01E-03 | | Carbon Tetrachloride | 0.087 | | 3.76E-08 | 9.03E-07 | 3.30E-04 | 0.085 | | 3.99E-08 | 9.57E-07 | 3.49E-04 | 0.09 | | 3.34E-08 | 8.01E-07 | 2.93E-04 | 1.11E-07 | 2.66E-06 | 9.71E-04 | | Chlorobenzene | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.04 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | 0.04 | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | Chloroethane | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.04 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | 0.04 | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | Chloroform | 0.02 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.062 | | 2.91E-08 | 6.98E-07 | 2.55E-04 | 0.066 | | 2.45E-08 | 5.88E-07 | 2.15E-04 | 6.22E-08 | 1.49E-06 | 5.45E-04 | | Chloromethane | 0.08 | U | 3.46E-08 | 8.30E-07 | 3.03E-04 | 0.08 | U | 3.75E-08 | 9.01E-07 | 3.29E-04 | 0.08 | U | 2.97E-08 | 7.12E-07 | 2.60E-04 | 1.02E-07 | 2.44E-06 | 8.92E-04 | | Dibromochloromethane | 0.02 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.02 | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | 1,2-Dibromoethane | 0.02 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.02 | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | 1,2-Dichlorobenzene | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.04 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | 0.04 | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | 1,3-Dichlorobenzene | 0.0 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.0 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | 0.0 | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | 1,4-Dichlorobenzene | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.04 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | 0.04 | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | Dichlorodifluoromethane | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.04 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | 0.04 | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | 1,1-Dichloroethane | 0.020 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.020 | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | 1,2-Dichloroethane | 0.020 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.020 | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | 1,1-Dichloroethene | 0.020 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.020 | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | cis-1,2-Dichloroethene | 0.020 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.130 | | 4.82E-08 | 1.16E-06 | 4.23E-04 | 6.63E-08 | 1.59E-06 | 5.80E-04 | | trans-1,2-Dichloroethene | 0.020 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.020 | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | 1,2-Dichloropropane | 0.020 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.020 | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | cis-1,3-Dichloropropene | 0.02 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.02 | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | trans-1,3-Dichloropropene | 0.02 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.02 | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | Ethylbenzene | 0.045 | | 1.95E-08 | 4.67E-07 | 1.70E-04 | 0.051 | | 2.39E-08 | 5.74E-07 | 2.10E-04 | 0.081 | | 3.01E-08 | 7.21E-07 | 2.63E-04 | 7.34E-08 | 1.76E-06 | 6.43E-04 | | Isopropylbenzene | 0.1 | U | 4.33E-08 | 1.04E-06 | 3.79E-04 | 0.1 | U | 4.69E-08 | 1.13E-06 | 4.11E-04 | 0.1 | U | 3.71E-08 | 8.90E-07 | 3.25E-04 | 1.27E-07 | 3.05E-06 | 1.11E-03 | | p-Isopropyltoluene | 0.091 | U | 3.94E-08 | 9.45E-07 | 3.45E-04 | 0.091 | U | 4.27E-08 | 1.02E-06 | 3.74E-04 | 0.091 | U | 3.38E-08 | 8.10E-07 | 2.96E-04 | 1.16E-07 | 2.78E-06 | 1.01E-03 | | Methyl tert butyl ether | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.04 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | 0.04 | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | Methylene chloride | 1.0 | | 4.20E-07 | 1.01E-05 | 3.68E-03 | 0.4 | U | 1.88E-07 | 4.50E-06 | 1.64E-03 | 0.5 | | 1.86E-07 | 4.45E-06 | 1.63E-03 | 7.93E-07 | 1.90E-05 | 6.94E-03 | | 4-Methyl-2-pentanone | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.04 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | 0.01 | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | Styrene | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.043 | | 2.02E-08 | 4.84E-07 | 1.77E-04 | 0.055 | | 2.04E-08 | 4.90E-07 | 1.79E-04 | 5.79E-08 | 1.39E-06 | 5.07E-04 | | 1,1,1,2-Tetrachloroethane | 0.073 | U | 3.16E-08 | 7.58E-07 | 2.77E-04 | 0.073 | U | 3.42E-08 | 8.22E-07 | 3.00E-04 | 0.073 | U | 2.71E-08 | 6.50E-07 | 2.37E-04 | 9.29E-08 | 2.23E-06 | 8.14E-04 | | 1,1,2,2-Tetrachloroethane | 0.02 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.02 | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | Tetrachloroethene | 0.57 | | 2.47E-07 | 5.92E-06 | 2.16E-03 | 0.29 | | 1.36E-07 | 3.26E-06 | 1.19E-03 | 7.5 | | 2.78E-06 | 6.68E-05 | 2.44E-02 | 3.17E-06 | 7.60E-05 | 2.77E-02 | | Toluene | 0.31 | | 1.34E-07 | 3.22E-06 | 1.17E-03 | 0.35 | | 1.64E-07 | 3.94E-06 | 1.44E-03 | 0.21 | | 7.79E-08 | 1.87E-06 | 6.83E-04 | 3.76E-07 | 9.03E-06 | 3.30E-03 | | 1,1,1-Trichloroethane | 0.052 | | 2.25E-08 | 5.40E-07 | 1.97E-04 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.089 | | 3.30E-08 | 7.93E-07 | 2.89E-04 | 6.49E-08 | 1.56E-06 | 5.68E-04 | | 1,1,2-Trichloroethane | 0.02 | U | 8.65E-09 | 2.08E-07 | 7.58E-05 | 0.02 | U | 9.38E-09 | 2.25E-07 | 8.22E-05 | 0.02 | U | 7.42E-09 | 1.78E-07 | 6.50E-05 | 2.55E-08 | 6.11E-07 | 2.23E-04 | | Trichloroethylene | 2.5 | | 1.08E-06 | 2.60E-05 | 9.47E-03 | 3.1 | ļ | 1.45E-06 | 3.49E-05 | 1.27E-02 | 5.5 | | 2.04E-06 | 4.90E-05 | 1.79E-02 | 4.58E-06 | 1.10E-04 | 4.01E-02 | | Trichlorofluoromethane | 1.1 | L | 4.76E-07 | 1.14E-05 | 4.17E-03 | 2.6 | | 1.22E-06 | 2.93E-05 | 1.07E-02 | 0.91 | | 3.38E-07 | 8.10E-06 |
2.96E-03 | 2.03E-06 | 4.88E-05 | 1.78E-02 | | 1,2,4-Trimethylbenzene | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.04 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | 1,3,5-Trimethybenzene | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.04 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | Vinyl chloride | 0.04 | U | 1.73E-08 | 4.15E-07 | 1.52E-04 | 0.04 | U | 1.88E-08 | 4.50E-07 | 1.64E-04 | | U | 1.48E-08 | 3.56E-07 | 1.30E-04 | 5.09E-08 | 1.22E-06 | 4.46E-04 | | p/m-Xylene | 0.13 | | 5.62E-08 | 1.35E-06 | 4.93E-04 | 0.15 | ļ | 7.04E-08 | 1.69E-06 | 6.16E-04 | 0.23 | | 8.53E-08 | 2.05E-06 | 7.48E-04 | 2.12E-07 | 5.09E-06 | 1.86E-03 | | o-Xylene | 0.058 | | 2.51E-08 | 6.02E-07 | 2.20E-04 | 0.073 | | 3.42E-08 | 8.22E-07 | 3.00E-04 | 0.091 | | 3.38E-08 | 8.10E-07 | 2.96E-04 | 9.31E-08 | 2.23E-06 | 8.15E-04 | | Total VOCs | 6.02E+01 | | 2.60E-05 | 6.24E-04 | 2.28E-01 | 3.65E+01 | | 1.71E-05 | 4.11E-04 | 1.50E-01 | 1.39E+02 | ļ | 5.15E-05 | 1.24E-03 | 4.51E-01 | 9.46E-05 | 2.27E-03 | 8.29E-01 | | RIDEM Air Pollution | | | 10 | 100 | 20,000 (Individual VOCs) | | | 10 | 100 | 20,000 (Individual VOCs) | | | 10 | 100 | 20,000 (Individual VOCs) | | 100 | 20,000 (Individual VOCs) | | Applicability Thres | . , | | 10
gust 1971, Amended Ap | 100 | 50,000 (Total VOCs) | Not Applical | ble | 10 | 100 | 50,000 (Total VOCs) | Not Applicable | e | 10 | 100 | 50,000 (Total VOCs) | 10 | 100 | 50,000 (Total VOCs) | * RIDEM Air Pollution Control Regulation No. 9 [August 1971, Amended April 2004]. - U = Indicates that chemical was not detected by the laboratory. To be conservative, the reporting limit shown in the concentration column was used in the emissions calculations. L = Potential low bias due to uncertainty caused by continuing calibration not meeting method specifications or blank control sample recovery shown to be below the low side of control limits. - H = Potential high bias due to uncertainty caused by continuing calibration not meeting method specifications or blank control sample recovery shown to be above the high side of control limits. B = Analyte found in associated blank sample but data is not affected by elevated level in blank since sample result is >10x level in the blank. Hourly Emissions (lbs/hour) = VOC concentration (ug/m³) x measured flow rate (cfm) x $0.02832 \text{ m}^3/\text{ft}^3$ x 60 min/hour x 0.001 mg/ug x 0.001 g/mg x 0.0022 lb/g. Daily Emissions (lbs/day) = Hourly Emissions x 24 hours/day. Yearly Emissions (lbs/year) = Daily Emissions x 365 days/year. Where samples were anlyzed with multiple dilution factors, the highest reported value is shown # APPENDIX E Laboratory Analytical Reports November 12, 2020 Frank Postma EA Engineering Science & Tech. - RI 301 Metro Center Blvd, Suite 102 Warwick, RI 02886 Project Location: Providence, RI Client Job Number: Project Number: 1506608 Laboratory Work Order Number: 20J1668 Enclosed are results of analyses for samples received by the laboratory on October 29, 2020. If you have any questions concerning this report, please feel free to contact me. Sincerely, Kaitlyn A. Feliciano Project Manager # Table of Contents | Sample Summary | 3 | |--------------------------------------|----| | Case Narrative | 4 | | Sample Results | 5 | | Sample Preparation Information | 35 | | QC Data | 36 | | Air Toxics by EPA Compendium Methods | 36 | | B270707 | 36 | | Flag/Qualifier Summary | 39 | | Certifications | 40 | | Chain of Custody/Sample Receipt | 42 | EA Engineering Science & Tech. - RI 301 Metro Center Blvd, Suite 102 Warwick, RI 02886 ATTN: Frank Postma REPORT DATE: 11/12/2020 PURCHASE ORDER NUMBER: 18155 PROJECT NUMBER: 1506608 #### ANALYTICAL SUMMARY WORK ORDER NUMBER: 20J1668 The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report. PROJECT LOCATION: Providence, RI | FIELD SAMPLE # | LAB ID: | MATRIX | SAMPLE DESCRIPTION | TEST | SUB LAB | |---------------------|------------|-------------|--------------------|-----------|---------| | Gymnasium | 20J1668-01 | Indoor air | | EPA TO-15 | | | Cafeteria | 20J1668-02 | Indoor air | | EPA TO-15 | | | Kitchen Storage | 20J1668-03 | Indoor air | | EPA TO-15 | | | Elevator Hallway | 20J1668-04 | Indoor air | | EPA TO-15 | | | Room 145 | 20J1668-05 | Indoor air | | EPA TO-15 | | | Room 152 | 20J1668-06 | Indoor air | | EPA TO-15 | | | Room 118 | 20J1668-07 | Indoor air | | EPA TO-15 | | | Room 110 | 20J1668-08 | Indoor air | | EPA TO-15 | | | Ambient Outdoor Air | 20J1668-09 | Ambient Air | | EPA TO-15 | | | MP-2 | 20J1668-10 | Indoor air | | EPA TO-15 | | | MP-5 | 20J1668-11 | Indoor air | | EPA TO-15 | | | MP-7 | 20J1668-12 | Indoor air | | EPA TO-15 | | | MP-8 | 20J1668-13 | Indoor air | | EPA TO-15 | | | IMP-1 | 20J1668-14 | Indoor air | | EPA TO-15 | | | IMP-3 | 20J1668-15 | Indoor air | | EPA TO-15 | | #### CASE NARRATIVE SUMMARY All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report. #### **EPA TO-15** Initial and continuing calibrations met all required performance standards for RCP compounds that are Title III Clean Air Act Amendment compounds listed in table 1 of the TO-15 method unless otherwise specified in this narrative. Laboratory control sample recoveries and sample replicate RPDs were all within limits specified by the method for RCP compounds that are Title III Clean Air Act Amendment compounds listed in table 1 of the TO-15 method unless otherwise specified in this narrative. Recovery limits of 50-150% are used for propene, acetone, ethanol, isopropanol, ethyl acetate, tetrahydrofuran, cyclohexane, heptane, 2-hexanone, 4-ethyltoluene, n-butylbenzene, sec-butylbenzene, 4-isopropyltoluene, and 1,1,1,2-tetrachloroethane. $The \ results \ of \ analyses \ reported \ only \ relate \ to \ samples \ submitted \ to \ the \ Con-Test \ Analytical \ Laboratory \ for \ testing.$ I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. Lisa A. Worthington Technical Representative #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Gymnasium Sample ID: 20J1668-01 Sample Matrix: Indoor air Sampled: 10/29/2020 07:48 1,1,2,2-Tetrachloroethane Sample Description/Location: Sub Description/Location: Canister ID: 1982 Canister Size: 6 liter Flow Controller ID: 4314 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -3.5 Receipt Vacuum(in Hg): -3.4 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: **EPA TO-15** ug/m3 Date/Time ppbv RL Flag/Qual RL Dilution Analyzed Analyte Results Results Analyst 5.7 0.80 14 1.9 11/10/20 13:58 BRF Acetone 0.4 Acrylonitrile ND 0.12 ND 0.25 0.4 11/10/20 13:58 BRF 0.23 0.020 0.74 0.064 0.4 11/10/20 13:58 BRF Benzene ND 0.010 ND 0.067 0.4 BRF Bromodichloromethane 11/10/20 13:58 Bromoform ND 0.020 ND 0.21 0.4 11/10/20 13:58 BRF 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 11/10/20 13:58 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 13:58 BRF ND 0.046 ND 0.25 0.4 11/10/20 13:58 BRF sec-Butylbenzene Carbon Tetrachloride 0.077 0.010 0.48 0.063 0.4 11/10/20 13:58 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 13:58 BRF ND Chloroethane 0.020 ND 0.053 0.4 11/10/20 13:58 BRF Chloroform 0.060 0.010 0.29 0.049 0.4 11/10/20 13:58 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 13:58 BRF 0.085 Dibromochloromethane ND 0.010 ND 0.4 11/10/20 13:58 BRF ND ND 0.077 BRF 1,2-Dibromoethane (EDB) 0.010 0.4 11/10/20 13:58 ND ND 11/10/20 13:58 BRF 1,2-Dichlorobenzene 0.020 0.12 0.4 1,3-Dichlorobenzene ND 0.020ND 0.12 0.4 11/10/20 13:58 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 13:58 BRF Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.099 0.4 11/10/20 13:58 BRF 1,1-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 13:58 BRF 1,2-Dichloroethane ND 0.010 ND 0.0400.4 11/10/20 13:58 BRF 1,1-Dichloroethylene ND 0.010 ND 0.040 0.4 11/10/20 13:58 BRF ND ND 0.4 11/10/20 13:58 BRF cis-1,2-Dichloroethylene 0.010 0.040 trans-1,2-Dichloroethylene ND 0.010 ND 0.040 0.4 11/10/20 13:58 BRF ND 0.010 ND 0.046 0.4 11/10/20 13:58 BRF 1,2-Dichloropropane ND 0.054 ND 0.25 0.4 11/10/20 13:58 BRF 1,3-Dichloropropane ND ND 0.045 11/10/20 13:58 BRF cis-1,3-Dichloropropene 0.010 0.4 trans-1,3-Dichloropropene ND 0.010 ND 0.0450.4 11/10/20 13:58 BRF Ethylbenzene 0.077 0.020 0.34 0.087 0.4 11/10/20 13:58 BRF ND 0.051 ND 0.25 0.4 11/10/20 13:58 BRF Isopropylbenzene (Cumene) p-Isopropyltoluene (p-Cymene) ND 0.046 ND 0.25 0.4 11/10/20 13:58 BRF Methyl tert-Butyl Ether (MTBE) ND 0.020 ND 0.072 0.4 11/10/20 13:58 BRF Methylene Chloride 0.23 0.20 0.78 0.69 0.4 11/10/20 13:58 BRF ND 0.020 ND 0.082 0.4 11/10/20 13:58 BRF 4-Methyl-2-pentanone (MIBK) 0.023 0.085 0.020 0.099 0.4 11/10/20 13:58 BRF Styrene 1,1,1,2-Tetrachloroethane ND 0.036 ND 0.25 0.4 11/10/20 13:58 BRF ND 0.069 ND 0.010 BRF 11/10/20 13:58 0.4 #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Gymnasium Sample ID: 20J1668-01 Sample Matrix: Indoor air Sampled: 10/29/2020 07:48 Sample Description/Location: Sub Description/Location: Canister ID: 1982 Canister Size: 6 liter Flow Controller ID: 4314 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -3.5 Receipt Vacuum(in Hg): -3.4 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | F | EPA TO-15 | <u> </u> | | | | <u> </u> | |-----------------------------------
---------|-------|-----------|----------|----------|----------|----------------|----------| | | pp | bv | | ug/ı | m3 | | Date/Time | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.044 | 0.020 | | 0.30 | 0.14 | 0.4 | 11/10/20 13:58 | BRF | | Toluene | 0.50 | 0.020 | | 1.9 | 0.075 | 0.4 | 11/10/20 13:58 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 13:58 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 13:58 | BRF | | Trichloroethylene | 0.019 | 0.010 | | 0.10 | 0.054 | 0.4 | 11/10/20 13:58 | BRF | | Trichlorofluoromethane (Freon 11) | 0.24 | 0.080 | | 1.4 | 0.45 | 0.4 | 11/10/20 13:58 | BRF | | 1,2,4-Trimethylbenzene | 0.064 | 0.020 | | 0.31 | 0.098 | 0.4 | 11/10/20 13:58 | BRF | | 1,3,5-Trimethylbenzene | 0.022 | 0.020 | | 0.11 | 0.098 | 0.4 | 11/10/20 13:58 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 13:58 | BRF | | m&p-Xylene | 0.22 | 0.040 | | 0.97 | 0.17 | 0.4 | 11/10/20 13:58 | BRF | | o-Xylene | 0.087 | 0.020 | | 0.38 | 0.087 | 0.4 | 11/10/20 13:58 | BRF | | Surrogates | % Recov | ery | | % REC | C Limits | | | | | 4-Bromofluorobenzene (1) | | 103 | | 70- | -130 | | 11/10/20 13:58 | | | 4-Bromofluorobenzene (2) | | 97.4 | | 70- | -130 | | 11/10/20 13:58 | | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Cafeteria Sample ID: 20J1668-02 Sample Matrix: Indoor air Sampled: 10/29/2020 08:04 Sample Description/Location: Sub Description/Location: Canister ID: 1130 Canister Size: 6 liter Flow Controller ID: 4285 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -27.5 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): -1.7 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | Analyte Results RL Flag/Qual Results RL Dilution Analyzed Analyzed Acctone 5.3 0.80 13 1.9 0.4 11/10/20 14:31 BRF Acrylonitrile ND 0.12 ND 0.25 0.4 11/10/20 14:31 BRF Benzene 0.27 0.020 0.85 0.064 0.4 11/10/20 14:31 BRF Bromodichloromethane ND 0.010 ND 0.067 0.4 11/10/20 14:31 BRF Bromoform ND 0.020 ND 0.21 0.4 11/10/20 14:31 BRF 2-Butanone (MEK) ND 0.80 ND 0.21 0.4 11/10/20 14:31 BRF 2-Butanone (MEK) ND 0.80 ND 0.32 0.4 11/10/20 14:31 BRF 8-Butanone (MEK) ND 0.045 ND 0.32 0.4 11/10/20 14:31 BRF < | |--| | Accylonitrile ND 0.12 ND 0.25 0.4 11/10/20 14:31 BRF Benzene 0.27 0.020 0.85 0.064 0.4 11/10/20 14:31 BRF Bromodichloromethane ND 0.010 ND 0.067 0.4 11/10/20 14:31 BRF Bromoform ND 0.020 ND 0.21 0.4 11/10/20 14:31 BRF 2-Butanone (MEK) ND 0.80 ND 0.32 0.4 11/10/20 14:31 BRF 9-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 14:31 BRF 9-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 14:31 BRF 10-Incompanie 0.072 0.010 0.45 0.063 0.4 11/10/20 14:31 BRF 10-Incompanie ND 0.020 ND 0.092 0.4 11/10/20 14:31 BRF | | Benzene 0.27 0.020 0.85 0.064 0.4 11/10/20 14:31 BRF BRF Bromodichloromethane ND 0.010 ND 0.067 0.4 11/10/20 14:31 BRF BRF Bromoform ND 0.020 ND 0.21 0.4 11/10/20 14:31 BRF 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 11/10/20 14:31 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 14:31 BRF sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 14:31 BRF Carbon Tetrachloride 0.072 0.010 0.45 0.063 0.4 11/10/20 14:31 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 14:31 BRF Chloroform 0.096 0.010 0.45 0.063 0.4 11/10/20 14:31 BRF Chloroform 0.096 0.010 0.47 0.049 0.4 11/10/20 14:31 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BRF Chloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF Chloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF Chloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF Chloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.077 0.049 1.1/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.077 0.049 1.1/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.010 ND 0.077 0.049 0.04 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.010 ND 0.077 0.04 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.010 ND 0.077 0.04 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.010 ND 0.077 0.04 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.010 ND 0.077 0.04 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.010 ND 0.077 0.04 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.010 ND 0.077 0.04 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.010 ND 0.077 0.04 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.010 ND 0.077 0.04 11/10/20 14:31 BRF Chloromethane (EDB) ND 0.010 ND 0.010 ND 0.077 0.04 11/10/20 1 | | Bromodichloromethane ND 0.010 ND 0.067 0.4 11/10/20 14:31 BRF Bromoform ND 0.020 ND 0.21 0.4 11/10/20 14:31 BRF 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 11/10/20 14:31 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 14:31 BRF see-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 14:31 BRF Carbon Tetrachloride 0.072 0.010 0.45 0.063 0.4 11/10/20 14:31 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 14:31 BRF Chloroform 0.096 0.010 0.47 0.049 0.4 11/10/20 14:31 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BR | | Bromoform ND 0.020 ND 0.21 0.4 11/10/20 14:31 BRF 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 11/10/20 14:31 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 14:31 BRF sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 14:31 BRF Carbon Tetrachloride 0.072 0.010 0.45 0.063 0.4 11/10/20 14:31 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 14:31 BRF Chloroform 0.096 0.010 0.47 0.049 0.4 11/10/20 14:31 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BRF Dibromochloromethane (EDB) ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF | | 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 11/10/20 14:31 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 14:31 BRF sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 14:31 BRF Carbon Tetrachloride 0.072 0.010 0.45 0.063 0.4 11/10/20 14:31 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 14:31 BRF Chloroform 0.096 0.010 0.47 0.049 0.4 11/10/20 14:31 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF 1,2-Dibromochlane ND 0.010 ND 0.077 0.4 11/10/20 14:31 | | n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 14:31 BRF sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 14:31 BRF Carbon Tetrachloride 0.072 0.010 0.45 0.063 0.4 11/10/20 14:31 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 14:31 BRF Chloroform ND 0.020 ND 0.053 0.4 11/10/20 14:31 BRF Chloroform 0.096 0.010 0.47 0.049 0.4 11/10/20 14:31 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BRF Dibromoethloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 14:31 | | sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 14:31 BRF Carbon Tetrachloride 0.072 0.010 0.45 0.063 0.4 11/10/20 14:31 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 14:31 BRF Chloroethane ND 0.020 ND 0.053 0.4 11/10/20 14:31 BRF Chloroform 0.096 0.010 0.47 0.049 0.4 11/10/20 14:31 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 14:31 BRF | | Carbon Tetrachloride 0.072 0.010 0.45 0.063 0.4 11/10/20 14:31 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 14:31 BRF Chloroethane ND 0.020 ND 0.053 0.4 11/10/20 14:31 BRF Chloroform 0.096 0.010 0.47 0.049 0.4 11/10/20 14:31 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 14:31 BRF | | Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 14:31
BRF Chloroethane ND 0.020 ND 0.053 0.4 11/10/20 14:31 BRF Chloroform 0.096 0.010 0.47 0.049 0.4 11/10/20 14:31 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 14:31 BRF | | Chloroethane ND 0.020 ND 0.053 0.4 11/10/20 14:31 BRF Chloroform 0.096 0.010 0.47 0.049 0.4 11/10/20 14:31 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 14:31 BRF | | Chloroform 0.096 0.010 0.47 0.049 0.4 11/10/20 14:31 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 14:31 BRF | | Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 14:31 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 14:31 BRF | | Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 14:31 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 14:31 BRF | | 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 14:31 BRF | | | | 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 14:31 BRF | | | | 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 14:31 BRF | | 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 14:31 BRF | | Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.099 0.4 11/10/20 14:31 BRF | | 1,1-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 14:31 BRF | | 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 14:31 BRF | | 1,1-Dichloroethylene ND 0.010 ND 0.040 0.4 11/10/20 14:31 BRF | | cis-1,2-Dichloroethylene ND 0.010 ND 0.040 0.4 11/10/20 14:31 BRF | | trans-1,2-Dichloroethylene ND 0.010 ND 0.040 0.4 11/10/20 14:31 BRF | | 1,2-Dichloropropane ND 0.010 ND 0.046 0.4 11/10/20 14:31 BRF | | $1,3- Dichloropropane \\ ND \\ 0.054 \\ ND \\ 0.25 \\ 0.4 \\ 11/10/20 \\ 14:31 \\ BRF$ | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | trans-1,3-Dichloropropene ND 0.010 ND 0.045 0.4 11/10/20 14:31 BRF | | Ethylbenzene 0.089 0.020 0.39 0.087 0.4 11/10/20 14:31 BRF | | Isopropylbenzene (Cumene) ND 0.051 ND 0.25 0.4 11/10/20 14:31 BRF | | p-Isopropyltoluene (p-Cymene) ND 0.046 ND 0.25 0.4 11/10/20 14:31 BRF | | Methyl tert-Butyl Ether (MTBE) ND 0.020 ND 0.072 0.4 11/10/20 14:31 BRF | | Methylene Chloride ND 0.20 ND 0.69 0.4 11/10/20 14:31 BRF | | 4-Methyl-2-pentanone (MIBK) ND 0.020 ND 0.082 0.4 11/10/20 14:31 BRF | | Styrene ND 0.020 ND 0.085 0.4 11/10/20 14:31 BRF | | 1,1,1,2-Tetrachloroethane ND 0.036 ND 0.25 0.4 11/10/20 14:31 BRF | | 1,1,2,2-Tetrachloroethane ND 0.010 ND 0.069 0.4 11/10/20 14:31 BRF | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Cafeteria Sample ID: 20J1668-02 Sample Matrix: Indoor air Sampled: 10/29/2020 08:04 Sample Description/Location: Sub Description/Location: Canister ID: 1130 Canister Size: 6 liter Flow Controller ID: 4285 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -27.5 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): -1.7 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | F | EPA TO-15 | · | · | | | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------| | | pp | bv | | ug/i | m3 | | Date/Time | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.048 | 0.020 | | 0.33 | 0.14 | 0.4 | 11/10/20 14:31 | BRF | | Toluene | 0.59 | 0.020 | | 2.2 | 0.075 | 0.4 | 11/10/20 14:31 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 14:31 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 14:31 | BRF | | Trichloroethylene | 0.024 | 0.010 | | 0.13 | 0.054 | 0.4 | 11/10/20 14:31 | BRF | | Trichlorofluoromethane (Freon 11) | 0.25 | 0.080 | | 1.4 | 0.45 | 0.4 | 11/10/20 14:31 | BRF | | 1,2,4-Trimethylbenzene | 0.077 | 0.020 | | 0.38 | 0.098 | 0.4 | 11/10/20 14:31 | BRF | | 1,3,5-Trimethylbenzene | 0.022 | 0.020 | | 0.11 | 0.098 | 0.4 | 11/10/20 14:31 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 14:31 | BRF | | m&p-Xylene | 0.27 | 0.040 | | 1.2 | 0.17 | 0.4 | 11/10/20 14:31 | BRF | | o-Xylene | 0.11 | 0.020 | | 0.46 | 0.087 | 0.4 | 11/10/20 14:31 | BRF | | Surrogates | % Recov | ery | | % REG | C Limits | | | | | 4-Bromofluorobenzene (1) | | 104 | | 70 | -130 | | 11/10/20 14:31 | | | 4-Bromofluorobenzene (2) | | 96.4 | | 70- | -130 | | 11/10/20 14:31 | | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Kitchen Storage Sample ID: 20J1668-03 Sample Matrix: Indoor air Sampled: 10/29/2020 08:08 Sample Description/Location: Sub Description/Location: Canister ID: 1122 Canister Size: 6 liter Flow Controller ID: 4209 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -3 Receipt Vacuum(in Hg): -1.4 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/ı | n3 | | Date/Time | | |------------------------------------|---------|-------|-----------|---------|-------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Acetone | 6.1 | 0.80 | | 15 | 1.9 | 0.4 | 11/10/20 15:04 | BRF | | Acrylonitrile | ND | 0.12 | | ND | 0.25 | 0.4 | 11/10/20 15:04 | BRF | | Benzene | 0.24 | 0.020 | | 0.77 | 0.064 | 0.4 | 11/10/20 15:04 | BRF | | Bromodichloromethane | ND | 0.010 | | ND | 0.067 | 0.4 | 11/10/20 15:04 | BRF | | Bromoform | ND | 0.020 | | ND | 0.21 | 0.4 | 11/10/20 15:04 | BRF | | 2-Butanone (MEK) | ND | 0.80 | | ND | 2.4 | 0.4 | 11/10/20 15:04 | BRF | | n-Butylbenzene | ND | 0.058 | | ND | 0.32 | 0.4 | 11/10/20 15:04 | BRF | | sec-Butylbenzene | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 15:04 | BRF | | Carbon Tetrachloride | 0.069 | 0.010 | | 0.43 | 0.063 | 0.4 | 11/10/20 15:04 | BRF | | Chlorobenzene | ND | 0.020 | | ND | 0.092 | 0.4 | 11/10/20 15:04 | BRF | | Chloroethane | ND | 0.020 | | ND | 0.053 | 0.4 | 11/10/20 15:04 | BRF | | Chloroform | 0.12 | 0.010 | | 0.57 | 0.049 | 0.4 | 11/10/20 15:04 | BRF | | Chloromethane | ND | 0.040 | | ND | 0.083 | 0.4 | 11/10/20 15:04 | BRF | | Dibromochloromethane | ND | 0.010 | | ND | 0.085 | 0.4 | 11/10/20 15:04 | BRF | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | ND | 0.077 | 0.4 | 11/10/20 15:04 | BRF | | 1,2-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 15:04 | BRF | | 1,3-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 15:04 | BRF | | 1,4-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 15:04 | BRF | | Dichlorodifluoromethane (Freon 12) | ND | 0.020 | | ND | 0.099 | 0.4 | 11/10/20 15:04 | BRF | | 1,1-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 15:04 | BRF | | 1,2-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 15:04 | BRF | | 1,1-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 15:04 | BRF | | cis-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 15:04 | BRF | | trans-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 15:04 | BRF | | 1,2-Dichloropropane | ND | 0.010 | | ND | 0.046 | 0.4 | 11/10/20 15:04 | BRF | | 1,3-Dichloropropane | ND | 0.054 | | ND | 0.25 | 0.4 | 11/10/20 15:04 | BRF | | cis-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 15:04 | BRF | | trans-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 15:04 | BRF | | Ethylbenzene | 0.090 | 0.020 | | 0.39 | 0.087 | 0.4 | 11/10/20 15:04 | BRF | | Isopropylbenzene (Cumene) | ND | 0.051 | | ND | 0.25 | 0.4 | 11/10/20 15:04 | BRF | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 15:04 | BRF | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | ND | 0.072 | 0.4 | 11/10/20 15:04 | BRF | | Methylene Chloride | 0.82 | 0.20 | | 2.9 | 0.69 | 0.4 | 11/10/20 15:04 | BRF | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | ND | 0.082 | 0.4 | 11/10/20 15:04 | BRF | | Styrene | 0.085 | 0.020 | | 0.36 | 0.085 | 0.4 | 11/10/20 15:04 | BRF | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | ND | 0.25 | 0.4 | 11/10/20 15:04 | BRF | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | ND | 0.069 | 0.4 | 11/10/20 15:04 | BRF | | | | | | | | | | | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Kitchen Storage Sample ID: 20J1668-03 Sample Matrix: Indoor air Sampled: 10/29/2020 08:08 Sample Description/Location: Sub Description/Location: Canister ID: 1122 Canister Size: 6 liter Flow Controller ID: 4209 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -3 Receipt Vacuum(in Hg): -1.4 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | _ | | E | PA TO-15 | | | | | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------| | | ppl | bv | | ug/ı | m3 | | Date/Time | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.065 | 0.020 | | 0.44 | 0.14 | 0.4 | 11/10/20 15:04 | BRF | | Toluene | 0.67 | 0.020 | | 2.5 | 0.075 | 0.4 | 11/10/20 15:04 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 15:04 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 15:04 | BRF | | Trichloroethylene | 0.022 | 0.010 | | 0.12 | 0.054 | 0.4 | 11/10/20 15:04 | BRF | | Trichlorofluoromethane (Freon 11) | 0.25 | 0.080 | | 1.4 | 0.45 | 0.4 | 11/10/20 15:04 | BRF | | 1,2,4-Trimethylbenzene | 0.081 | 0.020 | | 0.40 | 0.098 | 0.4 | 11/10/20 15:04 | BRF | | 1,3,5-Trimethylbenzene | 0.025 | 0.020 | | 0.12 | 0.098 | 0.4 | 11/10/20 15:04 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 |
11/10/20 15:04 | BRF | | m&p-Xylene | 0.28 | 0.040 | | 1.2 | 0.17 | 0.4 | 11/10/20 15:04 | BRF | | o-Xylene | 0.11 | 0.020 | | 0.48 | 0.087 | 0.4 | 11/10/20 15:04 | BRF | | Surrogates | % Recov | rery | | % REC | C Limits | | | | | 4-Bromofluorobenzene (1) | | 104 | | 70- | -130 | | 11/10/20 15:04 | | | 4-Bromofluorobenzene (2) | | 98.2 | | 70- | -130 | | 11/10/20 15:04 | | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Elevator Hallway Sample ID: 20J1668-04 Sample Matrix: Indoor air Sampled: 10/29/2020 07:47 Sample Description/Location: Sub Description/Location: Canister ID: 2139 Canister Size: 6 liter Flow Controller ID: 4194 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -28 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): -0.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/ı | m3 | | Date/Time | | |------------------------------------|---------|-------|-----------|---------|-------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Acetone | 6.0 | 0.80 | | 14 | 1.9 | 0.4 | 11/10/20 15:37 | BRF | | Acrylonitrile | ND | 0.12 | | ND | 0.25 | 0.4 | 11/10/20 15:37 | BRF | | Benzene | 0.21 | 0.020 | | 0.67 | 0.064 | 0.4 | 11/10/20 15:37 | BRF | | Bromodichloromethane | ND | 0.010 | | ND | 0.067 | 0.4 | 11/10/20 15:37 | BRF | | Bromoform | ND | 0.020 | | ND | 0.21 | 0.4 | 11/10/20 15:37 | BRF | | 2-Butanone (MEK) | ND | 0.80 | | ND | 2.4 | 0.4 | 11/10/20 15:37 | BRF | | n-Butylbenzene | ND | 0.058 | | ND | 0.32 | 0.4 | 11/10/20 15:37 | BRF | | sec-Butylbenzene | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 15:37 | BRF | | Carbon Tetrachloride | 0.073 | 0.010 | | 0.46 | 0.063 | 0.4 | 11/10/20 15:37 | BRF | | Chlorobenzene | ND | 0.020 | | ND | 0.092 | 0.4 | 11/10/20 15:37 | BRF | | Chloroethane | ND | 0.020 | | ND | 0.053 | 0.4 | 11/10/20 15:37 | BRF | | Chloroform | 0.057 | 0.010 | | 0.28 | 0.049 | 0.4 | 11/10/20 15:37 | BRF | | Chloromethane | ND | 0.040 | | ND | 0.083 | 0.4 | 11/10/20 15:37 | BRF | | Dibromochloromethane | ND | 0.010 | | ND | 0.085 | 0.4 | 11/10/20 15:37 | BRF | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | ND | 0.077 | 0.4 | 11/10/20 15:37 | BRF | | 1,2-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 15:37 | BRF | | 1,3-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 15:37 | BRF | | 1,4-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 15:37 | BRF | | Dichlorodifluoromethane (Freon 12) | 0.55 | 0.020 | | 2.7 | 0.099 | 0.4 | 11/10/20 15:37 | BRF | | 1,1-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 15:37 | BRF | | 1,2-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 15:37 | BRF | | 1,1-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 15:37 | BRF | | cis-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 15:37 | BRF | | trans-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 15:37 | BRF | | 1,2-Dichloropropane | ND | 0.010 | | ND | 0.046 | 0.4 | 11/10/20 15:37 | BRF | | 1,3-Dichloropropane | ND | 0.054 | | ND | 0.25 | 0.4 | 11/10/20 15:37 | BRF | | cis-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 15:37 | BRF | | trans-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 15:37 | BRF | | Ethylbenzene | 0.10 | 0.020 | | 0.44 | 0.087 | 0.4 | 11/10/20 15:37 | BRF | | Isopropylbenzene (Cumene) | ND | 0.051 | | ND | 0.25 | 0.4 | 11/10/20 15:37 | BRF | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 15:37 | BRF | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | ND | 0.072 | 0.4 | 11/10/20 15:37 | BRF | | Methylene Chloride | 0.22 | 0.20 | | 0.75 | 0.69 | 0.4 | 11/10/20 15:37 | BRF | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | ND | 0.082 | 0.4 | 11/10/20 15:37 | BRF | | Styrene | 0.021 | 0.020 | | 0.089 | 0.085 | 0.4 | 11/10/20 15:37 | BRF | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | ND | 0.25 | 0.4 | 11/10/20 15:37 | BRF | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | ND | 0.069 | 0.4 | 11/10/20 15:37 | BRF | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Elevator Hallway Sample ID: 20J1668-04 Sample Matrix: Indoor air Sampled: 10/29/2020 07:47 Sample Description/Location: Sub Description/Location: Canister ID: 2139 Canister Size: 6 liter Flow Controller ID: 4194 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -28 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): -0.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/i | m3 | | Date/Time | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.050 | 0.020 | | 0.34 | 0.14 | 0.4 | 11/10/20 15:37 | BRF | | Toluene | 0.46 | 0.020 | | 1.7 | 0.075 | 0.4 | 11/10/20 15:37 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 15:37 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 15:37 | BRF | | Trichloroethylene | 0.022 | 0.010 | | 0.12 | 0.054 | 0.4 | 11/10/20 15:37 | BRF | | Trichlorofluoromethane (Freon 11) | 0.24 | 0.080 | | 1.4 | 0.45 | 0.4 | 11/10/20 15:37 | BRF | | 1,2,4-Trimethylbenzene | 0.063 | 0.020 | | 0.31 | 0.098 | 0.4 | 11/10/20 15:37 | BRF | | 1,3,5-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 15:37 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 15:37 | BRF | | m&p-Xylene | 0.30 | 0.040 | | 1.3 | 0.17 | 0.4 | 11/10/20 15:37 | BRF | | o-Xylene | 0.11 | 0.020 | | 0.46 | 0.087 | 0.4 | 11/10/20 15:37 | BRF | | Surrogates | % Reco | /ery | | % REG | C Limits | | | | | 4-Bromofluorobenzene (1) | | 103 | | 70- | -130 | | 11/10/20 15:37 | | | 4-Bromofluorobenzene (2) | | 95.7 | | 70- | -130 | | 11/10/20 15:37 | | | | | | | | | | | | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Room 145 Sample ID: 20J1668-05 Sample Matrix: Indoor air Sampled: 10/29/2020 08:23 Sample Description/Location: Sub Description/Location: Canister ID: 1878 Canister Size: 6 liter Flow Controller ID: 4094 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): -1.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | Analyte Results RL Flag/Out Results RL Dilution Analyzed Analyzed Acetone 5.4 0.80 13 1.9 0.4 11/020 16:33 BRF Acetone 0.28 0.02 ND 0.25 0.4 11/020 16:33 BRF Benzene 0.28 0.02 ND 0.067 0.4 11/020 16:33 BRF Bromodichloromethane ND 0.010 ND 0.067 0.4 11/020 16:33 BRF Bromoform ND 0.020 ND 0.21 0.4 11/020 16:33 BRF 2-Butanone (MEK) ND 0.020 ND 0.21 0.4 11/020 16:33 BRF 2-Butanone (MEK) ND 0.058 ND 0.32 0.4 11/020 16:33 BRF 2-Butanone (MEK) ND 0.058 ND 0.25 0.4 11/020 16:33 BRF 2-Butanone (MEK) ND 0.046 ND 0.025 0.4 | |---| | Acrylonitrile ND 0.12 ND 0.25 0.4 11/10/20 16:33 BRF Benzene 0.28 0.020 0.88 0.064 0.4 11/10/20 16:33 BRF Bromodichloromethane ND 0.010 ND 0.067 0.4 11/10/20 16:33 BRF 2-Butanone (MEK) ND 0.020 ND 0.21 0.4 11/10/20 16:33 BRF 2-Butanone (MEK) ND 0.80 ND 0.32 0.4 11/10/20 16:33 BRF 2-Butanone (MEK) ND 0.058 ND 0.32 0.4 11/10/20 16:33 BRF 2-Butanone (MEK) ND 0.046 ND 0.32 0.4 11/10/20 16:33 BRF 2-Butylbenzene ND 0.046 ND 0.023 0.4 11/10/20 16:33 BRF Carbon Tetrachloride 0.070 0.010 0.04 0.063 0.4 11/10/20 16:33 BRF Chlorochane ND 0.020 ND 0.053 | | Benzene 0.28 0.020 0.88 0.064 0.4 11/10/20 16:33 BRF Bromodichloromethane ND 0.010 ND 0.067 0.4 11/10/20 16:33 BRF Bromoform ND 0.020 ND 0.21 0.4 11/10/20 16:33 BRF 2-Butanone (MEK) ND 0.80 ND 0.32 0.4 11/10/20 16:33 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 16:33 BRF Carbon Tetrachloride ND 0.046 ND 0.25 0.4 11/10/20 16:33 BRF Chlorochenzene ND 0.020 ND 0.092 0.4 11/10/20 16:33 BRF Chlorochtane ND 0.020 ND 0.092 0.4 11/10/20 16:33 BRF Chlorochtane ND 0.020 ND 0.083 0.4 11/10/20 16:33 BRF Chlorochtane ND 0.010 ND 0.083 0.4 | | Bromodichloromethane ND 0.010 ND 0.067 0.4 11/10/20 16:33 BRF Bromoform ND 0.020 ND 0.21 0.4 11/10/20 16:33 BRF 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 11/10/20 16:33 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 16:33 BRF sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 16:33 BRF Carbon Tetrachloride 0.070 0.010 0.44 0.063 0.4 11/10/20 16:33 BRF Chlorochane ND 0.020 ND 0.092 0.4 11/10/20 16:33 BRF Chlorochane ND 0.020 ND 0.093 0.4 11/10/20 16:33 BRF Chlorochane ND 0.040 ND 0.083 0.4 11/10/20 16:33 BRF Chlorochane ND 0.010 ND 0.077 0.4 | | Bromoform ND 0.020 ND 0.21 0.4 1/1/02 16:33 BRF 2-Butanone (MEK) ND
0.80 ND 2.4 0.4 1/1/02 16:33 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 1/1/02 16:33 BRF sec-Butylbenzene ND 0.046 ND 0.25 0.4 1/1/02 16:33 BRF Carbon Tetrachloride 0.070 0.010 0.44 0.063 0.4 1/1/02 16:33 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 1/1/02 16:33 BRF Chloroform 0.086 0.010 0.42 0.049 0.4 1/1/102 16:33 BRF Chloromethane ND 0.040 ND 0.083 0.4 1/1/102 16:33 BRF Chloromethane ND 0.010 ND 0.083 0.4 1/1/102 16:33 BRF 1,2-Dichlorobenzene ND 0.010 ND 0.077 0.4 | | 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 11/10/20 16:33 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 16:33 BRF sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 16:33 BRF Carbon Tetrachloride 0.070 0.010 0.44 0.063 0.4 11/10/20 16:33 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 16:33 BRF Chlorofethane ND 0.020 ND 0.053 0.4 11/10/20 16:33 BRF Chlorofethane ND 0.020 ND 0.053 0.4 11/10/20 16:33 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 16:33 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 16:33 BRF 1,2-Dichlorobenzene ND 0.010 ND 0.077 | | n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 16:33 BRF sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 16:33 BRF Carbon Tetrachloride 0.070 0.010 0.44 0.063 0.4 11/10/20 16:33 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 16:33 BRF Chloroform ND 0.020 ND 0.053 0.4 11/10/20 16:33 BRF Chloroform 0.086 0.010 0.42 0.049 0.4 11/10/20 16:33 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 16:33 BRF Dibromochloromethane (EDB) ND 0.010 ND 0.085 0.4 11/10/20 16:33 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,4-Dichlorobenzene ND 0.020 ND 0. | | sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 16:33 BRF Carbon Tetrachloride 0.070 0.010 0.44 0.063 0.4 11/10/20 16:33 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 16:33 BRF Chlorofethane ND 0.020 ND 0.053 0.4 11/10/20 16:33 BRF Chlorofethane ND 0.040 ND 0.083 0.4 11/10/20 16:33 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 16:33 BRF Dibromochloromethane (EDB) ND 0.010 ND 0.085 0.4 11/10/20 16:33 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.077 0.4 11/10/20 16:33 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF Dichlorodifluoromethane (Freon 12) ND 0.020 | | Carbon Tetrachloride 0.070 0.010 0.44 0.063 0.4 11/10/20 16:33 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 16:33 BRF Chlorofethane ND 0.020 ND 0.053 0.4 11/10/20 16:33 BRF Chloroform 0.086 0.010 0.42 0.049 0.4 11/10/20 16:33 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 16:33 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.085 0.4 11/10/20 16:33 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.012 0.4 11/10/20 16:33 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,1-Dichloroethane ND 0.020 ND 0.012 0.4 11/10/20 16: | | Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 16:33 BRF Chloroethane ND 0.020 ND 0.053 0.4 11/10/20 16:33 BRF Chloroform 0.086 0.010 0.42 0.049 0.4 11/10/20 16:33 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 16:33 BRF Dibromochloromethane ND 0.010 ND 0.083 0.4 11/10/20 16:33 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 16:33 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,1-Dichloroethane ND 0.010 ND | | Chloroethane ND 0.020 ND 0.053 0.4 11/10/20 16:33 BRF Chloroform 0.086 0.010 0.42 0.049 0.4 11/10/20 16:33 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 16:33 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 16:33 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 16:33 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,1-Dichloroethane ND 0.020 ND 0.099 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 N | | Chloroform 0.086 0.010 0.42 0.049 0.4 11/10/20 16:33 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 16:33 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 16:33 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 16:33 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,1-Dichloroethane ND 0.020 ND 0.099 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 | | Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 16:33 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 16:33 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 16:33 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,4-Dichlorodethane (Freon 12) ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,1-Dichloroethane ND 0.020 ND 0.099 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 16:33 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 16:33 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.099 0.4 11/10/20 16:33 BRF 1,1-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 16:33 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.099 0.4 11/10/20 16:33 BRF 1,1-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.099 0.4 11/10/20 16:33 BRF 1,1-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.099 0.4 11/10/20 16:33 BRF 1,1-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 16:33 BRF Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.099 0.4 11/10/20 16:33 BRF 1,1-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.099 0.4 11/10/20 16:33 BRF 1,1-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | 1,1-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | | | 1,1-Dichloroethylene ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | | | cis-1,2-Dichloroethylene ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | trans-1,2-Dichloroethylene ND 0.010 ND 0.040 0.4 11/10/20 16:33 BRF | | 1,2-Dichloropropane ND 0.010 ND 0.046 0.4 11/10/20 16:33 BRF | | 1,3-Dichloropropane ND 0.054 ND 0.25 0.4 11/10/20 16:33 BRF | | cis-1,3-Dichloropropene ND 0.010 ND 0.045 0.4 11/10/20 16:33 BRF | | trans-1,3-Dichloropropene ND 0.010 ND 0.045 0.4 11/10/20 16:33 BRF | | Ethylbenzene 0.11 0.020 0.50 0.087 0.4 11/10/20 16:33 BRF | | Isopropylbenzene (Cumene) ND 0.051 ND 0.25 0.4 11/10/20 16:33 BRF | | p-Isopropyltoluene (p-Cymene) ND 0.046 ND 0.25 0.4 11/10/20 16:33 BRF | | Methyl tert-Butyl Ether (MTBE) ND 0.020 ND 0.072 0.4 11/10/20 16:33 BRF | | Methylene Chloride 0.36 0.20 1.2 0.69 0.4 11/10/20 16:33 BRF | | 4-Methyl-2-pentanone (MIBK) ND 0.020 ND 0.082 0.4 11/10/20 16:33 BRF | | Styrene ND 0.020 ND 0.085 0.4 11/10/20 16:33 BRF | | 1,1,1,2-Tetrachloroethane ND 0.036 ND 0.25 0.4 11/10/20 16:33 BRF | | 1,1,2,2-Tetrachloroethane ND 0.010 ND 0.069 0.4 11/10/20 16:33 BRF | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Room 145 Sample ID: 20J1668-05 Sample Matrix: Indoor air Sampled: 10/29/2020 08:23 Sample Description/Location: Sub Description/Location: Canister ID: 1878 Canister Size: 6 liter Flow Controller ID: 4094 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): -1.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | F | CPA TO-15 | | | | | | |-----------------------------------|---------|-------|-----------|---------|----------|-----------|----------------|---------| | | ppl | ppbv | | | m3 | Date/Time | | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.048 | 0.020 | | 0.33 | 0.14 | 0.4 | 11/10/20 16:33 | BRF | | Toluene | 0.66 | 0.020 | | 2.5 | 0.075 | 0.4 | 11/10/20 16:33 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 16:33 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 16:33 | BRF | | Trichloroethylene | ND | 0.010 | | ND | 0.054 | 0.4 | 11/10/20 16:33 | BRF | | Trichlorofluoromethane (Freon 11) | 0.24 | 0.080 | | 1.4 | 0.45 | 0.4 | 11/10/20 16:33 | BRF | | 1,2,4-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 16:33 | BRF | | 1,3,5-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 16:33 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 16:33 | BRF | | m&p-Xylene | 0.36 | 0.040 | | 1.6 | 0.17 | 0.4 |
11/10/20 16:33 | BRF | | o-Xylene | 0.13 | 0.020 | | 0.55 | 0.087 | 0.4 | 11/10/20 16:33 | BRF | | Surrogates | % Recov | ery | | % REG | C Limits | | | | | 4-Bromofluorobenzene (1) | | 101 | | 70 | -130 | | 11/10/20 16:33 | | | 4-Bromofluorobenzene (2) | | 94.6 | | 70- | -130 | | 11/10/20 16:33 | | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Room 152 Sample ID: 20J1668-06 Sample Matrix: Indoor air Sampled: 10/29/2020 08:24 Sample Description/Location: Sub Description/Location: Canister ID: 2032 Canister Size: 6 liter Flow Controller ID: 4102 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): -3 Receipt Vacuum(in Hg): -4.3 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/ı | m3 | | Date/Time | | |------------------------------------|---------|-------|-----------|---------|-------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Acetone | 6.0 | 0.80 | | 14 | 1.9 | 0.4 | 11/10/20 17:07 | BRF | | Acrylonitrile | ND | 0.12 | | ND | 0.25 | 0.4 | 11/10/20 17:07 | BRF | | Benzene | 0.31 | 0.020 | | 0.97 | 0.064 | 0.4 | 11/10/20 17:07 | BRF | | Bromodichloromethane | ND | 0.010 | | ND | 0.067 | 0.4 | 11/10/20 17:07 | BRF | | Bromoform | ND | 0.020 | | ND | 0.21 | 0.4 | 11/10/20 17:07 | BRF | | 2-Butanone (MEK) | ND | 0.80 | | ND | 2.4 | 0.4 | 11/10/20 17:07 | BRF | | n-Butylbenzene | ND | 0.058 | | ND | 0.32 | 0.4 | 11/10/20 17:07 | BRF | | sec-Butylbenzene | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 17:07 | BRF | | Carbon Tetrachloride | 0.068 | 0.010 | | 0.43 | 0.063 | 0.4 | 11/10/20 17:07 | BRF | | Chlorobenzene | ND | 0.020 | | ND | 0.092 | 0.4 | 11/10/20 17:07 | BRF | | Chloroethane | ND | 0.020 | | ND | 0.053 | 0.4 | 11/10/20 17:07 | BRF | | Chloroform | 0.058 | 0.010 | | 0.28 | 0.049 | 0.4 | 11/10/20 17:07 | BRF | | Chloromethane | ND | 0.040 | | ND | 0.083 | 0.4 | 11/10/20 17:07 | BRF | | Dibromochloromethane | ND | 0.010 | | ND | 0.085 | 0.4 | 11/10/20 17:07 | BRF | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | ND | 0.077 | 0.4 | 11/10/20 17:07 | BRF | | 1,2-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 17:07 | BRF | | 1,3-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 17:07 | BRF | | 1,4-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 17:07 | BRF | | Dichlorodifluoromethane (Freon 12) | ND | 0.020 | | ND | 0.099 | 0.4 | 11/10/20 17:07 | BRF | | 1,1-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 17:07 | BRF | | 1,2-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 17:07 | BRF | | 1,1-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 17:07 | BRF | | cis-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 17:07 | BRF | | trans-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 17:07 | BRF | | 1,2-Dichloropropane | ND | 0.010 | | ND | 0.046 | 0.4 | 11/10/20 17:07 | BRF | | 1,3-Dichloropropane | ND | 0.054 | | ND | 0.25 | 0.4 | 11/10/20 17:07 | BRF | | cis-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 17:07 | BRF | | trans-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 17:07 | BRF | | Ethylbenzene | 0.14 | 0.020 | | 0.59 | 0.087 | 0.4 | 11/10/20 17:07 | BRF | | Isopropylbenzene (Cumene) | ND | 0.051 | | ND | 0.25 | 0.4 | 11/10/20 17:07 | BRF | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 17:07 | BRF | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | ND | 0.072 | 0.4 | 11/10/20 17:07 | BRF | | Methylene Chloride | 0.32 | 0.20 | | 1.1 | 0.69 | 0.4 | 11/10/20 17:07 | BRF | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | ND | 0.082 | 0.4 | 11/10/20 17:07 | BRF | | Styrene | 0.031 | 0.020 | | 0.13 | 0.085 | 0.4 | 11/10/20 17:07 | BRF | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | ND | 0.25 | 0.4 | 11/10/20 17:07 | BRF | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | ND | 0.069 | 0.4 | 11/10/20 17:07 | BRF | | | | | | | | | | | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Room 152 Sample ID: 20J1668-06 Sample Matrix: Indoor air Sampled: 10/29/2020 08:24 Sample Description/Location: Sub Description/Location: Canister ID: 2032 Canister Size: 6 liter Flow Controller ID: 4102 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): -3 Receipt Vacuum(in Hg): -4.3 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | F | PA TO-15 | | | | | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------| | | ppl | bv | | ug/ı | m3 | | Date/Time | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.057 | 0.020 | | 0.39 | 0.14 | 0.4 | 11/10/20 17:07 | BRF | | Toluene | 0.80 | 0.020 | | 3.0 | 0.075 | 0.4 | 11/10/20 17:07 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 17:07 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 17:07 | BRF | | Trichloroethylene | 0.027 | 0.010 | | 0.14 | 0.054 | 0.4 | 11/10/20 17:07 | BRF | | Trichlorofluoromethane (Freon 11) | 0.25 | 0.080 | | 1.4 | 0.45 | 0.4 | 11/10/20 17:07 | BRF | | 1,2,4-Trimethylbenzene | 0.12 | 0.020 | | 0.57 | 0.098 | 0.4 | 11/10/20 17:07 | BRF | | 1,3,5-Trimethylbenzene | 0.032 | 0.020 | | 0.16 | 0.098 | 0.4 | 11/10/20 17:07 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 17:07 | BRF | | m&p-Xylene | 0.39 | 0.040 | | 1.7 | 0.17 | 0.4 | 11/10/20 17:07 | BRF | | o-Xylene | 0.15 | 0.020 | | 0.67 | 0.087 | 0.4 | 11/10/20 17:07 | BRF | | Surrogates | % Recov | ery | | % REG | C Limits | | | | | 4-Bromofluorobenzene (1) | | 103 | | 70- | -130 | | 11/10/20 17:07 | | | 4-Bromofluorobenzene (2) | | 95.9 | | 70- | -130 | | 11/10/20 17:07 | | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Room 118 Sample ID: 20J1668-07 Sample Matrix: Indoor air Sampled: 10/29/2020 08:34 Sample Description/Location: Sub Description/Location: Canister ID: 2145 Canister Size: 6 liter Flow Controller ID: 4171 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -3.5 Receipt Vacuum(in Hg): -4.4 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | Analyte Results RL Flag/Qual Results RL Dilution Analyzed Analyzed Acetone 5.6 0.80 13 1.9 0.4 11/10/20 17:40 BRF Acrylonitrile ND 0.12 ND 0.25 0.4 11/10/20 17:40 BRF Benzene 0.26 0.020 0.82 0.064 0.4 11/10/20 17:40 BRF Bromodichloromethane ND 0.010 ND 0.067 0.4 11/10/20 17:40 BRF Bromoform ND 0.020 ND 0.21 0.4 11/10/20 17:40 BRF 2-Butanone (MEK) ND 0.058 ND 0.32 0.4 11/10/20 17:40 BRF 9-Butanone (MEK) ND 0.058 ND 0.32 0.4 11/10/20 17:40 BRF 2-Butanone (MEK) ND 0.058 ND 0.32 0.4 11/10/20 17:40 BRF 2-Butanone (MEK) ND 0.058 ND 0.053 | |--| | Acrylonitrile ND 0.12 ND 0.25 0.4 11/10/20 17:40 BRF Benzene 0.26 0.020 0.82 0.064 0.4 11/10/20 17:40 BRF Bromodichloromethane ND 0.010 ND 0.067 0.4 11/10/20 17:40 BRF Bromoform ND 0.020 ND 0.21 0.4 11/10/20 17:40 BRF 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 11/10/20 17:40 BRF 2-Butanone (MEK) ND 0.058 ND 0.32 0.4 11/10/20 17:40 BRF 9-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 17:40 BRF 9-Butylbenzene ND 0.040 ND 0.063 0.4 11/10/20 17:40 BRF 10-bromochlare ND 0.020 ND 0.053 0.4 11/10/20 17:40 BRF 10-bromochloromethane ND 0.040 ND 0.083 0.4 | | Berzene 0.26 0.020 0.82 0.064 0.4 1/10/20 17:40 BRF Bromodichloromethane ND 0.010 ND 0.067 0.4 1/10/20 17:40 BRF Bromoform ND 0.020 ND 0.21 0.4 1/10/20 17:40 BRF 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 1/10/20 17:40 BRF 2-Butanone (MEK) ND 0.058 ND 0.32 0.4 1/10/20 17:40 BRF 8-Butylbenzene ND 0.046 ND 0.25 0.4 1/10/20 17:40 BRF Carbon Tetrachloride 0.078 0.010 0.49 0.063 0.4 1/10/20 17:40 BRF Chlorotenzene ND 0.020 ND 0.053 0.4 1/10/20 17:40 BRF Chlorotentane ND 0.040 ND 0.083 0.4 1/10/20 17:40 BRF </td | | Bromodichloromethane ND 0.010 ND 0.067 0.4 1/10/20 7.40 BRF Bromoform ND 0.020 ND 0.21 0.4 1/10/20 17.40 BRF 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 1/10/20 17.40 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 1/10/20 17.40 BRF cese-Butylbenzene ND 0.046 ND 0.25 0.4 1/10/20 17.40 BRF Carbon Tetrachloride 0.078 0.010 0.49 0.063 0.4 1/10/20 17.40 BRF Chlorotethane ND 0.020 ND 0.092 0.4 1/10/20 17.40 BRF Chlorotethane ND 0.020 ND 0.053 0.04 1/10/20 17.40 BRF Chlorotethane ND 0.040 ND 0.083 0.4 1/10/20 17.40 BRF | | Bromoform ND 0.020 ND 0.21 0.4 11/10/20 17:40 BRF 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 11/10/20 17:40 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 17:40 BRF sec-Butylbenzene ND 0.046 ND
0.25 0.4 11/10/20 17:40 BRF Carbon Tetrachloride 0.078 0.010 0.49 0.063 0.4 11/10/20 17:40 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 17:40 BRF Chloroform 0.072 0.010 0.35 0.049 0.4 11/10/20 17:40 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 17:40 BRF Dibromochloromethane (EDB) ND 0.010 ND 0.085 0.4 11/10/20 17:40 | | 2-Butanone (MEK) ND 0.80 ND 2.4 0.4 11/10/20 17:40 BRF n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 17:40 BRF sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 17:40 BRF Carbon Tetrachloride 0.078 0.010 0.49 0.063 0.4 11/10/20 17:40 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 17:40 BRF Chloroform 0.072 0.010 0.35 0.049 0.4 11/10/20 17:40 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 17:40 BRF Dibromochloromethane (EDB) ND 0.010 ND 0.085 0.4 11/10/20 17:40 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 | | n-Butylbenzene ND 0.058 ND 0.32 0.4 11/10/20 17:40 BRF sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 17:40 BRF Carbon Tetrachloride 0.078 0.010 0.49 0.063 0.4 11/10/20 17:40 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 17:40 BRF Chloroform ND 0.020 ND 0.053 0.4 11/10/20 17:40 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 17:40 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 17:40 BRF 1,2-Diblromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 17:40 BRF 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 | | sec-Butylbenzene ND 0.046 ND 0.25 0.4 11/10/20 17:40 BRF Carbon Tetrachloride 0.078 0.010 0.49 0.063 0.4 11/10/20 17:40 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 17:40 BRF Chlorocthane ND 0.020 ND 0.053 0.4 11/10/20 17:40 BRF Chloroform 0.072 0.010 0.35 0.049 0.4 11/10/20 17:40 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 17:40 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 17:40 BRF 1,2-Diblromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 17:40 BRF 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND | | Carbon Tetrachloride 0.078 0.010 0.49 0.063 0.4 11/10/20 17:40 BRF Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 17:40 BRF Chloroethane ND 0.020 ND 0.053 0.4 11/10/20 17:40 BRF Chloroform 0.072 0.010 0.35 0.049 0.4 11/10/20 17:40 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 17:40 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 17:40 BRF 1,2-Dichlorobenzene ND 0.010 ND 0.077 0.4 11/10/20 17:40 BRF 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 </td | | Chlorobenzene ND 0.020 ND 0.092 0.4 11/10/20 17:40 BRF Chloroethane ND 0.020 ND 0.053 0.4 11/10/20 17:40 BRF Chloroform 0.072 0.010 0.35 0.049 0.4 11/10/20 17:40 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 17:40 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 17:40 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 17:40 BRF 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF | | Chloroethane ND 0.020 ND 0.053 0.4 11/10/20 17:40 BRF Chloroform 0.072 0.010 0.35 0.049 0.4 11/10/20 17:40 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 17:40 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 17:40 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 17:40 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF | | Chloroform 0.072 0.010 0.35 0.049 0.4 11/10/20 17:40 BRF Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 17:40 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 17:40 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 17:40 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF | | Chloromethane ND 0.040 ND 0.083 0.4 11/10/20 17:40 BRF Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 17:40 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 17:40 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF | | Dibromochloromethane ND 0.010 ND 0.085 0.4 11/10/20 17:40 BRF 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 17:40 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF | | 1,2-Dibromoethane (EDB) ND 0.010 ND 0.077 0.4 11/10/20 17:40 BRF 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF | | 1,2-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF | | 1,3-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF | | 1,4-Dichlorobenzene ND 0.020 ND 0.12 0.4 11/10/20 17:40 BRF | | | | D. H. Ed. al. (E. 10) | | Dichlorodifluoromethane (Freon 12) ND 0.020 ND 0.099 0.4 11/10/20 17:40 BRF | | 1,1-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 17:40 BRF | | 1,2-Dichloroethane ND 0.010 ND 0.040 0.4 11/10/20 17:40 BRF | | 1,1-Dichloroethylene ND 0.010 ND 0.040 0.4 11/10/20 17:40 BRF | | cis-1,2-Dichloroethylene ND 0.010 ND 0.040 0.4 11/10/20 17:40 BRF | | trans-1,2-Dichloroethylene ND 0.010 ND 0.040 0.4 11/10/20 17:40 BRF | | 1,2-Dichloropropane ND 0.010 ND 0.046 0.4 11/10/20 17:40 BRF | | 1,3-Dichloropropane ND 0.054 ND 0.25 0.4 11/10/20 17:40 BRF | | cis-1,3-Dichloropropene ND 0.010 ND 0.045 0.4 11/10/20 17:40 BRF | | trans-1,3-Dichloropropene ND 0.010 ND 0.045 0.4 11/10/20 17:40 BRF | | Ethylbenzene 0.10 0.020 0.45 0.087 0.4 11/10/20 17:40 BRF | | Isopropylbenzene (Cumene) ND 0.051 ND 0.25 0.4 11/10/20 17:40 BRF | | p-Isopropyltoluene (p-Cymene) ND 0.046 ND 0.25 0.4 11/10/20 17:40 BRF | | Methyl tert-Butyl Ether (MTBE) ND 0.020 ND 0.072 0.4 11/10/20 17:40 BRF | | Methylene Chloride 0.27 0.20 0.93 0.69 0.4 11/10/20 17:40 BRF | | 4-Methyl-2-pentanone (MIBK) ND 0.020 ND 0.082 0.4 11/10/20 17:40 BRF | | Styrene 0.027 0.020 0.12 0.085 0.4 11/10/20 17:40 BRF | | 1,1,1,2-Tetrachloroethane ND 0.036 ND 0.25 0.4 11/10/20 17:40 BRF | | 1,1,2,2-Tetrachloroethane ND 0.010 ND 0.069 0.4 11/10/20 17:40 BRF | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Room 118 Sample ID: 20J1668-07 Sample Matrix: Indoor air Sampled: 10/29/2020 08:34 Sample Description/Location: Sub Description/Location: Canister ID: 2145 Canister Size: 6 liter Flow Controller ID: 4171 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -3.5 Receipt Vacuum(in Hg): -4.4 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | F | PA TO-15 | | | | | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------| | | ppl | bv | | ug/ı | m3 | | Date/Time | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.043 | 0.020 | | 0.29 | 0.14 | 0.4 | 11/10/20 17:40 | BRF | | Toluene | 0.61 | 0.020 | | 2.3 | 0.075 | 0.4 | 11/10/20 17:40 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 17:40 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 17:40 | BRF | | Trichloroethylene | 0.026 | 0.010 | | 0.14 | 0.054 | 0.4 | 11/10/20 17:40 | BRF | | Trichlorofluoromethane (Freon 11) | 0.24 | 0.080 | | 1.4 | 0.45 | 0.4 | 11/10/20 17:40 | BRF | | 1,2,4-Trimethylbenzene | 0.075 | 0.020 | | 0.37 | 0.098 | 0.4 | 11/10/20 17:40 | BRF | | 1,3,5-Trimethylbenzene | 0.024 | 0.020 | | 0.12 | 0.098 | 0.4 | 11/10/20 17:40 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 17:40 | BRF | | m&p-Xylene | 0.32 | 0.040 | | 1.4 | 0.17 | 0.4 | 11/10/20 17:40 | BRF | | o-Xylene | 0.12 | 0.020 | | 0.53 | 0.087 | 0.4 | 11/10/20 17:40 | BRF | | Surrogates | % Recov | ery | | % REG | C Limits | | | | | 4-Bromofluorobenzene (1) | | 103 | | 70- | -130 | | 11/10/20 17:40 | | | 4-Bromofluorobenzene (2) | | 97.2 | | 70- | -130 | | 11/10/20 17:40 | | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Room 110 Sample ID: 20J1668-08 Sample Matrix: Indoor air Sampled: 10/29/2020 08:35 Sample Description/Location: Sub Description/Location: Canister ID: 2483 Canister Size: 6 liter Flow Controller ID: 4206 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -25 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): -0.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/ı | m3 | | Date/Time | | |------------------------------------|---------|-------|-----------|---------|-------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Acetone | 5.0 | 0.80 | | 12 | 1.9 | 0.4 | 11/10/20 18:13 | BRF | | Acrylonitrile | ND | 0.12 | | ND | 0.25 | 0.4 | 11/10/20 18:13 | BRF | | Benzene | 0.31 | 0.020 | | 1.00 | 0.064 | 0.4 | 11/10/20 18:13 | BRF | | Bromodichloromethane | ND | 0.010 | | ND | 0.067 | 0.4 | 11/10/20 18:13 | BRF | | Bromoform | ND | 0.020 | | ND | 0.21 | 0.4 | 11/10/20 18:13 | BRF | | 2-Butanone (MEK) | ND | 0.80 | | ND | 2.4 | 0.4 | 11/10/20 18:13 | BRF | | n-Butylbenzene | ND | 0.058 | | ND | 0.32 | 0.4 | 11/10/20 18:13 | BRF | | sec-Butylbenzene | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 18:13 | BRF | | Carbon Tetrachloride | 0.071 | 0.010 | | 0.45 | 0.063 | 0.4 | 11/10/20 18:13 | BRF | | Chlorobenzene | ND | 0.020 | | ND | 0.092 | 0.4 | 11/10/20 18:13 | BRF | |
Chloroethane | ND | 0.020 | | ND | 0.053 | 0.4 | 11/10/20 18:13 | BRF | | Chloroform | ND | 0.010 | | ND | 0.049 | 0.4 | 11/10/20 18:13 | BRF | | Chloromethane | ND | 0.040 | | ND | 0.083 | 0.4 | 11/10/20 18:13 | BRF | | Dibromochloromethane | ND | 0.010 | | ND | 0.085 | 0.4 | 11/10/20 18:13 | BRF | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | ND | 0.077 | 0.4 | 11/10/20 18:13 | BRF | | 1,2-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 18:13 | BRF | | 1,3-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 18:13 | BRF | | 1,4-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 18:13 | BRF | | Dichlorodifluoromethane (Freon 12) | ND | 0.020 | | ND | 0.099 | 0.4 | 11/10/20 18:13 | BRF | | 1,1-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 18:13 | BRF | | 1,2-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 18:13 | BRF | | 1,1-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 18:13 | BRF | | cis-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 18:13 | BRF | | trans-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 18:13 | BRF | | 1,2-Dichloropropane | ND | 0.010 | | ND | 0.046 | 0.4 | 11/10/20 18:13 | BRF | | 1,3-Dichloropropane | ND | 0.054 | | ND | 0.25 | 0.4 | 11/10/20 18:13 | BRF | | cis-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 18:13 | BRF | | trans-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 18:13 | BRF | | Ethylbenzene | 0.10 | 0.020 | | 0.44 | 0.087 | 0.4 | 11/10/20 18:13 | BRF | | Isopropylbenzene (Cumene) | ND | 0.051 | | ND | 0.25 | 0.4 | 11/10/20 18:13 | BRF | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 18:13 | BRF | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | ND | 0.072 | 0.4 | 11/10/20 18:13 | BRF | | Methylene Chloride | 0.25 | 0.20 | | 0.88 | 0.69 | 0.4 | 11/10/20 18:13 | BRF | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | ND | 0.082 | 0.4 | 11/10/20 18:13 | BRF | | Styrene | ND | 0.020 | | ND | 0.085 | 0.4 | 11/10/20 18:13 | BRF | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | ND | 0.25 | 0.4 | 11/10/20 18:13 | BRF | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | ND | 0.069 | 0.4 | 11/10/20 18:13 | BRF | | | | | | | | | | | #### ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Room 110 Sample ID: 20J1668-08 Sample Matrix: Indoor air Sampled: 10/29/2020 08:35 Sample Description/Location: Sub Description/Location: Canister ID: 2483 Canister Size: 6 liter Flow Controller ID: 4206 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -25 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): -0.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | E | PA TO-15 | | | | | | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------|--| | | ppl | ppbv | | ug/m3 | | | Date/Time | | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | | Tetrachloroethylene | 0.047 | 0.020 | | 0.32 | 0.14 | 0.4 | 11/10/20 18:13 | BRF | | | Toluene | 0.71 | 0.020 | | 2.7 | 0.075 | 0.4 | 11/10/20 18:13 | BRF | | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 18:13 | BRF | | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 18:13 | BRF | | | Trichloroethylene | 0.029 | 0.010 | | 0.15 | 0.054 | 0.4 | 11/10/20 18:13 | BRF | | | Trichlorofluoromethane (Freon 11) | 0.24 | 0.080 | | 1.3 | 0.45 | 0.4 | 11/10/20 18:13 | BRF | | | 1,2,4-Trimethylbenzene | 0.065 | 0.020 | | 0.32 | 0.098 | 0.4 | 11/10/20 18:13 | BRF | | | 1,3,5-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 18:13 | BRF | | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 18:13 | BRF | | | m&p-Xylene | 0.27 | 0.040 | | 1.2 | 0.17 | 0.4 | 11/10/20 18:13 | BRF | | | o-Xylene | 0.11 | 0.020 | | 0.48 | 0.087 | 0.4 | 11/10/20 18:13 | BRF | | | Surrogates | % Recov | ery | | % REG | C Limits | | | | | | 4-Bromofluorobenzene (1) | | 104 | | 70- | -130 | | 11/10/20 18:13 | | | | 4-Bromofluorobenzene (2) | | 96.6 | | 70- | -130 | | 11/10/20 18:13 | | | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Ambient Outdoor Air Sample ID: 20J1668-09 Sample Matrix: Ambient Air Sampled: 10/29/2020 09:36 Sample Description/Location: Sub Description/Location: Canister ID: 1464 Canister Size: 6 liter Flow Controller ID: 4038 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): 0.2 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/ı | m3 | | Date/Time | | |------------------------------------|---------|-------|-----------|---------|-------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Acetone | 3.4 | 0.80 | | 8.1 | 1.9 | 0.4 | 11/10/20 19:08 | BRF | | Acrylonitrile | ND | 0.12 | | ND | 0.25 | 0.4 | 11/10/20 19:08 | BRF | | Benzene | 0.32 | 0.020 | | 1.0 | 0.064 | 0.4 | 11/10/20 19:08 | BRF | | Bromodichloromethane | ND | 0.010 | | ND | 0.067 | 0.4 | 11/10/20 19:08 | BRF | | Bromoform | ND | 0.020 | | ND | 0.21 | 0.4 | 11/10/20 19:08 | BRF | | 2-Butanone (MEK) | ND | 0.80 | | ND | 2.4 | 0.4 | 11/10/20 19:08 | BRF | | n-Butylbenzene | ND | 0.058 | | ND | 0.32 | 0.4 | 11/10/20 19:08 | BRF | | sec-Butylbenzene | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 19:08 | BRF | | Carbon Tetrachloride | 0.079 | 0.010 | | 0.50 | 0.063 | 0.4 | 11/10/20 19:08 | BRF | | Chlorobenzene | ND | 0.020 | | ND | 0.092 | 0.4 | 11/10/20 19:08 | BRF | | Chloroethane | ND | 0.020 | | ND | 0.053 | 0.4 | 11/10/20 19:08 | BRF | | Chloroform | 0.061 | 0.010 | | 0.30 | 0.049 | 0.4 | 11/10/20 19:08 | BRF | | Chloromethane | ND | 0.040 | | ND | 0.083 | 0.4 | 11/10/20 19:08 | BRF | | Dibromochloromethane | ND | 0.010 | | ND | 0.085 | 0.4 | 11/10/20 19:08 | BRF | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | ND | 0.077 | 0.4 | 11/10/20 19:08 | BRF | | 1,2-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 19:08 | BRF | | 1,3-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 19:08 | BRF | | 1,4-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 19:08 | BRF | | Dichlorodifluoromethane (Freon 12) | 0.55 | 0.020 | | 2.7 | 0.099 | 0.4 | 11/10/20 19:08 | BRF | | 1,1-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 19:08 | BRF | | 1,2-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 19:08 | BRF | | 1,1-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 19:08 | BRF | | cis-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 19:08 | BRF | | trans-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 19:08 | BRF | | 1,2-Dichloropropane | ND | 0.010 | | ND | 0.046 | 0.4 | 11/10/20 19:08 | BRF | | 1,3-Dichloropropane | ND | 0.054 | | ND | 0.25 | 0.4 | 11/10/20 19:08 | BRF | | cis-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 19:08 | BRF | | trans-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 19:08 | BRF | | Ethylbenzene | 0.10 | 0.020 | | 0.44 | 0.087 | 0.4 | 11/10/20 19:08 | BRF | | Isopropylbenzene (Cumene) | ND | 0.051 | | ND | 0.25 | 0.4 | 11/10/20 19:08 | BRF | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 19:08 | BRF | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | ND | 0.072 | 0.4 | 11/10/20 19:08 | BRF | | Methylene Chloride | ND | 0.20 | | ND | 0.69 | 0.4 | 11/10/20 19:08 | BRF | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | ND | 0.082 | 0.4 | 11/10/20 19:08 | BRF | | Styrene | 0.030 | 0.020 | | 0.13 | 0.085 | 0.4 | 11/10/20 19:08 | BRF | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | ND | 0.25 | 0.4 | 11/10/20 19:08 | BRF | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | ND | 0.069 | 0.4 | 11/10/20 19:08 | BRF | #### ANALYTICAL RESULTS **EPA TO-15** Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: Ambient Outdoor Air Sample ID: 20J1668-09 Sample Matrix: Ambient Air Sampled: 10/29/2020 09:36 Sample Description/Location: Sub Description/Location: Canister ID: 1464 Canister Size: 6 liter Flow Controller ID: 4038 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): 0.2 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: Date/Time ug/m3 ppbv RLFlag/Qual Results Dilution Analyzed Analyst Analyte Results RL11/10/20 19:08 Tetrachloroethylene 0.25 0.020 1.7 0.14 0.4 BRF 11/10/20 19:08 Toluene 0.66 0.020 2.5 0.075 0.4 BRF 1,1,1-Trichloroethane ND 0.010 ND 0.055 0.4 11/10/20 19:08 BRF 1,1,2-Trichloroethane ND 0.010 ND 0.0550.4 11/10/20 19:08 ${\sf BRF}$ Trichloroethylene 0.034 0.010 0.18 0.054 0.4 11/10/20 19:08 BRF Trichlorofluoromethane (Freon 11) 0.24 0.080 1.4 0.45 0.4 11/10/20 19:08 BRF 1,2,4-Trimethylbenzene 0.097 0.020 0.48 0.098 0.4 11/10/20 19:08 BRF 1,3,5-Trimethylbenzene 0.027 0.020 0.13 0.098 0.4 11/10/20 19:08 BRF BRF Vinyl Chloride ND 0.020 ND 0.051 0.4 11/10/20 19:08 m&p-Xylene 0.31 0.040 1.3 0.17 0.4 11/10/20 19:08 BRF BRF 0.087 0.4 11/10/20 19:08 o-Xylene 0.13 0.020 0.55 | Surrogates | % Recovery | % REC Limits | | |--------------------------|------------|--------------|----------------| | 4-Bromofluorobenzene (1) | 102 | 70-130 | 11/10/20 19:08 | | 4-Bromofluorobenzene (2) | 95.1 | 70-130 | 11/10/20 19:08 | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: MP-2 Sample ID: 20J1668-10 Sample Matrix: Indoor air Sampled: 10/29/2020 10:04 Sample Description/Location: Sub Description/Location: Canister ID: 1291 Canister Size: 6 liter Flow Controller ID: 4196 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): -4 Receipt Vacuum(in Hg): -3.1 Flow Controller Type: Fixed-Orifice Flow
Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/ı | n3 | | Date/Time | | |------------------------------------|---------|-------|-----------|---------|-------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Acetone | 2.2 | 0.80 | | 5.1 | 1.9 | 0.4 | 11/10/20 19:41 | BRF | | Acrylonitrile | ND | 0.12 | | ND | 0.25 | 0.4 | 11/10/20 19:41 | BRF | | Benzene | 0.15 | 0.020 | | 0.48 | 0.064 | 0.4 | 11/10/20 19:41 | BRF | | Bromodichloromethane | ND | 0.010 | | ND | 0.067 | 0.4 | 11/10/20 19:41 | BRF | | Bromoform | ND | 0.020 | | ND | 0.21 | 0.4 | 11/10/20 19:41 | BRF | | 2-Butanone (MEK) | 1.8 | 0.80 | | 5.4 | 2.4 | 0.4 | 11/10/20 19:41 | BRF | | n-Butylbenzene | ND | 0.058 | | ND | 0.32 | 0.4 | 11/10/20 19:41 | BRF | | sec-Butylbenzene | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 19:41 | BRF | | Carbon Tetrachloride | 0.069 | 0.010 | | 0.44 | 0.063 | 0.4 | 11/10/20 19:41 | BRF | | Chlorobenzene | ND | 0.020 | | ND | 0.092 | 0.4 | 11/10/20 19:41 | BRF | | Chloroethane | ND | 0.020 | | ND | 0.053 | 0.4 | 11/10/20 19:41 | BRF | | Chloroform | 0.053 | 0.010 | | 0.26 | 0.049 | 0.4 | 11/10/20 19:41 | BRF | | Chloromethane | ND | 0.040 | | ND | 0.083 | 0.4 | 11/10/20 19:41 | BRF | | Dibromochloromethane | ND | 0.010 | | ND | 0.085 | 0.4 | 11/10/20 19:41 | BRF | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | ND | 0.077 | 0.4 | 11/10/20 19:41 | BRF | | 1,2-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 19:41 | BRF | | 1,3-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 19:41 | BRF | | 1,4-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 19:41 | BRF | | Dichlorodifluoromethane (Freon 12) | ND | 0.020 | | ND | 0.099 | 0.4 | 11/10/20 19:41 | BRF | | 1,1-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 19:41 | BRF | | 1,2-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 19:41 | BRF | | 1,1-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 19:41 | BRF | | cis-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 19:41 | BRF | | trans-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 19:41 | BRF | | 1,2-Dichloropropane | ND | 0.010 | | ND | 0.046 | 0.4 | 11/10/20 19:41 | BRF | | 1,3-Dichloropropane | ND | 0.054 | | ND | 0.25 | 0.4 | 11/10/20 19:41 | BRF | | cis-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 19:41 | BRF | | trans-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 19:41 | BRF | | Ethylbenzene | 0.044 | 0.020 | | 0.19 | 0.087 | 0.4 | 11/10/20 19:41 | BRF | | Isopropylbenzene (Cumene) | ND | 0.051 | | ND | 0.25 | 0.4 | 11/10/20 19:41 | BRF | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 19:41 | BRF | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | ND | 0.072 | 0.4 | 11/10/20 19:41 | BRF | | Methylene Chloride | 0.26 | 0.20 | | 0.90 | 0.69 | 0.4 | 11/10/20 19:41 | BRF | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | ND | 0.082 | 0.4 | 11/10/20 19:41 | BRF | | Styrene | 0.027 | 0.020 | | 0.12 | 0.085 | 0.4 | 11/10/20 19:41 | BRF | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | ND | 0.25 | 0.4 | 11/10/20 19:41 | BRF | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | ND | 0.069 | 0.4 | 11/10/20 19:41 | BRF | | | | | | | | | | | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: MP-2 Sample ID: 20J1668-10 Sample Matrix: Indoor air Sampled: 10/29/2020 10:04 Sample Description/Location: Sub Description/Location: Canister ID: 1291 Canister Size: 6 liter Flow Controller ID: 4196 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): -4 Receipt Vacuum(in Hg): -3.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | E | PA TO-15 | | | | | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------| | | pp | bv | | ug/ı | m3 | | Date/Time | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 1.1 | 0.020 | | 7.3 | 0.14 | 0.4 | 11/10/20 19:41 | BRF | | Toluene | 0.24 | 0.020 | | 0.92 | 0.075 | 0.4 | 11/10/20 19:41 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 19:41 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 19:41 | BRF | | Trichloroethylene | 0.42 | 0.010 | | 2.3 | 0.054 | 0.4 | 11/10/20 19:41 | BRF | | Trichlorofluoromethane (Freon 11) | 0.40 | 0.080 | | 2.2 | 0.45 | 0.4 | 11/10/20 19:41 | BRF | | 1,2,4-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 19:41 | BRF | | 1,3,5-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 19:41 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 19:41 | BRF | | m&p-Xylene | 0.12 | 0.040 | | 0.53 | 0.17 | 0.4 | 11/10/20 19:41 | BRF | | o-Xylene | 0.056 | 0.020 | | 0.24 | 0.087 | 0.4 | 11/10/20 19:41 | BRF | | Surrogates | % Recov | ery | | % REC | C Limits | | | | | 4-Bromofluorobenzene (1) | | 102 | | 70- | -130 | | 11/10/20 19:41 | | | 4-Bromofluorobenzene (2) | | 94.2 | | 70- | -130 | | 11/10/20 19:41 | | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: MP-5 Sample ID: 20J1668-11 Sample Matrix: Indoor air Sampled: 10/29/2020 09:55 Sample Description/Location: Sub Description/Location: Canister ID: 2170 Canister Size: 6 liter Flow Controller ID: 4292 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -5 Receipt Vacuum(in Hg): -4.6 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/ı | m3 | | Date/Time | | |------------------------------------|---------|-------|-----------|---------|-------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Acetone | 4.7 | 0.80 | | 11 | 1.9 | 0.4 | 11/10/20 20:15 | BRF | | Acrylonitrile | ND | 0.12 | | ND | 0.25 | 0.4 | 11/10/20 20:15 | BRF | | Benzene | 0.19 | 0.020 | | 0.60 | 0.064 | 0.4 | 11/10/20 20:15 | BRF | | Bromodichloromethane | ND | 0.010 | | ND | 0.067 | 0.4 | 11/10/20 20:15 | BRF | | Bromoform | ND | 0.020 | | ND | 0.21 | 0.4 | 11/10/20 20:15 | BRF | | 2-Butanone (MEK) | 1.1 | 0.80 | | 3.3 | 2.4 | 0.4 | 11/10/20 20:15 | BRF | | n-Butylbenzene | ND | 0.058 | | ND | 0.32 | 0.4 | 11/10/20 20:15 | BRF | | sec-Butylbenzene | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 20:15 | BRF | | Carbon Tetrachloride | 0.073 | 0.010 | | 0.46 | 0.063 | 0.4 | 11/10/20 20:15 | BRF | | Chlorobenzene | ND | 0.020 | | ND | 0.092 | 0.4 | 11/10/20 20:15 | BRF | | Chloroethane | ND | 0.020 | | ND | 0.053 | 0.4 | 11/10/20 20:15 | BRF | | Chloroform | 0.071 | 0.010 | | 0.35 | 0.049 | 0.4 | 11/10/20 20:15 | BRF | | Chloromethane | ND | 0.040 | | ND | 0.083 | 0.4 | 11/10/20 20:15 | BRF | | Dibromochloromethane | ND | 0.010 | | ND | 0.085 | 0.4 | 11/10/20 20:15 | BRF | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | ND | 0.077 | 0.4 | 11/10/20 20:15 | BRF | | 1,2-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 20:15 | BRF | | 1,3-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 20:15 | BRF | | 1,4-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 20:15 | BRF | | Dichlorodifluoromethane (Freon 12) | ND | 0.020 | | ND | 0.099 | 0.4 | 11/10/20 20:15 | BRF | | 1,1-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 20:15 | BRF | | 1,2-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 20:15 | BRF | | 1,1-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 20:15 | BRF | | cis-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 20:15 | BRF | | trans-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 20:15 | BRF | | 1,2-Dichloropropane | ND | 0.010 | | ND | 0.046 | 0.4 | 11/10/20 20:15 | BRF | | 1,3-Dichloropropane | ND | 0.054 | | ND | 0.25 | 0.4 | 11/10/20 20:15 | BRF | | cis-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 20:15 | BRF | | trans-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 20:15 | BRF | | Ethylbenzene | 0.047 | 0.020 | | 0.20 | 0.087 | 0.4 | 11/10/20 20:15 | BRF | | Isopropylbenzene (Cumene) | ND | 0.051 | | ND | 0.25 | 0.4 | 11/10/20 20:15 | BRF | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 20:15 | BRF | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | ND | 0.072 | 0.4 | 11/10/20 20:15 | BRF | | Methylene Chloride | 0.41 | 0.20 | | 1.4 | 0.69 | 0.4 | 11/10/20 20:15 | BRF | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | ND | 0.082 | 0.4 | 11/10/20 20:15 | BRF | | Styrene | 0.030 | 0.020 | | 0.13 | 0.085 | 0.4 | 11/10/20 20:15 | BRF | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | ND | 0.25 | 0.4 | 11/10/20 20:15 | BRF | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | ND | 0.069 | 0.4 | 11/10/20 20:15 | BRF | | | | | | | | | | | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: MP-5 Sample ID: 20J1668-11 Sample Matrix: Indoor air Sampled: 10/29/2020 09:55 Sample Description/Location: Sub Description/Location: Canister ID: 2170 Canister Size: 6 liter Flow Controller ID: 4292 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -5 Receipt Vacuum(in Hg): -4.6 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | F | PA TO-15 | | | | | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------| | | pp | bv | | ug/i | m3 | | Date/Time | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.38 | 0.020 | | 2.6 | 0.14 | 0.4 | 11/10/20 20:15 | BRF | | Toluene | 0.24 | 0.020 | | 0.90 | 0.075 | 0.4 | 11/10/20 20:15 | BRF | | 1,1,1-Trichloroethane | 0.018 | 0.010 | |
0.098 | 0.055 | 0.4 | 11/10/20 20:15 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 20:15 | BRF | | Trichloroethylene | 8.3 | 0.010 | | 45 | 0.054 | 0.4 | 11/10/20 20:15 | BRF | | Trichlorofluoromethane (Freon 11) | 1.7 | 0.080 | | 9.5 | 0.45 | 0.4 | 11/10/20 20:15 | BRF | | 1,2,4-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 20:15 | BRF | | 1,3,5-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 20:15 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 20:15 | BRF | | m&p-Xylene | 0.13 | 0.040 | | 0.55 | 0.17 | 0.4 | 11/10/20 20:15 | BRF | | o-Xylene | 0.066 | 0.020 | | 0.29 | 0.087 | 0.4 | 11/10/20 20:15 | BRF | | Surrogates | % Recov | ery | | % REG | C Limits | | | | | 4-Bromofluorobenzene (1) | | 102 | | 70 | -130 | | 11/10/20 20:15 | | | 4-Bromofluorobenzene (2) | | 94.1 | | 70- | -130 | | 11/10/20 20:15 | | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: MP-7 Sample ID: 20J1668-12 Sample Matrix: Indoor air Sampled: 10/29/2020 09:47 Sample Description/Location: Sub Description/Location: Canister ID: 1973 Canister Size: 6 liter Flow Controller ID: 4073 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -29.5 Final Vacuum(in Hg): -3.5 Receipt Vacuum(in Hg): -2.8 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/ı | n3 | | Date/Time | | |------------------------------------|---------|-------|-----------|---------|-------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Acetone | 2.8 | 0.80 | | 6.6 | 1.9 | 0.4 | 11/10/20 20:48 | BRF | | Acrylonitrile | ND | 0.12 | | ND | 0.25 | 0.4 | 11/10/20 20:48 | BRF | | Benzene | 0.11 | 0.020 | | 0.35 | 0.064 | 0.4 | 11/10/20 20:48 | BRF | | Bromodichloromethane | ND | 0.010 | | ND | 0.067 | 0.4 | 11/10/20 20:48 | BRF | | Bromoform | ND | 0.020 | | ND | 0.21 | 0.4 | 11/10/20 20:48 | BRF | | 2-Butanone (MEK) | ND | 0.80 | | ND | 2.4 | 0.4 | 11/10/20 20:48 | BRF | | n-Butylbenzene | ND | 0.058 | | ND | 0.32 | 0.4 | 11/10/20 20:48 | BRF | | sec-Butylbenzene | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 20:48 | BRF | | Carbon Tetrachloride | 0.067 | 0.010 | | 0.42 | 0.063 | 0.4 | 11/10/20 20:48 | BRF | | Chlorobenzene | ND | 0.020 | | ND | 0.092 | 0.4 | 11/10/20 20:48 | BRF | | Chloroethane | ND | 0.020 | | ND | 0.053 | 0.4 | 11/10/20 20:48 | BRF | | Chloroform | 0.034 | 0.010 | | 0.17 | 0.049 | 0.4 | 11/10/20 20:48 | BRF | | Chloromethane | ND | 0.040 | | ND | 0.083 | 0.4 | 11/10/20 20:48 | BRF | | Dibromochloromethane | ND | 0.010 | | ND | 0.085 | 0.4 | 11/10/20 20:48 | BRF | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | ND | 0.077 | 0.4 | 11/10/20 20:48 | BRF | | 1,2-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 20:48 | BRF | | 1,3-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 20:48 | BRF | | 1,4-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 20:48 | BRF | | Dichlorodifluoromethane (Freon 12) | ND | 0.020 | | ND | 0.099 | 0.4 | 11/10/20 20:48 | BRF | | 1,1-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 20:48 | BRF | | 1,2-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 20:48 | BRF | | 1,1-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 20:48 | BRF | | cis-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 20:48 | BRF | | trans-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 20:48 | BRF | | 1,2-Dichloropropane | ND | 0.010 | | ND | 0.046 | 0.4 | 11/10/20 20:48 | BRF | | 1,3-Dichloropropane | ND | 0.054 | | ND | 0.25 | 0.4 | 11/10/20 20:48 | BRF | | cis-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 20:48 | BRF | | trans-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 20:48 | BRF | | Ethylbenzene | 0.038 | 0.020 | | 0.16 | 0.087 | 0.4 | 11/10/20 20:48 | BRF | | Isopropylbenzene (Cumene) | ND | 0.051 | | ND | 0.25 | 0.4 | 11/10/20 20:48 | BRF | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 20:48 | BRF | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | ND | 0.072 | 0.4 | 11/10/20 20:48 | BRF | | Methylene Chloride | ND | 0.20 | | ND | 0.69 | 0.4 | 11/10/20 20:48 | BRF | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | ND | 0.082 | 0.4 | 11/10/20 20:48 | BRF | | Styrene | 0.026 | 0.020 | | 0.11 | 0.085 | 0.4 | 11/10/20 20:48 | BRF | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | ND | 0.25 | 0.4 | 11/10/20 20:48 | BRF | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | ND | 0.069 | 0.4 | 11/10/20 20:48 | BRF | | | | | | | | | | | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: MP-7 Sample ID: 20J1668-12 Sample Matrix: Indoor air Sampled: 10/29/2020 09:47 Sample Description/Location: Sub Description/Location: Canister ID: 1973 Canister Size: 6 liter Flow Controller ID: 4073 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -29.5 Final Vacuum(in Hg): -3.5 Receipt Vacuum(in Hg): -2.8 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | E | PA TO-15 | | | | | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------| | | ppl | bv | | ug/ı | m3 | | Date/Time | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.066 | 0.020 | | 0.44 | 0.14 | 0.4 | 11/10/20 20:48 | BRF | | Toluene | 0.23 | 0.020 | | 0.88 | 0.075 | 0.4 | 11/10/20 20:48 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 20:48 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 20:48 | BRF | | Trichloroethylene | 0.11 | 0.010 | | 0.60 | 0.054 | 0.4 | 11/10/20 20:48 | BRF | | Trichlorofluoromethane (Freon 11) | 0.53 | 0.080 | | 3.0 | 0.45 | 0.4 | 11/10/20 20:48 | BRF | | 1,2,4-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 20:48 | BRF | | 1,3,5-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 20:48 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 20:48 | BRF | | m&p-Xylene | 0.10 | 0.040 | | 0.45 | 0.17 | 0.4 | 11/10/20 20:48 | BRF | | o-Xylene | 0.048 | 0.020 | | 0.21 | 0.087 | 0.4 | 11/10/20 20:48 | BRF | | Surrogates | % Recov | rery | | % REG | C Limits | | | | | 4-Bromofluorobenzene (1) | | 102 | | 70- | -130 | | 11/10/20 20:48 | | | 4-Bromofluorobenzene (2) | | 93.8 | | 70 | -130 | | 11/10/20 20:48 | | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: MP-8 Sample ID: 20J1668-13 Sample Matrix: Indoor air Sampled: 10/29/2020 09:59 Sample Description/Location: Sub Description/Location: Canister ID: 1004 Canister Size: 6 liter Flow Controller ID: 4300 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -5 Receipt Vacuum(in Hg): -3.6 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/ı | m3 | | Date/Time | | |------------------------------------|---------|-------|-----------|---------|-------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Acetone | 3.1 | 0.80 | | 7.4 | 1.9 | 0.4 | 11/10/20 21:44 | BRF | | Acrylonitrile | ND | 0.12 | | ND | 0.25 | 0.4 | 11/10/20 21:44 | BRF | | Benzene | 0.24 | 0.020 | | 0.77 | 0.064 | 0.4 | 11/10/20 21:44 | BRF | | Bromodichloromethane | ND | 0.010 | | ND | 0.067 | 0.4 | 11/10/20 21:44 | BRF | | Bromoform | ND | 0.020 | | ND | 0.21 | 0.4 | 11/10/20 21:44 | BRF | | 2-Butanone (MEK) | ND | 0.80 | | ND | 2.4 | 0.4 | 11/10/20 21:44 | BRF | | n-Butylbenzene | ND | 0.058 | | ND | 0.32 | 0.4 | 11/10/20 21:44 | BRF | | sec-Butylbenzene | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 21:44 | BRF | | Carbon Tetrachloride | 0.081 | 0.010 | | 0.51 | 0.063 | 0.4 | 11/10/20 21:44 | BRF | | Chlorobenzene | ND | 0.020 | | ND | 0.092 | 0.4 | 11/10/20 21:44 | BRF | | Chloroethane | ND | 0.020 | | ND | 0.053 | 0.4 | 11/10/20 21:44 | BRF | | Chloroform | 0.056 | 0.010 | | 0.28 | 0.049 | 0.4 | 11/10/20 21:44 | BRF | | Chloromethane | ND | 0.040 | | ND | 0.083 | 0.4 | 11/10/20 21:44 | BRF | | Dibromochloromethane | ND | 0.010 | | ND | 0.085 | 0.4 | 11/10/20 21:44 | BRF | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | ND | 0.077 | 0.4 | 11/10/20 21:44 | BRF | | 1,2-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 21:44 | BRF | | 1,3-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 21:44 | BRF | | 1,4-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 21:44 | BRF | | Dichlorodifluoromethane (Freon 12) | ND | 0.020 | | ND | 0.099 | 0.4 | 11/10/20 21:44 | BRF | | 1,1-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 21:44 | BRF | | 1,2-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 21:44 | BRF | | 1,1-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 21:44 | BRF | | cis-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 21:44 | BRF | | trans-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 21:44 | BRF | | 1,2-Dichloropropane | ND | 0.010 | | ND | 0.046 | 0.4 | 11/10/20 21:44 | BRF | | 1,3-Dichloropropane | ND | 0.054 | | ND | 0.25 | 0.4 | 11/10/20 21:44 | BRF | | cis-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 21:44 | BRF | | trans-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 21:44 | BRF | | Ethylbenzene | 0.061 | 0.020 | | 0.27 | 0.087 | 0.4 | 11/10/20 21:44 | BRF | | Isopropylbenzene (Cumene) | ND | 0.051 | | ND | 0.25 | 0.4 | 11/10/20 21:44 | BRF | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 21:44 | BRF | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | ND | 0.072 | 0.4 | 11/10/20 21:44 | BRF | | Methylene Chloride | ND | 0.20 | | ND | 0.69 | 0.4 | 11/10/20 21:44 |
BRF | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | ND | 0.082 | 0.4 | 11/10/20 21:44 | BRF | | Styrene | 0.031 | 0.020 | | 0.13 | 0.085 | 0.4 | 11/10/20 21:44 | BRF | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | ND | 0.25 | 0.4 | 11/10/20 21:44 | BRF | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | ND | 0.069 | 0.4 | 11/10/20 21:44 | BRF | | | | | | | | | | | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: MP-8 Sample ID: 20J1668-13 Sample Matrix: Indoor air Sampled: 10/29/2020 09:59 Sample Description/Location: Sub Description/Location: Canister ID: 1004 Canister Size: 6 liter Flow Controller ID: 4300 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -5 Receipt Vacuum(in Hg): -3.6 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | F | PA TO-15 | | | | | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------| | | pp | bv | | ug/i | m3 | | Date/Time | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.24 | 0.020 | | 1.6 | 0.14 | 0.4 | 11/10/20 21:44 | BRF | | Toluene | 0.86 | 0.020 | | 3.2 | 0.075 | 0.4 | 11/10/20 21:44 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 21:44 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 21:44 | BRF | | Trichloroethylene | 0.036 | 0.010 | | 0.20 | 0.054 | 0.4 | 11/10/20 21:44 | BRF | | Trichlorofluoromethane (Freon 11) | 0.26 | 0.080 | | 1.5 | 0.45 | 0.4 | 11/10/20 21:44 | BRF | | 1,2,4-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 21:44 | BRF | | 1,3,5-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 21:44 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 21:44 | BRF | | m&p-Xylene | 0.16 | 0.040 | | 0.71 | 0.17 | 0.4 | 11/10/20 21:44 | BRF | | o-Xylene | 0.072 | 0.020 | | 0.31 | 0.087 | 0.4 | 11/10/20 21:44 | BRF | | Surrogates | % Recov | ery | | % REG | C Limits | | | | | 4-Bromofluorobenzene (1) | | 101 | | 70 | -130 | | 11/10/20 21:44 | | | 4-Bromofluorobenzene (2) | | 91.3 | | 70- | -130 | | 11/10/20 21:44 | | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: IMP-1 Sample ID: 20J1668-14 Sample Matrix: Indoor air Sampled: 10/29/2020 08:03 Sample Description/Location: Sub Description/Location: Canister ID: 2144 Canister Size: 6 liter Flow Controller ID: 4069 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -3 Receipt Vacuum(in Hg): -3.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/ı | m3 | | Date/Time | | |------------------------------------|---------|-------|-----------|---------|-------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Acetone | 10 | 0.80 | | 25 | 1.9 | 0.4 | 11/10/20 22:17 | BRF | | Acrylonitrile | ND | 0.12 | | ND | 0.25 | 0.4 | 11/10/20 22:17 | BRF | | Benzene | 0.23 | 0.020 | | 0.73 | 0.064 | 0.4 | 11/10/20 22:17 | BRF | | Bromodichloromethane | ND | 0.010 | | ND | 0.067 | 0.4 | 11/10/20 22:17 | BRF | | Bromoform | ND | 0.020 | | ND | 0.21 | 0.4 | 11/10/20 22:17 | BRF | | 2-Butanone (MEK) | 2.5 | 0.80 | | 7.3 | 2.4 | 0.4 | 11/10/20 22:17 | BRF | | n-Butylbenzene | ND | 0.058 | | ND | 0.32 | 0.4 | 11/10/20 22:17 | BRF | | sec-Butylbenzene | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 22:17 | BRF | | Carbon Tetrachloride | 0.075 | 0.010 | | 0.47 | 0.063 | 0.4 | 11/10/20 22:17 | BRF | | Chlorobenzene | ND | 0.020 | | ND | 0.092 | 0.4 | 11/10/20 22:17 | BRF | | Chloroethane | ND | 0.020 | | ND | 0.053 | 0.4 | 11/10/20 22:17 | BRF | | Chloroform | 0.062 | 0.010 | | 0.30 | 0.049 | 0.4 | 11/10/20 22:17 | BRF | | Chloromethane | ND | 0.040 | | ND | 0.083 | 0.4 | 11/10/20 22:17 | BRF | | Dibromochloromethane | ND | 0.010 | | ND | 0.085 | 0.4 | 11/10/20 22:17 | BRF | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | ND | 0.077 | 0.4 | 11/10/20 22:17 | BRF | | 1,2-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 22:17 | BRF | | 1,3-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 22:17 | BRF | | 1,4-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 22:17 | BRF | | Dichlorodifluoromethane (Freon 12) | ND | 0.020 | | ND | 0.099 | 0.4 | 11/10/20 22:17 | BRF | | 1,1-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 22:17 | BRF | | 1,2-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 22:17 | BRF | | 1,1-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 22:17 | BRF | | cis-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 22:17 | BRF | | trans-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 22:17 | BRF | | 1,2-Dichloropropane | ND | 0.010 | | ND | 0.046 | 0.4 | 11/10/20 22:17 | BRF | | 1,3-Dichloropropane | ND | 0.054 | | ND | 0.25 | 0.4 | 11/10/20 22:17 | BRF | | cis-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 22:17 | BRF | | trans-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 22:17 | BRF | | Ethylbenzene | 0.10 | 0.020 | | 0.43 | 0.087 | 0.4 | 11/10/20 22:17 | BRF | | Isopropylbenzene (Cumene) | ND | 0.051 | | ND | 0.25 | 0.4 | 11/10/20 22:17 | BRF | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 22:17 | BRF | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | ND | 0.072 | 0.4 | 11/10/20 22:17 | BRF | | Methylene Chloride | ND | 0.20 | | ND | 0.69 | 0.4 | 11/10/20 22:17 | BRF | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | ND | 0.082 | 0.4 | 11/10/20 22:17 | BRF | | Styrene | 0.061 | 0.020 | | 0.26 | 0.085 | 0.4 | 11/10/20 22:17 | BRF | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | ND | 0.25 | 0.4 | 11/10/20 22:17 | BRF | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | ND | 0.069 | 0.4 | 11/10/20 22:17 | BRF | | | | | | | | | | | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: IMP-1 Sample ID: 20J1668-14 Sample Matrix: Indoor air Sampled: 10/29/2020 08:03 Sample Description/Location: Sub Description/Location: Canister ID: 2144 Canister Size: 6 liter Flow Controller ID: 4069 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -3 Receipt Vacuum(in Hg): -3.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | F | PA TO-15 | | | | | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------| | | ppl | bv | | ug/ı | m3 | | Date/Time | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.064 | 0.020 | | 0.44 | 0.14 | 0.4 | 11/10/20 22:17 | BRF | | Toluene | 0.54 | 0.020 | | 2.0 | 0.075 | 0.4 | 11/10/20 22:17 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 22:17 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 22:17 | BRF | | Trichloroethylene | 0.033 | 0.010 | | 0.18 | 0.054 | 0.4 | 11/10/20 22:17 | BRF | | Trichlorofluoromethane (Freon 11) | 0.25 | 0.080 | | 1.4 | 0.45 | 0.4 | 11/10/20 22:17 | BRF | | 1,2,4-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 22:17 | BRF | | 1,3,5-Trimethylbenzene | 0.070 | 0.020 | | 0.34 | 0.098 | 0.4 | 11/10/20 22:17 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 22:17 | BRF | | m&p-Xylene | 0.34 | 0.040 | | 1.5 | 0.17 | 0.4 | 11/10/20 22:17 | BRF | | o-Xylene | 0.15 | 0.020 | | 0.66 | 0.087 | 0.4 | 11/10/20 22:17 | BRF | | Surrogates | % Recov | ery | | % REG | C Limits | | | | | 4-Bromofluorobenzene (1) | | 104 | | 70- | -130 | | 11/10/20 22:17 | | | 4-Bromofluorobenzene (2) | | 95.8 | | 70- | -130 | | 11/10/20 22:17 | | ## ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: IMP-3 Sample ID: 20J1668-15 Sample Matrix: Indoor air Sampled: 10/29/2020 08:21 Sample Description/Location: Sub Description/Location: Canister ID: 2074 Canister Size: 6 liter Flow Controller ID: 4042 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): -5 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | pp | bv | | ug/ı | m3 | | Date/Time | | |------------------------------------|---------|-------|-----------|---------|-------|----------|----------------|---------| | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Acetone | 10 | 0.80 | | 25 | 1.9 | 0.4 | 11/10/20 22:52 | BRF | | Acrylonitrile | ND | 0.12 | | ND | 0.25 | 0.4 | 11/10/20 22:52 | BRF | | Benzene | ND | 0.020 | | ND | 0.064 | 0.4 | 11/10/20 22:52 | BRF | | Bromodichloromethane | ND | 0.010 | | ND | 0.067 | 0.4 | 11/10/20 22:52 | BRF | | Bromoform | ND | 0.020 | | ND | 0.21 | 0.4 | 11/10/20 22:52 | BRF | | 2-Butanone (MEK) | 0.88 | 0.80 | | 2.6 | 2.4 | 0.4 | 11/10/20 22:52 | BRF | | n-Butylbenzene | ND | 0.058 | | ND | 0.32 | 0.4 | 11/10/20 22:52 | BRF | | sec-Butylbenzene | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 22:52 | BRF | | Carbon Tetrachloride | 0.075 | 0.010 | | 0.47 | 0.063 | 0.4 | 11/10/20 22:52 | BRF | | Chlorobenzene | ND | 0.020 | | ND | 0.092 | 0.4 | 11/10/20 22:52 | BRF | | Chloroethane | ND | 0.020 | | ND | 0.053 | 0.4 | 11/10/20 22:52 | BRF | | Chloroform | 0.067 | 0.010 | | 0.33 | 0.049 | 0.4 | 11/10/20 22:52 | BRF | | Chloromethane | ND | 0.040 | | ND | 0.083 | 0.4 | 11/10/20 22:52 | BRF | | Dibromochloromethane | ND | 0.010 | | ND | 0.085 | 0.4 | 11/10/20 22:52 | BRF | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | ND | 0.077 | 0.4 | 11/10/20 22:52 | BRF | | 1,2-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 22:52 | BRF | | 1,3-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 22:52 | BRF
 | 1,4-Dichlorobenzene | ND | 0.020 | | ND | 0.12 | 0.4 | 11/10/20 22:52 | BRF | | Dichlorodifluoromethane (Freon 12) | ND | 0.020 | | ND | 0.099 | 0.4 | 11/10/20 22:52 | BRF | | 1,1-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 22:52 | BRF | | 1,2-Dichloroethane | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 22:52 | BRF | | 1,1-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 22:52 | BRF | | cis-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 22:52 | BRF | | trans-1,2-Dichloroethylene | ND | 0.010 | | ND | 0.040 | 0.4 | 11/10/20 22:52 | BRF | | 1,2-Dichloropropane | ND | 0.010 | | ND | 0.046 | 0.4 | 11/10/20 22:52 | BRF | | 1,3-Dichloropropane | ND | 0.054 | | ND | 0.25 | 0.4 | 11/10/20 22:52 | BRF | | cis-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 22:52 | BRF | | trans-1,3-Dichloropropene | ND | 0.010 | | ND | 0.045 | 0.4 | 11/10/20 22:52 | BRF | | Ethylbenzene | 0.16 | 0.020 | | 0.68 | 0.087 | 0.4 | 11/10/20 22:52 | BRF | | Isopropylbenzene (Cumene) | ND | 0.051 | | ND | 0.25 | 0.4 | 11/10/20 22:52 | BRF | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | ND | 0.25 | 0.4 | 11/10/20 22:52 | BRF | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | ND | 0.072 | 0.4 | 11/10/20 22:52 | BRF | | Methylene Chloride | ND | 0.20 | | ND | 0.69 | 0.4 | 11/10/20 22:52 | BRF | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | ND | 0.082 | 0.4 | 11/10/20 22:52 | BRF | | Styrene | 0.094 | 0.020 | | 0.40 | 0.085 | 0.4 | 11/10/20 22:52 | BRF | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | ND | 0.25 | 0.4 | 11/10/20 22:52 | BRF | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | ND | 0.069 | 0.4 | 11/10/20 22:52 | BRF | | | | | | | | | | | # ANALYTICAL RESULTS Project Location: Providence, RI Date Received: 10/29/2020 Field Sample #: IMP-3 Sample ID: 20J1668-15 Sample Matrix: Indoor air Sampled: 10/29/2020 08:21 Sample Description/Location: Sub Description/Location: Canister ID: 2074 Canister Size: 6 liter Flow Controller ID: 4042 Sample Type: 30 min Work Order: 20J1668 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): -5 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: | | | E | PA TO-15 | | | | | | |-----------------------------------|---------|-------|-----------|---------|----------|----------|----------------|---------| | | ppl | bv | | ug/ı | m3 | | Date/Time | | | Analyte | Results | RL | Flag/Qual | Results | RL | Dilution | Analyzed | Analyst | | Tetrachloroethylene | 0.13 | 0.020 | | 0.89 | 0.14 | 0.4 | 11/10/20 22:52 | BRF | | Toluene | 0.66 | 0.020 | | 2.5 | 0.075 | 0.4 | 11/10/20 22:52 | BRF | | 1,1,1-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 22:52 | BRF | | 1,1,2-Trichloroethane | ND | 0.010 | | ND | 0.055 | 0.4 | 11/10/20 22:52 | BRF | | Trichloroethylene | 0.35 | 0.010 | | 1.9 | 0.054 | 0.4 | 11/10/20 22:52 | BRF | | Trichlorofluoromethane (Freon 11) | 0.49 | 0.080 | | 2.7 | 0.45 | 0.4 | 11/10/20 22:52 | BRF | | 1,2,4-Trimethylbenzene | ND | 0.020 | | ND | 0.098 | 0.4 | 11/10/20 22:52 | BRF | | 1,3,5-Trimethylbenzene | 0.076 | 0.020 | | 0.37 | 0.098 | 0.4 | 11/10/20 22:52 | BRF | | Vinyl Chloride | ND | 0.020 | | ND | 0.051 | 0.4 | 11/10/20 22:52 | BRF | | m&p-Xylene | 0.54 | 0.040 | | 2.3 | 0.17 | 0.4 | 11/10/20 22:52 | BRF | | o-Xylene | 0.23 | 0.020 | | 1.0 | 0.087 | 0.4 | 11/10/20 22:52 | BRF | | Surrogates | % Recov | ery | | % REG | C Limits | | | | | 4-Bromofluorobenzene (1) | | 105 | | 70- | -130 | | 11/10/20 22:52 | | | 4-Bromofluorobenzene (2) | | 99.7 | | 70- | -130 | | 11/10/20 22:52 | | # **Sample Extraction Data** | Prep Method: TO-15 Prep Analytical Method: EP | | D | D | Pre-Dil | Pre-Dil | Default | Actual | | |---|---------|----------------------|-----------------|---------------|-------------|-----------------|-----------------|----------| | Lab Number [Field ID] | Batch | Pressure
Dilution | Pre
Dilution | Initial
mL | Final
mL | Injection
mL | Injection
mL | Date | | 20J1668-01 [Gymnasium] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-02 [Cafeteria] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-03 [Kitchen Storage] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-04 [Elevator Hallway] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-05 [Room 145] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-06 [Room 152] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-07 [Room 118] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-08 [Room 110] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-09 [Ambient Outdoor Air] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-10 [MP-2] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-11 [MP-5] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-12 [MP-7] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-13 [MP-8] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-14 [IMP-1] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | | 20J1668-15 [IMP-3] | B270707 | 1 | 1 | N/A | 1000 | 200 | 500 | 11/10/20 | ## QUALITY CONTROL ## Air Toxics by EPA Compendium Methods - Quality Control | | ppbv | | ug/m3 | ; | Spike Level | Source | | %REC | | RPD | | |---------|---------|----|---------|----|-------------|--------|------|--------|-----|-------|-----------| | Analyte | Results | RL | Results | RL | ppbv | Result | %REC | Limits | RPD | Limit | Flag/Qual | | Batch B270707 - TO-15 Prep | | | | |------------------------------------|----|-------|-------------------------------| | Blank (B270707-BLK1) | | | Prepared & Analyzed: 11/10/20 | | Acetone | ND | 0.80 | | | Acrylonitrile | ND | 0.12 | | | Benzene | ND | 0.020 | | | Bromodichloromethane | ND | 0.010 | | | Bromoform | ND | 0.020 | | | 2-Butanone (MEK) | ND | 0.80 | | | n-Butylbenzene | ND | 0.058 | | | sec-Butylbenzene | ND | 0.046 | | | Carbon Tetrachloride | ND | 0.010 | | | Chlorobenzene | ND | 0.020 | | | Chloroethane | ND | 0.020 | | | Chloroform | ND | 0.010 | | | Chloromethane | ND | 0.040 | | | Dibromochloromethane | ND | 0.010 | | | 1,2-Dibromoethane (EDB) | ND | 0.010 | | | 1,2-Dichlorobenzene | ND | 0.020 | | | 1,3-Dichlorobenzene | ND | 0.020 | | | 1,4-Dichlorobenzene | ND | 0.020 | | | Dichlorodifluoromethane (Freon 12) | ND | 0.020 | | | 1,1-Dichloroethane | ND | 0.010 | | | 1,2-Dichloroethane | ND | 0.010 | | | 1,1-Dichloroethylene | ND | 0.010 | | | cis-1,2-Dichloroethylene | ND | 0.010 | | | trans-1,2-Dichloroethylene | ND | 0.010 | | | 1,2-Dichloropropane | ND | 0.010 | | | 1,3-Dichloropropane | ND | 0.054 | | | cis-1,3-Dichloropropene | ND | 0.010 | | | trans-1,3-Dichloropropene | ND | 0.010 | | | Ethylbenzene | ND | 0.020 | | | Isopropylbenzene (Cumene) | ND | 0.051 | | | p-Isopropyltoluene (p-Cymene) | ND | 0.046 | | | Methyl tert-Butyl Ether (MTBE) | ND | 0.020 | | | Methylene Chloride | ND | 0.20 | | | 4-Methyl-2-pentanone (MIBK) | ND | 0.020 | | | Styrene | ND | 0.020 | | | 1,1,1,2-Tetrachloroethane | ND | 0.036 | | | 1,1,2,2-Tetrachloroethane | ND | 0.010 | | | Tetrachloroethylene | ND | 0.020 | | | Toluene | ND | 0.020 | | | 1,1,1-Trichloroethane | ND | 0.010 | | | 1,1,2-Trichloroethane | ND | 0.010 | | | Trichloroethylene | ND | 0.010 | | | Trichlorofluoromethane (Freon 11) | ND | 0.080 | | | 1,2,4-Trimethylbenzene | ND | 0.020 | | | 1,3,5-Trimethylbenzene | ND | 0.020 | | | Vinyl Chloride | ND | 0.020 | | ## QUALITY CONTROL # Air Toxics by EPA Compendium Methods - Quality Control | Analyte | ppbv
Results | ug/
RL Results | m3
RL | Spike Level ppbv | Source
Result | %REC | %REC
Limits | RPD | RPD
Limit | Flag/Qual | |------------------------------------|-----------------|-------------------|----------|------------------|------------------|-------------|----------------|-----|--------------|-----------| | Satch B270707 - TO-15 Prep | | | | · · · | | | | | | | | Blank (B270707-BLK1) | | | | Prepared & A | nalyzed: 11 | /10/20 | | | | | | n&p-Xylene | ND 0. | .040 | | | | | | | | | | -Xylene | | .020 | | | | | | | | | | urrogate: 4-Bromofluorobenzene (1) | 7.97 | | | 8.00 | | 99.7 | 70-130 | | | | | urrogate: 4-Bromofluorobenzene (2) | 7.74 | | | 8.00 | | 96.7 | 70-130 | | | | | .CS (B270707-BS1) | | | | Prepared & A | nalyzed: 11 | /10/20 | | | | | | acetone | 4.92 | | | 5.00 | | 98.4 | 70-130 | | | | | crylonitrile | 2.84 | | | 2.88 | | 98.8 | 70-130 | | | | | enzene | 4.43 | | | 5.00 | | 88.7 | 70-130 | | | | | romodichloromethane | 5.02 | | | 5.00 | | 100 | 70-130 | | | | | romoform | 5.14 | | | 5.00 | | 103 | 70-130 | | | | | | 4.49 | | | 5.00 | | | 70-130 | | | | | Butanone (MEK) | 1.35 | | | 1.14 | | 89.8
118 | 70-130 | | | | | Butylbenzene
c Butylbenzene | | | | | | | | | | | | cc-Butylbenzene | 1.34 | | | 1.14 | | 117 | 70-130 | | | | | arbon Tetrachloride | 4.81 | | | 5.00 | | 96.2 | 70-130 | | | | | hlorobenzene | 4.46 | | | 5.00 | | 89.3 | 70-130 | | | | | hloroethane | 5.07 | | | 5.00 | | 101 | 70-130 | | | | | hloroform | 4.91 | | | 5.00 | | 98.2 | 70-130 | | | | | nloromethane | 5.01 | | | 5.00 | | 100 | 70-130 | | | | | bromochloromethane | 4.72 | | | 5.00 | | 94.5 | 70-130 | | | | | 2-Dibromoethane (EDB) | 4.76 | | | 5.00 | | 95.1 | 70-130 | | | | | 2-Dichlorobenzene | 5.20 | | | 5.00 | | 104 | 70-130 | | | | | 3-Dichlorobenzene | 5.15 | | | 5.00 | | 103 | 70-130 | | | | | 4-Dichlorobenzene | 5.00 | | | 5.00 | | 100 | 70-130 | | | | | ichlorodifluoromethane (Freon 12) | 5.95 | | | 5.00 | | 119 | 70-130 | | | | | 1-Dichloroethane | 4.74 | | | 5.00 | | 94.9 | 70-130 | | | | | 2-Dichloroethane | 4.87 | | | 5.00 | | 97.4 | 70-130 | | | | | 1-Dichloroethylene | 4.46 | | | 5.00 | | 89.2 | 70-130 | | | | | s-1,2-Dichloroethylene | 4.63 | | | 5.00 | | 92.6 | 70-130 | | | | | ans-1,2-Dichloroethylene | 4.66 | | | 5.00 | | 93.3 | 70-130 | | | | |
2-Dichloropropane | 4.23 | | | 5.00 | | 84.6 | 70-130 | | | | | 3-Dichloropropane | 1.41 | | | 1.35 | | 105 | 70-130 | | | | | s-1,3-Dichloropropene | 4.30 | | | 5.00 | | 86.0 | 70-130 | | | | | ans-1,3-Dichloropropene | 4.34 | | | 5.00 | | 86.8 | 70-130 | | | | | hylbenzene | 4.54 | | | 5.00 | | 90.8 | 70-130 | | | | | opropylbenzene (Cumene) | 1.36 | | | 1.27 | | 107 | 70-130 | | | | | Isopropyltoluene (p-Cymene) | 1.25 | | | 1.14 | | 110 | 70-130 | | | | | ethyl tert-Butyl Ether (MTBE) | 4.44 | | | 5.00 | | 88.9 | 70-130 | | | | | ethylene Chloride | 4.21 | | | 5.00 | | 84.1 | 70-130 | | | | | Methyl-2-pentanone (MIBK) | 4.58 | | | 5.00 | | 91.6 | 70-130 | | | | | yrene | 4.49 | | | 5.00 | | 89.8 | 70-130 | | | | | 1,1,2-Tetrachloroethane | 0.943 | | | 0.910 | | 104 | 70-130 | | | | | 1,2,2-Tetrachloroethane | 4.77 | | | 5.00 | | 95.5 | 70-130 | | | | | etrachloroethylene | 4.65 | | | 5.00 | | 93.0 | 70-130 | | | | | bluene | 4.40 | | | 5.00 | | 87.9 | 70-130 | | | | | 1,1-Trichloroethane | 4.41 | | | 5.00 | | 88.2 | 70-130 | | | | | 1,2-Trichloroethane | 4.50 | | | 5.00 | | 90.0 | 70-130 | | | | ## QUALITY CONTROL ## Air Toxics by EPA Compendium Methods - Quality Control | | ppb | v | ug/r | m3 | Spike Level | Source | | %REC | | RPD | | |-------------------------------------|---------|----|---------|----|--------------|--------------|--------|--------|-----|-------|-----------| | Analyte | Results | RL | Results | RL | ppbv | Result | %REC | Limits | RPD | Limit | Flag/Qual | | Batch B270707 - TO-15 Prep | | | | | | | | | | | | | LCS (B270707-BS1) | | | | | Prepared & A | Analyzed: 11 | /10/20 | | | | | | Trichloroethylene | 4.69 | | | | 5.00 | | 93.8 | 70-130 | | | | | Trichlorofluoromethane (Freon 11) | 5.40 | | | | 5.00 | | 108 | 70-130 | | | | | 1,2,4-Trimethylbenzene | 4.80 | | | | 5.00 | | 96.0 | 70-130 | | | | | 1,3,5-Trimethylbenzene | 4.70 | | | | 5.00 | | 94.0 | 70-130 | | | | | Vinyl Chloride | 5.37 | | | | 5.00 | | 107 | 70-130 | | | | | m&p-Xylene | 9.42 | | | | 10.0 | | 94.2 | 70-130 | | | | | o-Xylene | 4.59 | | | | 5.00 | | 91.8 | 70-130 | | | | | Surrogate: 4-Bromofluorobenzene (1) | 8.50 | | | | 8.00 | | 106 | 70-130 | | | | | Surrogate: 4-Bromofluorobenzene (2) | 7.60 | | | | 8.00 | | 95.0 | 70-130 | | | | ## FLAG/QUALIFIER SUMMARY | OC result is outside of established fifth | * | OC result is outside of esta | ıblished | limits | |---|---|------------------------------|----------|--------| |---|---|------------------------------|----------|--------| † Wide recovery limits established for difficult compound. ‡ Wide RPD limits established for difficult compound. # Data exceeded client recommended or regulatory level ND Not Detected RL Reporting Limit is at the level of quantitation (LOQ) DL Detection Limit is the lower limit of detection determined by the MDL study MCL Maximum Contaminant Level Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded. No results have been blank subtracted unless specified in the case narrative section. # CERTIFICATIONS # Certified Analyses included in this Report | Analyte | Certifications | |------------------------------------|------------------------| | EPA TO-15 in Air | | | Acetone | AIHA,NY,ME,NH | | Acrylonitrile | AIHA,NJ,NY,ME,NH | | Benzene | AIHA,FL,NJ,NY,ME,NH,VA | | Bromodichloromethane | AIHA,NJ,NY,ME,NH,VA | | Bromoform | AIHA,NJ,NY,ME,NH,VA | | 2-Butanone (MEK) | AIHA,FL,NJ,NY,ME,NH,VA | | Carbon Tetrachloride | AIHA,FL,NJ,NY,ME,NH,VA | | Chlorobenzene | AIHA,FL,NJ,NY,ME,NH,VA | | Chloroethane | AIHA,FL,NJ,NY,ME,NH,VA | | Chloroform | AIHA,FL,NJ,NY,ME,NH,VA | | Chloromethane | AIHA,FL,NJ,NY,ME,NH,VA | | Dibromochloromethane | AIHA,NY,ME,NH | | 1,2-Dibromoethane (EDB) | AIHA,NJ,NY,ME,NH | | 1,2-Dichlorobenzene | AIHA,FL,NJ,NY,ME,NH,VA | | 1,3-Dichlorobenzene | AIHA,NJ,NY,ME,NH | | 1,4-Dichlorobenzene | AIHA,FL,NJ,NY,ME,NH,VA | | Dichlorodifluoromethane (Freon 12) | AIHA,NY,ME,NH | | 1,1-Dichloroethane | AIHA,FL,NJ,NY,ME,NH,VA | | 1,2-Dichloroethane | AIHA,FL,NJ,NY,ME,NH,VA | | 1,1-Dichloroethylene | AIHA,FL,NJ,NY,ME,NH,VA | | cis-1,2-Dichloroethylene | AIHA,FL,NY,ME,NH,VA | | trans-1,2-Dichloroethylene | AIHA,NJ,NY,ME,NH,VA | | 1,2-Dichloropropane | AIHA,FL,NJ,NY,ME,NH,VA | | cis-1,3-Dichloropropene | AIHA,FL,NJ,NY,ME,NH,VA | | trans-1,3-Dichloropropene | AIHA,NY,ME,NH | | Ethylbenzene | AIHA,FL,NJ,NY,ME,NH,VA | | Isopropylbenzene (Cumene) | AIHA,NJ,NY,ME,NH | | Methyl tert-Butyl Ether (MTBE) | AIHA,FL,NJ,NY,ME,NH,VA | | Methylene Chloride | AIHA,FL,NJ,NY,ME,NH,VA | | 4-Methyl-2-pentanone (MIBK) | AIHA,FL,NJ,NY,ME,NH | | Styrene | AIHA,FL,NJ,NY,ME,NH,VA | | 1,1,2,2-Tetrachloroethane | AIHA,FL,NJ,NY,ME,NH,VA | | Tetrachloroethylene | AIHA,FL,NJ,NY,ME,NH,VA | | Toluene | AIHA,FL,NJ,NY,ME,NH,VA | | 1,1,1-Trichloroethane | AIHA,FL,NJ,NY,ME,NH,VA | | 1,1,2-Trichloroethane | AIHA,FL,NJ,NY,ME,NH,VA | | Trichloroethylene | AIHA,FL,NJ,NY,ME,NH,VA | | Trichlorofluoromethane (Freon 11) | AIHA,NY,ME,NH | | 1,2,4-Trimethylbenzene | AIHA,NJ,NY,ME,NH | | 1,3,5-Trimethylbenzene | AIHA,NJ,NY,ME,NH | | Vinyl Chloride | AIHA,FL,NJ,NY,ME,NH,VA | | m&p-Xylene | AIHA,FL,NJ,NY,ME,NH,VA | | o-Xylene | AIHA,FL,NJ,NY,ME,NH,VA | | | | $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$ | Code | Description | Number | Expires | |-------|--|---------------|------------| | AIHA | AIHA-LAP, LLC - ISO17025:2017 | 100033 | 03/1/2022 | | MA | Massachusetts DEP | M-MA100 | 06/30/2021 | | CT | Connecticut Department of Publile Health | PH-0567 | 09/30/2021 | | NY | New York State Department of Health | 10899 NELAP | 04/1/2021 | | NH-S | New Hampshire Environmental Lab | 2516 NELAP | 02/5/2021 | | RI | Rhode Island Department of Health | LAO00112 | 12/30/2020 | | NC | North Carolina Div. of Water Quality | 652 | 12/31/2020 | | NJ | New Jersey DEP | MA007 NELAP | 06/30/2021 | | FL | Florida Department of Health | E871027 NELAP | 06/30/2021 | | VT | Vermont Department of Health Lead Laboratory | LL015036 | 07/30/2021 | | ME | State of Maine | 2011028 | 06/9/2021 | | VA | Commonwealth of Virginia | 460217 | 12/14/2020 | | NH-P | New Hampshire Environmental Lab | 2557 NELAP | 09/6/2021 | | VT-DW | Vermont Department of Health Drinking Water | VT-255716 | 06/12/2021 | | NC-DW | North Carolina Department of Health | 25703 | 07/31/2021 | | PA | Commonwealth of Pennsylvania DEP | 68-05812 | 06/30/2021 | | MI | Dept. of Env, Great Lakes, and Energy | 9100 | 09/6/2021 | | Phone: 413-525-2332
Fax: 413-525-6405 | |--| | 98820 | | Checol 2-Day Format: | | CLP Like Data Pkg Required: Email To: 1 postma@ 6 | | Fax To
Collection Data | | Beginning
Date/Time | | 10[25]
216
316 | | 730 804 | | 732 | | 71H | | 751 | | 753 Say | | | | 825 | | 969 636 | | | | Parterior sings | | 300 | | ls as | | OWNE | | Project Entity Government | | 10/09(2) 16/35 IX City | | | (JOD) (1) | | ∄ | III Deel / www | .contesttabs.com | | DOC #3/8 N | Doc #3/8 Kev 1_03242017 | _ | | | c | , | | |------------------------------|--|------------------------|-----------------------------|------------------|---|---|--------------------------------|-------------------------|--|---------------------------------------|------|---|---|----------------| | ANALYTICAL LABORATORY | Phone: 413-525-2332 | | CHAIN | N OF CUST | CHAIN OF CUSTODY RECORD (AIR) | AIR) | | m u | 39 Spruce Street East Longmondow, MA
01029 | treet | 010 |)
9 | - of | | | | Fax: 413-525-6405 | | Re | research | E | e | , | ANALYSIS R | EQUESTI | Ü, | 2 | 3 | | | | | Email: Info@contestlabs.com | | 7-Day | | 10-Day | r*va | | | | - " | | Dioseo fill | Diago fill and assessment | | | 1 2 1 1 | T TAGE SELECT | | Due Date: | | | | | | | E
E | D0 | sign, date | sign, date and retain the | و ج | | | Blud "Warwick RI | 028820 | | Rush Appr | proval Required | | | | | | | yellow | yellow copy for your | | | Phone: 401-136 - 3440 | The state of s | | 1-Day | | 3-Day | | | | | | | | records | | | Project Name: | Alvance High School | | 2-Day | | 4-Day | | | | | | La | Summs | Summa canietore and | | | Project Location: Princlence | RI | | | Data | Delivery | | | | | | | flow cont | flow controllers must be | ω | | Project Number: 1500008 | **** | | Format: | PDF 🔀 | EXCEL [X] | | | | | | | returned v | returned within 15 days of | ŏ = | | Project Manager: Frank Pos | Postma | | Other: | please report | 7 | [m3 | | ν | | Pre | eipt | O Ideoper | apply | | | Con-lest Quote Name/Number: | Villa Vi | | CLP Like Data Pkg Required: | ita Pkg Rec | | | | <u>1-1</u> | | | | 50.5 | | | | | Dwa | | Email To: | msoch | Email To: foostmala eccesticem | the sm | | -5 | | | - | illes io.
Los | roi summa canister and
flow controller | . | | Salipled by. Clay N.D | | | Fax To #: | | | | | 7.4 | | | e | informati | information please refer | <u>,</u> | | Lab Use | Client Use | Collection Data | on Data | Duration | Flow Rate | Matrix | Volume | S | | · · · · · · · · · · · · · · · · · · · | | - 84
48 | to con-Test's Air Media
Agreement | ns . | | Con-Test
Work Order# | Client Sample ID / Description | Beginning
Date/Time | Ending
Date/Time | Total
Minutes | m³/min
L/min | Code | Litters m³ | 101 | | | | Summa Can | Flow | c | | QI | MP-2 | 10 20 20
9 33 | 22 P2(0) | 31 | | 55 | 2 | | +7 | 78.5 × | É | 12/2 | 71617 | <u>. </u> | | | Mp.5 | 420 | 956, | 35 | | - |)
 | × | | 3.57 | 9 | 7 7 6 | C 90 T | <u> </u> | | 6) | t-dW | hlb | thb | 3.5 | | | |
 - | | | (32) | 2 | 27.07 | 1 | | (2) | MP-8 | gage | 969 | 30 | | | | × | | | 9 | 3 2 | W20.0 | Т | | M | I-MMT | 727 | \$03 | 500 | | | | × | | - | 1 | 2
2
3
5
5
7 | 2007 | <u> </u> | | 15 | IMP-3 | a T | iç3 | 35 | | | |
 × | | | 1 13 | - 77.5 | 3 5 | T | | | | | | | | | | | | - | 1 | 2 | 2 | .] | | | The state of s | | | | | | | | | - | | | | Т | | | - Additional and Addi | | | | | | | | | | | | | | | Comments: | | | | e e | Please use the following codes to indicate possible sample concentration within the Conc Code column above: | owing code | s to indica
Conc Code | te possible s | ample
/e: | | | Matrix Codes: | Codes: | | | Relinguished by: (signature) | Date/Time | | | | rigit; M Medium; L Low; C Clean; U Unknown | ит; с - Lo | w; c - cle | an; U - Unkr | nwor | | | | IL GAS | | | Outo As | 10-20-20 1800 | | | | | Special Reconstruction Special MA MCP Rec | ollitements
MA MCP Required | | | | | AMB = 1 | IA = INDOOR AIR
AMB = AMBIENT | | | Received by; (signature) | Date/Time: | | | | MCP Certif | MCP Certification Form Required | Required | | ;
; | e e | . 4 | DS = SS
4DQ = Q | 3 SLAB | | | I am Thedron | 1 N-39.30 1300 | | | | | CT RCP | CT RCP Required | | CON-RES | צש | | BL = BLANK | ANK | | | Court Charles | Date/Time: (U.M.) S 30 | | | | RCP Certif | RCP Certification Form Required | Required | | AMALYTICAL LABORATORN
WWW.contestiabs.com | ABORATO | ¥. | 0 = 0 th | er er | » | | Received by (signature) | Date/Time: | | | | | | Other | | | | | | | | | XXXX | (6/21/20 (7/13) | Other | | | | | | 7 | NELAC and AIMA-LAP, LLC Accredited | AIHA-L | 10.1 | Accredit | Pe | | | Relinquishempt: (signature) | 1928 Date/Time: (835 | t Enti | ty
Government | | Municipality | | MWRA | WRTA | Other | hromatogram | | | Õ | 1 | | Received by: Asignature) | Date/Time: | | Federal | | 21 J | S (| School | |] 🗌 | AIHA-LAP,LLC | 777¢ | | Soxniet
Non Soxhlet | , , | | | 100 100 LOS | * | City | ٦ | Brownfield | コ | MBTA | | | | | ****** | | | Doc #378 Rev 1_03242017 http://www.contestiabs.com I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples_____ Doc# 278 Rev 6 2017 Air Media Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False | Client (| | <u> </u> | - | o the attent | on or the one: | it - State 11de | or raise | | | |---|-----------------|---|---|---|--|---|------------|---|--------------------| | | Received By RUF | | Date | 16129120 | | Time | 1835 | | | | How were the sa | - | | In Cooler | - | On Ice | | No Ice | | ***** | | received? | | | In Box | | Ambient | *************************************** | Melted Ice | | | | Were samples | within T | emperature | | By Gun# | - | Actual Temp | | | | | Complia | ance? 2 | -6°C | \mathcal{A} | By Blank # | | Actual Temp | - | | | | Was Custo | dy Seal | Intact? | AU | _ | Were San | nples Tampere | d with? | - LA | | | Was COC | Relinqu | ished? | T | _ | Does Chair | Agree With S | amples? | | | | Are there a | any loos | e caps/valve | s on any sa | imples? | T- | | | | | | Is COC in ink/ Lo | egible? | · · · · · · · · · · · · · · · · · · · | | | | . | | | | | Did COC Include | e all | Client | | Analysis | | Sampler | Name | T | _ | | Pertinent Inform | ation? | Project | 7 | ID's | | Collection D | ates/Times | 1 | | | Are Sample Lab | els fille | d out and leg | ible? | T | | | | | -, -, - | | Are there Rushe | s? | <u> </u> | | Who wa | s notified? | | | | | | Samples are rec | eived w | vithin holding | time? | T | | | | • | | | | | lia Used? ¯ | T | | Individually Ce | rtified Cans? | T(15) | | | | Are | there T | rip Blanks? | ¥= | • | Is there enoug | h Volume? | T | • | | | Containers | | # | Size | Regulator | Duration | 10.
19. | Access | | | | Summa Ca | | 15 | (01 | 15 | Bomin | Nut/Ferrule | | IC Train | | | Tedlar Bag | | | | 1 | 701101 | Tubing | | io main | | | TO-17 Tube | | | | *************************************** | | T-Connector | | Shipping C | harnes | | Radiello | | | | | | Syringe | | | | | Pufs/TO-11 | ls | | | · · · · · · · · · · · · · · · · · · · | | Tedlar | | | l | | | | | | | | | | | ····· | | Can #'s | | | | | Reg #s | | | | | | | 45 | 1000 | | | 4314 | 417241 | 11430 | | | | 11-2-14- | 83 | 2144 | | M | 4285 | 4206 | 40100 | | | | 1199 17 | 707 | 2074 | *************************************** | | 4200 | 4038 | 4049 | | | | 2131 10 | -11 | | | | 4194 | <u> </u> | | | igspace | | 10 10 0 | 12 | W ### | | | 7097 | 4040 | | | | | Unused Med | | | | | 4102 | 9615 | | | | | CAUTS AT WA | 200 | | | | Pufs/T | 9-173 | | *************************************** | | | ************************************** | i | | | | | **** | | | + | | | | | | | | | <u> </u> | | | | | | | | | ************************************** | | | | | | | | | ····· | | | *************************************** | | | | | Comments: | | | | | | | | | | | 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | *************************************** | l | Dan | e 44 of 44 | # APPENDIX F Laboratory MRL Correspondence 39 Spruce Street East Longmeadow, MA 01089 December 14, 2020 Frank Postma EA Engineering Science & Technology 2350 Post Road Warwick, RI 02886 RE: RIDEM - Approved Action Level - Work Order 20J1668 Dear Mr. Postma: This letter is in response to the RIDEM – Approved Action Levels provided. Several of the compounds, appear to be beyond the scope of the current methodologies available, as well as, the current analytical instrumentation available for these methods. The following compounds that Con-Test Laboratory had issues meeting the limits are listed below: Bromodichloromethane 1,1,2,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,2-Dibromoethane Too Kappenne If you have any questions please feel free to call me at (413) 525-2332 ext. 41. Sincerely, Tod Kopyscinski **Laboratory Director** # APPENDIX G Methane Sensor Calibration Report | | | Field | Service a | and I | nspec | tion Rep | ort | | |------|---------------------------|-----------------------------|---------------------------------|-------------|---------------|-------------------------------|------------------------------|--------------------------| | | | | | | | | | | | | Customer: | | ring Science & T
Varwick, RI | Tech – | Contact: | Britta Cha | ambers & Greta | Janigian | | | Technician: | Г | Dan Warner | | Date: | | 11.11.2020 | | | | | | | | | | | | | | | | Calibra | tion Gas | Information | on | | | | Con | centration / Gas
Type: | 500 ppm CH | 4 (Air Balance) | Lot #: | 304-40 | 01933011-1 | Expiration: | 10/9/2024 | | | | | | | | | | | | | | | Ca | libration | Report: | | | | | Qty | Customer
Location | Filter Check
(Pass/Fail) | Vacuum Check
(Pass/Fail) | Gas
Type | Sensor
S/N | Reading Before
Calibration | Reading After
Calibration | Judgement
(Pass/Fail) | | 1 | Media Center | FE-1 OK | OK @ Base | CH4 | J601920 | 1,040 ppm | 500 ppm | PASS | | 2 | Cafeteria | FE-1 OK | OK @ Base | CH4 | J601918 | 1,070 ppm | 500 ppm | PASS | | 3 | Kitchen Storage | FE-1 OK | OK @ Base | CH4 | J601924 | 1,020 ppm | 500 ppm | PASS | | 4 | Rm. 152 | FE-1 OK | OK @ Base | CH4 | J601923 | 850 ppm | 500 ppm | PASS | | 5 | Elev. Corr. | FE-1 OK | OK @
Base | CH4 | J601921 | 195 ppm | 500 ppm | PASS | | 6 | Gym | FE-1 OK | OK @ Base | CH4 | J601919 | 325 ppm | 500 ppm | PASS | | 7 | Rm. 110 | FE-1 OK | OK @ Base | CH4 | J601917 | 105 ppm | 500 ppm | PASS | | 8 | Rm. 118 | FE-1 OK | OK @ Base | CH4 | J601925 | 150 ppm | 500 ppm | PASS | | | | | | | | | | | | | | | S | ummary | of Job: | | | | | Cali | bration of (8) CH4 | | | as w | ell. | | d zero and flow f | ault detectio | | | | Reco | mmendations i | / Parts N | eeded Nex | t Service Date: | | | | | | | N/A – sensor | s in good | d working co | ndition. | | | | | | Custome | r Signature (if re | equired) | : | | Dat | e: | | PRII | NT: | | SIGN: | · . | | | | | DOD Technologies, INC • 675 Industrial Dr. BLDG A • Cary, IL 60013 • Phone (815) 788-5200 • Fax (815) 788-5300