AECOM

10 Orms Street, Suite 405, Providence, Rhode Island 02904 T 401.274.5685 F 401.521.2730 www.ensr.aecom.com

December 5, 2012

Mr. Joseph Martella II Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908-5767

RE: Addendum/Response to Remedial Action Workplan-Comments, 12/04/12

Former Gorham Silver Facility

Adelaide Avenue Providence, RI Case No. 97-030

Dear Mr. Martella:

On December 4, 2012, AECOM and Textron received your letter documenting the Rhode Island Department of Environmental Management's (RIDEM) questions and comments in response to the submittal of a Remedial Action Workplan (RAWP), dated October 2012 for the above referenced site. This letter addresses the RIDEM's questions and comments.

Item 1

Regarding RAWP Section 2.2 (Surface Water and Sediment Objectives), discussions are ongoing between the OWM and the Department's Office of Water Resources to determine if the current site specific remedial objective compliance standards for groundwater migrating to surface water need to be revised. Therefore, the Department reserves the right to require the adjustment or modification of the currently used site specific remedial objective compliance standards (applicable to the groundwater monitoring wells being used to monitor groundwater migrating into Mashpaug Cove) in the future at the Department's discretion.

Acknowledged

Item 2

Regarding RAWP Section 2.4 (Air Objectives) and Section 3.5 (Vapor Treatment), in accordance with the Department's Office of Air Resources (OAR), <u>Air Pollution Control Regulation No. 9 – Air Pollution Control Permits</u>, Rule 9.3.2 (Exemptions), prior to the construction, installation or modification of the air stripper vapor treatment system, Textron/AECOM must file a registration form with the OAR. Following the installation of the air stripper vapor treatment system, its proper operation must be evaluated by periodic compliance sampling with analytical laboratory testing of the inflow and outflow to verify actual emission values, and to demonstrate compliance with the applicable air pollution emissions thresholds in order to confirm that an Air Pollution Control (APC) permit is not required under the OAR APC Reg. No. 9.

In accordance with the Department's Office of Air Resources (OAR), <u>Air Pollution Control Regulation</u> <u>No. 9 – Air Pollution Control Permits</u>, Rule 9.3.2 (Exemptions), AECOM submitted an Air Registration to the OAR for the proposed remedial system dated October 30, 2012. A copy of the Air Registration is attached.

Item 3

Regarding RAWP Section 6.0 (Points of Compliance)

- a) In order to demonstrate and measure the progress of groundwater remediation of the chlorinated volatile organic compound (CVOC) groundwater plume, please include the periodic sampling and analysis of groundwater from monitoring wells that have historically exhibited significantly elevated concentrations of CVOCs. At a minimum please include the following monitor wells if they still exist: MW-222S, MW-224S, MW-226D, MW-227D, and MW-228S. Also, please include the sampling and analysis of groundwater from a monitoring well located downgradient of RW-1.
- b) Based upon our recent conversations, the Department understands that the periodic site groundwater monitoring currently being performed by Shaw Environmental, Inc. (Shaw) will continue for at least one more year. As we discussed, it is the Department's position that several of the wells monitored by Shaw must be considered when evaluating the compliance status and effectiveness of the groundwater treatment system. Therefore, any alterations to the Shaw groundwater monitoring program must be approved by the Department before implementation.

Revised Sample Locations

Monitoring Well	Location
CW-01	Sewer Intercept Compliance Well
CW-02	Sewer Intercept Compliance Well
CW-06	TPH Remediation Compliance Well
GZA-3	Mashapaug Pond Compliance Well
MW-109D	Mashapaug Pond Compliance Well
MW-112	Adelaide Ave. Compliance Well
MW-209D	Adelaide Ave. Compliance Well
MW-218D	Adelaide Ave. Compliance Well
MW-218S	Adelaide Ave. Compliance Well
MW-222S	Interior of Retail Building
MW-224S	Interior of Retail Building
MW-226D	Interior of Retail Building
MW-227D	Retail Parking Area
MW-228S	Retail Parking Area
MW-230S	Downgradient of RW-1
MW-230D	Downgradient of RW-1
NOTES: D-"deep" well, S-"shallow" well	I

The table above has been modified per RIDEM's comment to identify proposed groundwater monitoring locations that will be sampled quarterly for one year following initiation of groundwater extraction activities. Textron will continue to monitor groundwater at the site. It is Textron's intention, after one year of remedial system operation and four rounds of groundwater monitoring at the above locations, to optimize periodic groundwater monitoring program. Textron will submit a proposed groundwater monitoring optimization plan following the fourth quarterly groundwater monitoring event.

J. Martella December 5, 2012 Page 3

Item 4

Regarding RAWP Section 11.0 (Set-up Plans), the first sentence references "sediment and surface soil removal." The Department has presumed that the reference to sediments is a typological or transcription error. Please verify this or clarify the sediment reference.

The phrase referenced above was a typographical error.

Item 5

Regarding RAWP Section 11.2 (Site Access), site access should be limited to authorized personnel only. Trespassers and unauthorized personnel must be restricted from entering the secured work area and temporary stockpile area.

Comment acknowledged - Trenches will be backfilled and/or covered at the end of the day and temporary fencing with "No Trespassing" signs will surround the immediate work area and temporary stockpile area.

Item 6

Regarding RAWP Section 11.5 (Stockpile Areas), all excavated soil must be presumed to be impacted and regulated until such time as it is demonstrated to the Department, through sampling and laboratory analysis, that it is not regulated. All excavated soil must be either containerized or placed upon and covered with plastic sheeting in the secured work area or stockpile area until backfilled into the excavated trenches. Regulated soil and clean fill must be segregated from each other in the stockpile area. If it is anticipated that stockpiled regulated soil will not be backfilled or transported from the site for proper disposal at the end of the work day, then temporary security fencing should be employed around the stockpile area. Best management practices must be utilized to minimize and control generation of dust during excavation, movement or storage of regulated soils. At the completion of site work, all exposed soils are required to be recapped with Department approved engineered controls consistent or better than the site surface conditions prior to the work that took place. Soils excavated from the site may not be re-used as fill on residential property.

Comment acknowledged - All trenches will be backfilled and/or covered with steel plates at the end of each workday. Soil that is in excess or is clearly impacted will be staged in a secure location for later backfill as part of construction activities or disposal. Prior to disposal, soil that is not used as backfill will be sampled and analyzed for waste characterization following the requirements of the chosen receiving facility. Dust will be controlled using water and plastic sheeting as necessary. No excavated soil will be used as fill for residential areas.

Item 7

Regarding RAWP Section 15.2 (Closure Requirements), in accordance with Rule 11.09 (Closure and Post Closure) of the <u>Remediation Regulations</u>, compliance with the Remedial Action Approval shall be documented in a Closure Report submitted to the Department for review and approval. In addition to the items listed on page 15-1, the Remedial Action Closure Report should also include the following items:

- a) Results of all analytical sampling of any media (e.g. soil, groundwater, effluent, dust or air) performed during the remedial activities;
- b) All original laboratory data results from the remedial activities, compliance and confirmation sampling, as applicable; and
- c) Documentation that all excess regulated soil, solid waste, remediation waste, etc. was properly disposed of off site at an appropriately licensed facility in accordance with all applicable laws.

J. Martella December 5, 2012 Page 4

The Closure Report will include the above referenced items in addition to the items listed on page 15-1 of the RAWP.

Item 8

Regarding RAWP Section 17.1 (Primary Source Areas):

- a) The Department requests at a minimum for the first year of operation that groundwater sampling be performed and reported on a quarterly basis and semi annually thereafter. Periodic groundwater monitoring reports should be prepared after each groundwater sampling round and include at a minimum the following items:
 - i) The groundwater sampling results from the current round;
 - ii) A tabulated comparison of the current groundwater sampling results to the remedial objectives;
 - iii) An updated site figure depicting all sampling and point of compliance locations;
 - iv) Individual site figures depicting the current groundwater sampling round's concentration gradient for each contaminant of concern that currently exceeds the applicable groundwater remedial objective. At a minimum the list should include trichloroethylene and tetrachloroethylene;
 - v) The periodic water sampling and analysis results required under the Department's Rhode Island Pollution Elimination System (RIPDES) Permit (i.e. extracted groundwater influent prior to treatment and groundwater at the discharge point after treatment) collected during the current reporting period; and
 - vi) Periodic air stripper vapor treatment compliance sampling results and a comparison to applicable air pollution emissions thresholds.
- b) The Department does not concur with the statement the "Compliance with remedial objectives in the primary source areas will be achieved when POC sampling indicates that the remedial objectives have substantially been met. Minor exceedances will be considered in compliance." It is the Department's position that compliance is determined when remedial objectives have been demonstrated to have been achieved to the Department's satisfaction. In the event that the remedial objectives cannot reasonably be achieved with the approved remedial approach, discussions about revising the remedial approach may be initiated.

Periodic sampling of points of compliance will be conducted on the above referenced schedule. A periodic report coinciding with the discreet event will be prepared documenting, at a minimum, the above referenced items. Treated groundwater and air will be sampled and analyzed per the RIPDES Permit and Air Registration.

If you have any questions, please contact the undersigned at (401) 274-5685 or Greg Simpson of Textron at (401) 457-2635.

Sincerely yours,

Richard P. Michalewich Jr., PE

Ritalatit

Sr. Project Manager

Sean Crowell, PE Senior Engineer

Sean howell

J. Martella December 5, 2012 Page 5

AIR REGISTRATION SUBMITTAL

AECOM 10 Orms Street Suite 405 Providence, Rhode Island 02904

401-274-5685 401-521-2730 tel fax

Letter of Transmittal

Attention:	RIDEM – Office of Air Resources	Date:	10/30/12
Project reference:	Frm Gorham Facility	Project number:	60271240.1.4
We are sending yo	ou the following:		
		Descriptions	
Number of originals	: Number of copies:	Description:	_
		Dogictration for a	Air Pollution Control Equipment

Enclosed is the Registration for Air Pollution Control Equipment for the proposed remediation system at the Former Gorham Silver Facility Site at 333 Adelaide Ave, Providence, RI. If you have any questions or comments, please contact me at 401-340-0611 or 401-274-5685 X32.

RHODE ISLAND DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR RESOURCES

REGISTRATION OF AIR POLLUTION CONTROL EQUIPMENT

Return to:	: T	RHODE ISLAND DEPART OFFICE OF AIR RESOURG 235 PROMENADE STREE PROVIDENCE, RI 02908	T	NAGEMENT			
Section	1.	FULL BUSINESS NAME	Textron, Inc.	PHONE (401) 45	57-2635		
A	2.	ADDRESS OF EQUIPMENT LOCAT					
			SIC CODE	# EMPLOYEES	<u>N</u> A		
	3.	LOCATION ON PREMISES (BLDG.,		Cargo Container			
	4.	NATURE OF BUSINESS Remediation	on System				
Section B	1.	TYPE OF EQUIPMENT: BAG SCR	CARBON ADSORBE	TERBURNER ER OTHER (SPECIFY)			
	2.	MAKE AND MODEL NO.: Refer to					
	3.	ESTIMATED STARTING DATE:	11/1/12 ESTIMATED Co	OMPLETION DATE:	TBD		
Section C	1.	GENERAL DESCRIPTION OF PROC			ed groundwater		
	2.	PROCESS EQUIPMENT USED IN OPERATION Submersible pumps, bag filters, air stripper with blower and Vapor Phase Carbon Units, Liquid Phase Carbon Units and a lon Exchange Resinted					
	3.						
	4.	LIST THE TYPE AND QUANTITY O	F RAW MATERIALS USED PER HO	OUR OR PER BATCH ON A	N ATTACHED SHEET.		
Section D	Ем	IISSIONS INFORMATION: POLLUTANT See Attachment 5	EMISSIONS BEFORE CONTROL EQUIPMENT See Attachment 5	AFTER See Attachment 5			
	IN	IDICATE METHOD USED TO DETERM	IINE EMISSIONS See Attachment 5				

Section E	SCRUBBER 1. WET:SCRUBBING LIQUID (A) COMPOSITION (B) FLOW RATE (GAL/MIN) (C) INJECTION RATE (PSI) (D)MAKE-UP RATE IF RE-CIRCULATED (GAL/MIN)
	PACKING-IF APPLICABLE (A) TYPE (B) DEPTH OF BED (C) PACKING SURFACE (FEET) (C) PACKING SURFACE USAGE LB/HR. INJECTION RATIO: (MIXING METHOD 3. PRESSURE DROP ACROSS CONTROL UNIT: INCHES WATER
	BAGHOUSE/FABRIC FILTER 1. BAG/FILTER MATERIAL
	CARBON ADSORBER 1. VOLUME OF EACH CARBON BED
	INCINERATION 1. THERMAL AFTERBURNER A. VOLUME OF COMBUSTION CHAMBER

Section	OPERATING CONDITIONS
F	1. GAS VOLUME THROUGH CONTROL SYSTEM: NORMAL 420 ACFM @ 60 °F MAXIMUM 420 ACFM @ 100 °F
	2. GAS TEMPERATURE: INLET 60 °F OUTLET 60 °F
	3. STACK INFORMATION: (A) I.D. 8 INCHES OR INCHES X INCHES
	(B) STACK HEIGHT ABOVE GROUND <u>25</u> FEET
	(C) CFM EXHAUSTED 420
	(D) IS STACK EQUIPPED WITH RAIN HAT? ✓ YES ☐ NO
	4. DISTANCE FROM DISCHARGE TO NEAREST PROPERTY LINE ~100 FEET.

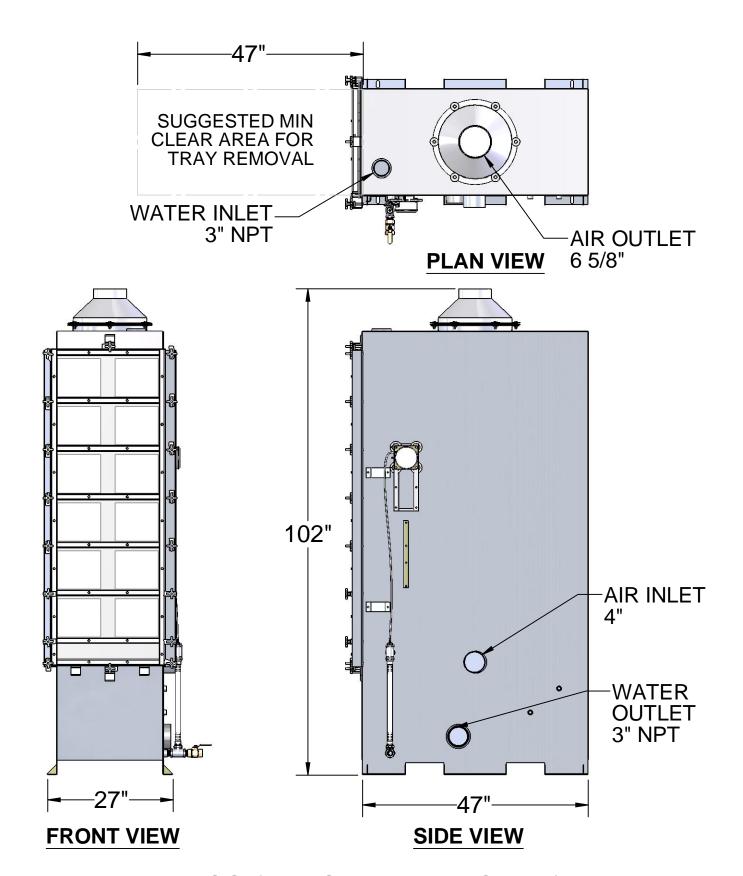
THIS REGISTRATION IS SUBMITTED IN ACCORDANCE WI	TH THE PROVISIONS OF CHAPTER 23-23 OF THE
GENERAL LAWS, AS AMENDED, REGULATION 9, AND T	O THE BEST OF MY KNOWLEDGE AND BELIEF IS
TRUE AND CORRECT.	
M	SR PROJECT MANAGER
GNATURE	TITLE
GERGURY L. SIMPSON	10/15/12
PRINTED NAME	DATE

ADDENDUM TO REGISTRATION OF AIR POLLUTION CONTROL EQUIPMENT FORM

Air Stripper/Soil Vapor Extraction Installations Required Information

- 1. Provide a plot plan to scale showing the location of the air stripper/soil vapor extraction system, locations of extraction wells, distances to all property lines and adjacent land uses (i.e. residential, commercial, etc.)
- 2. Provide an engineering drawing, dimensioned and to scale, for the air stripper (if applicable) which at a minimum includes the following information:
 - a. Height of the air stripper
 - b. Diameter of the air stripper
 - c. Air flow (CFM)
 - d. Liquid flow (gal/min)
 - e. Packing depth
- 3. Provide an engineering drawing, dimensioned and to scale, for the air pollution control system. The inlet and outlet ducts of the air pollution control system must be accessible to allow sampling of the exhaust gases. For non-regenerable carbon adsorption systems, records must be kept on-site of the date that the carbon is replaced.
- 4. Provide documentation ensuring that the air pollution system is capable of reducing the emission of VOCs by at least 95%.
- 5. For the contaminated liquid, provide the following information:
 - a. Identification of the contaminants to be removed
 - b. Maximum and average concentration of these contaminants in the liquid
 - c. Expected removal efficiency of the contaminants

AECOM Environment

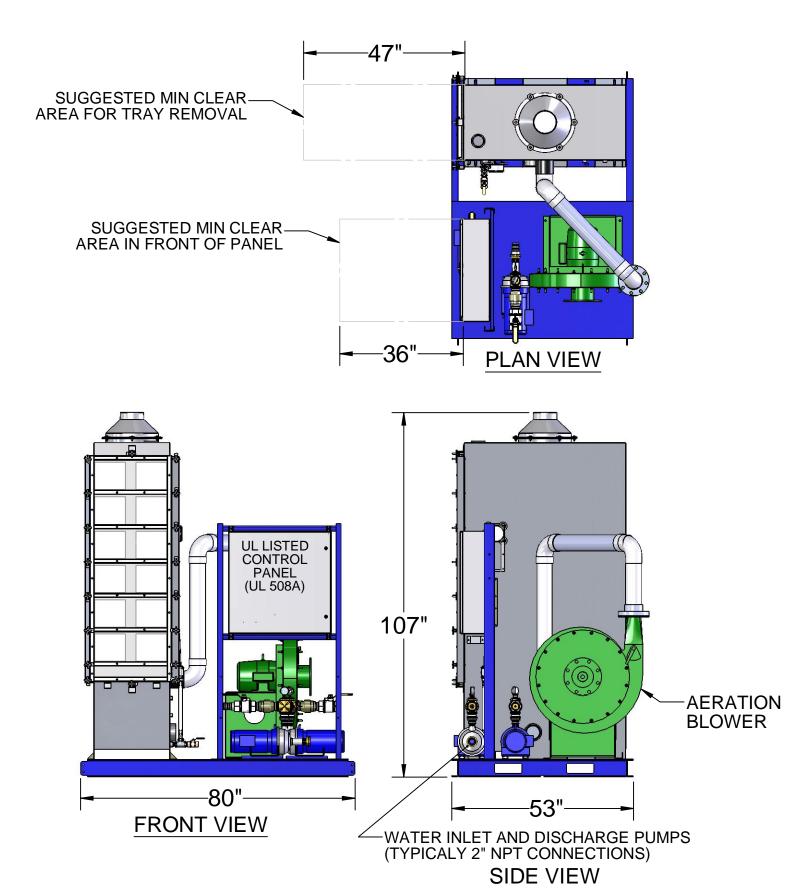

Attachment 1

Plot Plan

AECOM Environment

Attachment 2

Air Stripper



EZ-8.6SS (AIR STRIPPER ONLY) FOR MORE SPECIFICATIONS CLICK ON:

http://www.qedenv.com/Products/Airstrippers_VOC_Removal/Air_Stripper_Specifications/

NOT TO SCALE

NOT FOR CONSTRUCTION, FOR REFERENCE ONLY

EZ-8.6SS

EXAMPLE OF A SKID SYSTEM WITH CONTROL PANEL, PUMPS, AND BLOWER CONTACT QED FOR INFORMATION ON ALL OPTIONS.

NOT TO SCALE

NOT FOR CONSTRUCTION, FOR REFERENCE ONLY

800-624-2026 www.qedenv.com

Sliding Tray, High-Efficiency Air Strippers for VOC Removal

Flow Rates from 1 to 1,000 gpm and Options to Fit Every Treatment Project

E-Z Tray®

more than twice the access and tray removal space than E-Z Tray® air strippers.

allows for easy access without door removal.

Flow rates available from 1 to 1,000 gpm.

Air flows up through perforated trays creating a turbulent froth zone with a high air-to-liquid surface area for mass transfer of volatile organic

Front access slide-out trays allow unit maintenance by one person.

Split-tray option reduces maximum tray weight to only 28 lbs., even on the 1,000 gpm unit!

quickly with hand-knobs.

Easier tray cleaning and superior technical support make E-Z Tray® air strippers a smart choice!

The E-Z Tray® Air Stripper (U.S. Patent Number 5,518,668) is a sliding tray, stainless steel air stripper used to remove volatile organic compounds (VOC) from contaminated groundwater and waste streams. The exclusive design of the E-Z Tray stripper results in very high removal efficiencies in an easier to maintain process unit.

Any air stripping process subject to fouling conditions has to contend with periodic cleaning in order to retain treatment efficiencies and capacity. Tower air strip pers can become maintenance headaches when the tower packing becomes clogged and cemented together with bio-fouling or precipitants. When the perforated trays in stacking tray air strippers become fouled they require major disassembly, cranes or hoists, and lots of room.

Unlike these traditional types of air strippers, QED's E-Z Tray air strippers use removable, lightweight. front slide-out trays. This unique feature provides many advantages, including one person cleaning and less building space.

E-Z Tray air strippers are available in configurations with 4 or 6 travs, with maximum flow rates from 1-25 gpm (4-100 Lpm) all the way up to 1,000 gpm (3,784 Lpm).

NEW - High Capacity Process Air Strippers These air strippers are engineered to serve in larger, process-type projects involving multiple treatment stages, where they are an effective component of large-scale water or wastewater processes in

E-Z Tray Advantages

E-Z Tray

• Single person cleaning

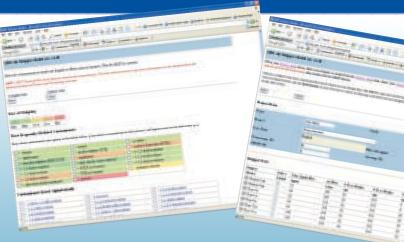
- Easy process monitoring and inspection, even while in operation
- Reduced footprint for installation and maintenance
- High removal efficiencies easier to maintain
- online by customer to help process evaluation

Tower Air Strippers

- Condition of packing and liquid and air flow distribution are very difficult to observe
- Small footprint but very tall structure required
- More difficult to keep at design performance
- Easily modeled
 More complex process assistance required

Stacking Tray Air Strippers

- Major disassembly steps and crew needed
- Difficult to impossible to observe air and liquid flow distribution during operation
- Lots of space needed for disassembly, to access all sides and to lift and store tray stages
- More difficult to keep at design performance
- Online modeler not offered


manufacturing, refining, chemical processing and other industries. They can act as a pre-treatment stage for other process elements, such as large aerobic biotreatment units, removing VOCs at much lower airflow rates to reduce the costs of off-gas treatment.

All of this combined with the easier maintenance and smaller footprint of QED's sliding tray air strippers, has led E-Z Tray to become the preferred choice for major remediation and process stream projects in the U.S. and abroad.

The QED VOC Removal Advantage

Proven equipment, expert help with its selection and installation, and support you can of

Exclusive Online Performance Modeler has been developed to assist you in selecting the most effective air stripping package for your groundwater cleanup project

Air Stripper Specifications

All St	i ippei opeeilieadoi	13			
Model	Maximum	Dry	Operating	Shell Dimension	Trays
No.	Flow Range	Weight	Weight	(LxWxH)	Per Tier
4.4	1-50 gpm (4-189 Lpm)	630 lbs. (286 kg)	985 lbs. (447 kg)	29 x 27 x 82 in. (74 x 69 x 208 cm)	4 x 29 lbs. (4 x 13 kg)
4.6	1-50 gpm (4-189 Lpm)	780 lbs. (354 kg)	1,219 lbs. (553 kg)	29 x 27 x 102 in. (74 x 69 x 259 cm)	6 x 29 lbs. (6 x 13 kg)
6.4	1-65 gpm (4-246 Lpm)	790 lbs. (358 kg)	1,285 lbs. (583 kg)	37 x 27 x 82 in. (94 x 69 x 208 cm)	4 x 40 lbs. (4 x 18 kg)
6.6	1-65 gpm (4-246 Lpm)	978 lbs. (443 kg)	1,591 lbs. (722 kg)	37 x 27 x 102 in. (94 x 69 x 259 cm)	6 x 40 lbs. (6 x 18 kg)
8.4	1-75 gpm (4-284 Lpm)	955 lbs. (433 kg)	1,580 lbs. (717 kg)	49 x 27 x 82 in. (124 x 69 x 208 cm)	4 x 50 lbs. (4 x 23 kg)
8.6	1-75 gpm (4-284 Lpm)	1,182 lbs. (536 kg)	1,956 lbs. (887 kg)	49 x 27 x 102 in. (124 x 69 x 259 cm)	6 x 50 lbs. (6 x 23 kg)
12.4	1-120 gpm (4-454 Lpm)	1,165 lbs. (528 kg)	2,105 lbs. (955 kg)	73 x 27 x 82 in. (185 x 69 x 208 cm)	4 x 60 lbs. (4 x 447 kg)
12.6	1-120 gpm (4-454 Lpm)	1,442 lbs. (654 kg)	2,606 lbs. (1,182 kg)	73 x 27 x 102 in. (185 x 69 x 259 cm)	6 x 60 lbs. (6 x 447 kg)
16.4	1-150 gpm (4-566 Lpm)	1,625 lbs. (737 kg)	2,870 lbs. (1,302 kg)	49 x 52 x 84 in. (124 x 132 x 213 cm)	8 x 50 lbs. (8 x 23 kg)
16.6	1-150 gpm (4-566 Lpm)	2,011 lbs. (912 kg)	3,553 lbs. (1,612 kg)	49 x 52 x 104 in. (124 x 132 x 264 cm)	12 x 50 lbs. (12 x 23 kg)
24.4	1-250 gpm (4-946 Lpm)	2,100 lbs. (953 kg)	3,980 lbs. (1,805 kg)	73 x 52 x 84 in. (185 x 132 x 213 cm)	8 x 60 lbs. (8 x 27 kg)
24.6	1-250 gpm (4-946 Lpm)	2,599 lbs. (1,179 kg)	4,926 lbs. (2,234 kg)	73 x 52 x 104 in. (185 x 132 x 264 cm)	12 x 60 lbs. (12 x 27 kg)
48.4	1-500 gpm (1,893 Lpm)	5,000 lbs. (2,268 kg)	12,500 lbs. (5,670 kg)	98 x 71 x 84 in. (249 x 180 x 213 cm)	16 x 60 lbs. (16 x 27 kg)
48.6	1-500 gpm (1,893 Lpm)	5,500 lbs. (2,495 kg)	13,000 lbs. (5,897 kg)	98 x 71 x 104 in. (249 x 180 x 264 cm)	24 x 60 lbs. (24 x 27 kg)
96.4	1-1,000 gpm (3,785 Lpm)	11,000 lbs. (4,990 kg)	25,000 lbs. (11,340 kg)	142 x 98 x 84 in. (361 x 249 x 213 cm)	32 x 60 lbs. (32 x 27 kg)
96.6	1-1,000 gpm (3,785 Lpm)	11,500 lbs. (5,216 kg)	30,000 lbs. (13,608 kg)	142 x 98 x 104 in. (361 x 249 x 264 cm)	48 x 60 lbs. (48 x 27 kg)

Standard construction is 304 SS, other alloys upon request. *Allow additional space for accessory components. (blower, piping, etc.)

count on when you need it

	Active	Nominal	Additional Space
	Area	Air Flow	for Tray Removal*
	2.8 ft. ² (0.26 m ²)	210 cfm (5.95 m³/min)	27 in. (69 cm)
	2.8 ft.2 (0.26 m2)	210 cfm (5.95 m³/min)	27 in. (69 cm)
	3.8 ft. ² (0.35 m ²)	320 cfm (9.06 m³/min)	35 in. (89 cm)
	3.8 ft. ² (0.35 m ²)	320 cfm (9.06 m³/min)	35 in. (89 cm)
	5.6 ft. ² (0.52 m ²)	420 cfm (11.89 m³/min)	47 in. (119 cm)
	5.6 ft. ² (0.52 m ²)	420 cfm (11.89 m³/min)	47 in. (119 cm)
П	8.8 ft. ² (0.82 m ²)	600 cfm (16.99 m³/min)	71 in. (180 cm)
	8.8 ft. ² (0.82 m ²)	600 cfm (16.99 m³/min)	71 in. (180 cm)
1	1.1 ft. ² (1.03 m ²)	850 cfm (24.07 m³/min)	47 in. (119 cm)
1	1.1 ft. ² (1.03 m ²)	850 cfm (24.07 m ³ /min)	47 in. (119 cm)
1	7.5 ft. ² (1.63 m ²)	1,300 cfm (36.81 m³/min)	72 in. (183 cm)
1	7.5 ft. ² (1.63 m ²)	1,300 cfm (36.81 m³/min)	72 in. (183 cm)
	27 ft. ² (2.51 m ²)	2,600 cfm (73.62 m³/min)	72 in. (183 cm)
	27 ft. ² (2.51 m ²)	2,600 cfm (73.62 m³/min)	72 in. (183 cm)
	54 ft. ² (5.02 m ²)	5,200 cfm (147.25 m³/min) 2	x 72 in. (2 x 183 cm)*
	54 ft. ² (5.02 m ²)	5,200 cfm (147.25 m³/min) 2	x 72 in. (2 x 183 cm)*

How it Works

As contaminated groundwater enters through the top of the air stripper, millions of air bubbles are forced by blower pressure up through the perforated trays. This creates a turbulent froth zone with an extremely high air-to-liquid surface area for mass transfer of volatile organic compounds (VOCs) from liquid to air. Using the froth instead of a conventional tower packing delivers high VOC removal efficiencies even under fouling conditions, and is easier to inspect and maintain.

QED Quality Control, Manufacturing Standards and Customer Service

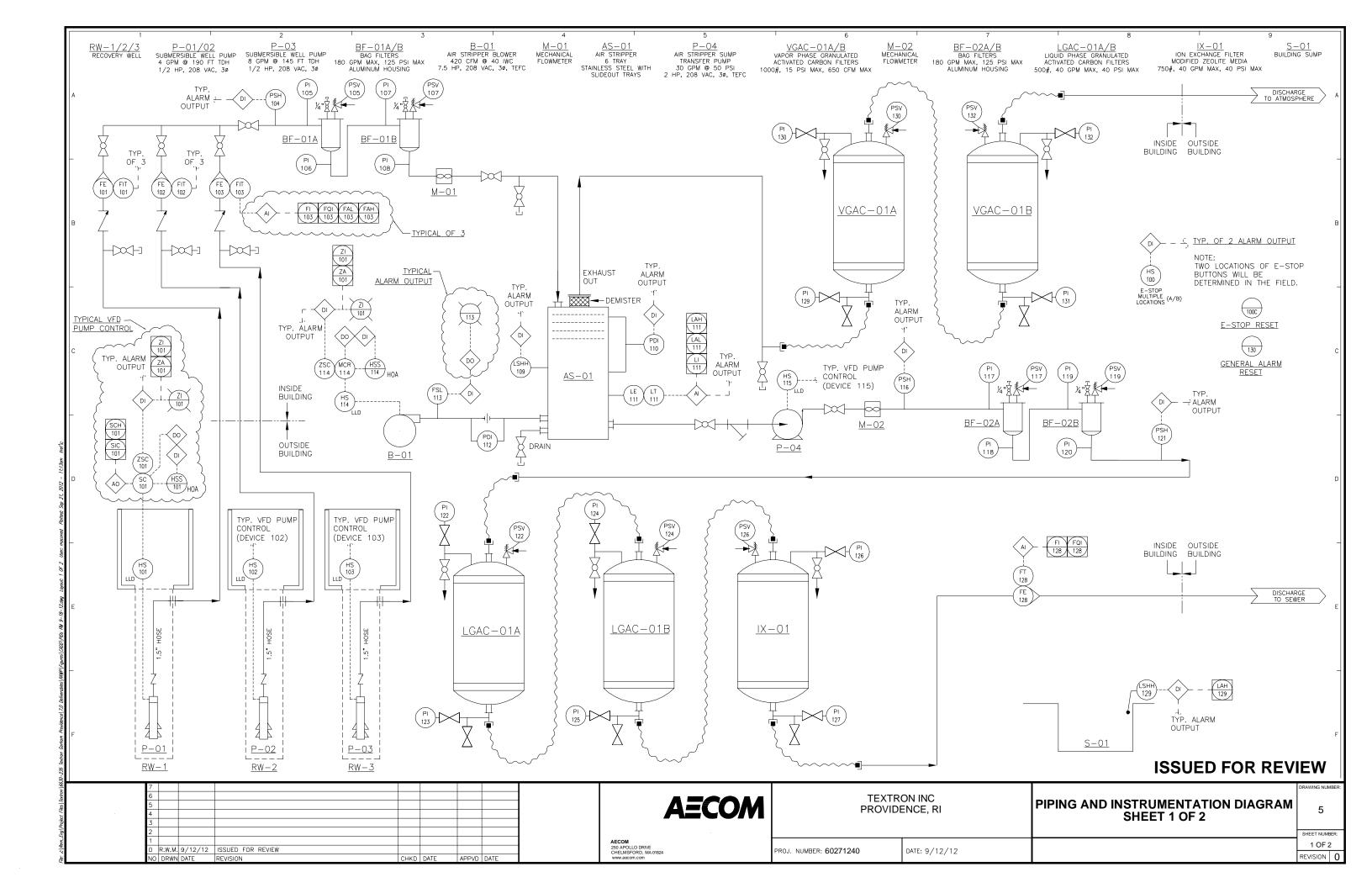
Experienced site owners, including major oil companies, are increasingly choosing E-Z Tray® air strippers from QED due to their unique features and solid technical support, including:

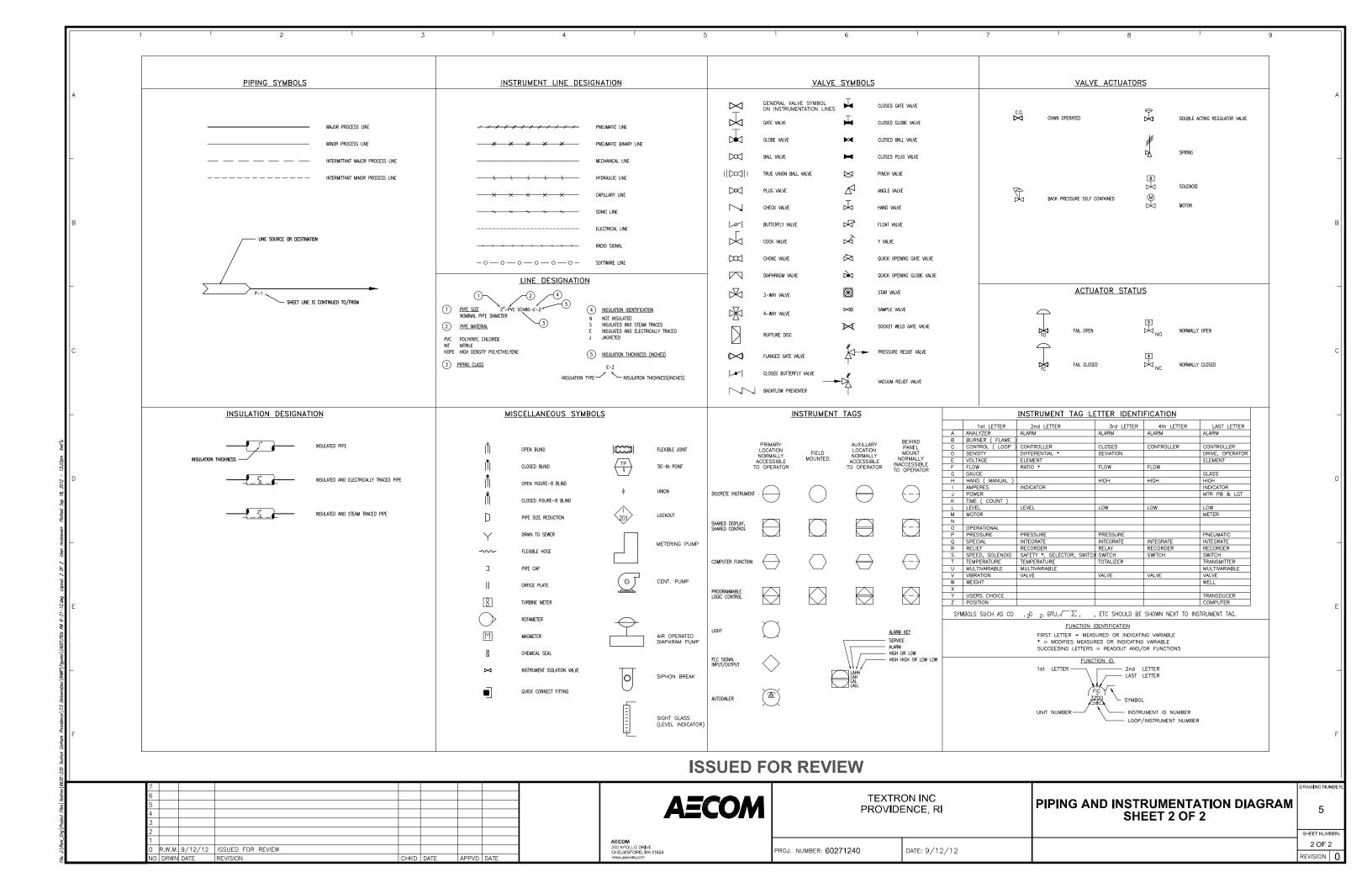
- Lower long-term O&M costs due to easier tray maintenance than tower-type or stacking tray air strippers.
- Lightweight, slide-out trays don't require hoists, regardless of the size of the air stripper.
- E-Z Tray air strippers need less building space, which can lower building costs.
- QED's staff and resources are #1 in air stripper technical and service support, including for unusual applications.
- Online Performance Modeler tool available 24/7 to help you select the proper air stripper.
- QED quote & delivery times are quick and dependable.

Visit qedenv.com/air-strippers to view and use the exclusive Online Performance Modeler, which allows you to model your process conditions and select the most efficient air stripping package for your VOC removal project. You can also view case studies where E-Z Tray air strippers were the top choice in successful projects.

The World Leader in Air-Powered Remediation

For Remediation, Landfills and Groundwater Sampling


6095 Jackson Road Ann Arbor, MI 48106-3726 USA


800-624-2026 T: 734-995-2547 F: 734-995-1170 info@qedenv.com www.qedenv.com 1565 Alvarado Street San Leandro, CA 94577 USA

800-624-2026 T: 510-346-0400 F: 510-346-0414 info@qedenv.com www.qedenv.com AECOM Environment

Attachment 3

Air Pollution Control Equipment

Contents:

Liquid Filters

Vapor Filters

Filtration Media

- Anthracite
- Birm®
- Re-Activated Carbon
- Virgin Carbon
- EC-100®
- Filter-Lite
- Manganese Greensand
- MTBE Removal Carbon
- Filter Sand

Special Products

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON

GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units is traced by lot number to the installation or sale.

8x39 (Liquid Phase) Standard Specifications:	Standard	Value
lodine Number	ASTM D-4607	800 Minimum
Moisture Content	A81M D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	8x30 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

4*10 (Vapor Phase) Standard Specifications:	Standard	Value
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	4x10 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

Packaging:		
50 Pound Bags	50 Pound Drums	Bulk Tanker
1,000 Pound Bulk Sacks	200 Pound Drums	

Our Company | News | Catalog | Services | RFQs | Contact

Tetrasolv Filtration, Inc. • 1200 East 26th Street • Anderson, Indiana 46016 • USA Toll Free: 800-441-4034 Telephone: 765-643-3941 • Fax: 765-643-3949

Description

The PROTECT V vapor phase carbon adsorber canisters are air or vapor treatment units for use in applications requiring higher pressures or slight vacuum conditions. PROTECT V canisters contain all of the operating elements required for utilization of granular activated carbon in air or vapor treatment, including a flat carbon bed support across the entire bed cross sectional area and plenum area below this support for effective air introduction and distribution across the bed. The canisters are constructed of unlined carbon steel with a stainless steel screen bed support for use with activated carbon in air treatment.

The PROTECT V vapor phase carbon adsorber canisters are available in 2 convenient sizes that will contain 1000 or 2000 pounds of granular activated carbon for treating air or vapor sources typically up to 750 cfm at pressures up to 15 psig and up to 15 inches of Mercury of vacuum.

The PROTECT V vapor phase adsorbers can be provided with any of Calgon Carbon's wide variety of vapor phase activated carbon products that can be selected for a specific air or vapor treatment application. Most commonly used are Type AP4-60 grade virgin activated carbon, which is a 4mm pelletized activated carbon with a carbon Tetrachloride Number of 60 for higher purity air or vapor, or optimal usage for low levels of organic contamination, or Type VPR quality controlled reactivated grade vapor phase carbon for a more economical carbon product for general air treatment.

Features

The PROTECT V vapor phase carbon adsorber canisters offer several important features that make it an effective value driven option for higher pressure air or vapor phase treatment applications:

- Sturdy carbon steel construction
- Capable of operating up to 15 psig which will manage most vent or higher pressure exhaust fan situations.
- Capable of operating up to 5 inches of Mercury vacuum.
- Exterior painted with a durable urethane finish
- Operating temperature up to 200°F
- Top 16 inch diameter access port for activated carbon media fill and removal
- Carbon bed support across the full canister cross sectional area, consisting of 20 mesh type 316 stainless steel screen placed on slotted steel plate for vapor distribution across the entire bed for maximum activated carbon utilization and low pressure drop.
- · Top lifting lugs and bottom fork guides for portability

Specifications

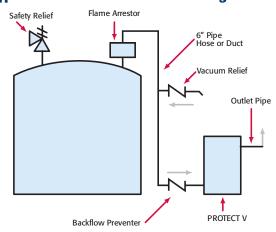
эрсепканопэ	
Canister	Sturdy ³ /16" thick carbon steel canister with ³ /16" thick steel concave bottom head (inside flat bottom) and top dished head
Pressure	Recommended 15 psig maximum operating pressure (shop hydrotested in excess of recommended pressure)
Vacuum	Recommended maximum 15" Hg vacuum operation
Temperature	Recommended 200°F maximum
Internal coating	None – unfinished steel
External Coating	Direct-to-Metal polyurethane
Inlet (bottom side)	6" FPT coupling (shipped with plug)
Inlet distributor	Stainless steel screen bed support on slotted steel plate
Vent / sample port	3/4" FPT coupling
Outlet (top side)	6" FPT coupling (shipped with plug)
Drain	3/4" FPT coupling with 3/4" threaded plug
Access Port	16" diameter access port with threaded damp ring and BUNA-N gasket.
Dimensions	Refer to Model chart

Installation

PPROTECT V canisters are shipped ready for installation with the dry activated carbon fill installed in the unit. The canisters are self supporting and should be set on a level accessible area as near as possible to the emission source. Standard installation does not utilize any anchoring devices. Installation is simple, requiring a flexible hose, duct or pipe to connect the vent or emission source to the 6 inch FPT bottom inlet of the canister.

The PROTECT V canister's treated air discharge is a 6 inch FPT connection on the upper side of the vessel and can be left open or equipped with flexible hose, duct or pipe to direct the treated air to a desired discharge point. If the canister is located outside and to be vented directly, then a U-shaped outlet pipe or rain hat (such as a pipe tee) is recommended to be installed to prevent precipitation from entering the unit.

The recommended air flow for the PROTECT V canisters are listed in the table. If higher flows are anticipated, then either a larger canister should be utilized or two or more PROTECT V canisters can be placed in parallel operation.


The recommended maximum static pressure and vacuum capabilities are also listed. These ratings should not be exceeded, as the canister could be irreparably damaged.

PROTECT V canisters can be used to treat vents directly from storage tank or other process vessels. The motive force for the air or vapor can be produced by either a blower or by using the positive pressure inside the tank or process vessel. In many cases, the pressure or surge of pressure within the tank or vessel is sufficient to overcome the pressure drop across the canister, thus eliminating the need for a blower. Please consult the pressure drop data in this bulletin for more information.

When PROTECT V canisters are used to control vapors from organic solvent storage tanks, refer to the typical installation drawing in the bulletin and the following recommended precautions:

- A safety relief valve must be provided on the storage tank.
 This protects the storage tank should the canister become
 plugged or blocked in any fashion. Such a vent would open
 in an emergency situation, thereby relieving pressure within
 the storage tank.
- Under appropriate conditions, a flame arrestor and/or backflow preventer must be installed as shown in the typical installation drawing. This prevents backflow of air through the canister when the storage tank is being emptied.
- High organic compound concentration in the vented air or vapor – defined as being greater than 0.5 to 1.0 volume % - may cause an elevated heat of adsorption in the carbon bed. This effect can be dissipated by pre-wetting the carbon to provide a heat sink, adding dilution air to the vented air or vapor to reduce the concentration, or by adding water spray to the vented air or vapor to provide an ongoing heat sink.

Typical PROTECT V Installation at Storage Tank

If PROTECT V canisters are used to control organic compound emissions from air-strippers, soil venting or other high moisture content air or vapor streams, then it is recommended that the humidity in the air stream be reduced to under 50%. High humidity may cause water vapor to condense within the carbon pores, filling the pores with water and preventing the air or vapor with organic contamination from accessing the internal surface of the activated carbon where adsorption takes place. Therefore, lower humidity will optimize the adsorptive capacity of the activated carbon. Also, for applications that may carry condensed water, it is recommended to install a drain or condensate trap on the inlet duct or piping.

Carbon Exchange or Replacement

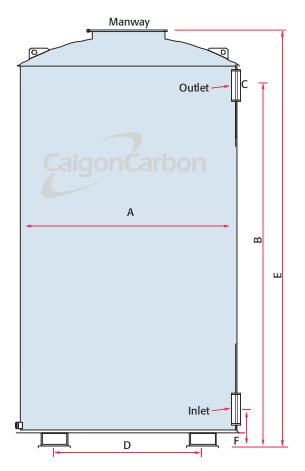
When the treated air or vapor exceeds the desired contaminant concentration, the granular activated carbon in the PROTECT V canister should be replaced with fresh activated carbon. The canister is to be isolated from the process by either closing and locking the inlet and outlet valves, or physically disconnecting the canister from the inlet and outlet pipe or hose. The carbon exchange procedure can either take place where the canister is installed, or the disconnected canister can be moved to another location for this activity.

The spent granular activated carbon can be removed by using a vacuum media removal procedure through the top access port. Fresh granular activated carbon can be filled using bags or "supersacks" by loading into the canister through the top access port. Once the fresh carbon is installed, the access port securely dosed, and the inlet and outlet connections are reestablished, follow the procedures under the Installation section.

Contact Calgon Carbon Corporation for resupply of the carbon products for effective air or vapor treatment. Calgon Carbon Corporation can also provide complete turnkey services, including removal and management of the spent carbon and refilling the canister with the fresh carbon.

Pressure Drop Curve

Pressure drop through a PROTECT V canister is a function of the process air flow as shown in the graph. If higher flows or lower pressure drop is needed, multiple canisters can be installed in parallel operation. The maximum pressure in the canister should not exceed 15 psig, regardless of the pressure drop across the unit.


Pressure Drop Curve

4 IWC per Unit

Calgon Carbon Air Purification Systems

The PROTECT V canisters are designed for a variety of higher pressure air or vapor applications at low to moderate air flows. Calgon Carbon Corporation offers a wide range of carbon adsorption systems and services for a range of air or vapor flow rates and carbon usages to meet specific applications.

Drawing not to scale.

Model Information

Model Number	V-1M	V-2M
GAC or media volume (cu ft)	36	72
GAC amount (pounds)	1000	2000
Recommended max flow rate (cfm)	675	750
Weight, empty (pounds)	1000	1150
Approximate operating weight (pounds)	2000	3150
Diameter (A) in.	45.5	48
Height to outlet (B) in. (approx)	70.5	82.5
Inlet /Outlet (C) fpt, in.	6	6
Forkguides (D) in.	33	33
Overall Height (E) in. (approx)	84	96
Height to inlet (F) in. (approx)	8	8
Overall width; in. (approx)	45.5	48

Safety Considerations

complying with the recommended installation instructions, plant operators should also be aware of these additional heat-related safety considerations:

- When in contact with activated carbon, some types of organic chemical compounds, such as those from the ketone and aldehyde families and some organic acids or organic sulfur compounds, may react on the carbon surface causing severe exotherms or temperature excursions. If you are unaware or unsure of the reaction of an organic compound on activated carbon, appropriate tests should be performed before placing a PROTECT V canister in service.
- · Heat of adsorption can lead to severe temperature excursions at high concentrations of organic compounds in the inlet air or vapor. Heating may be controlled by diluting the inlet air or adding water vapor as a heat sink, by time weighting the inlet concentration to allow heat to dissipate, or by pre-wetting the carbon.
- · Do not use PROTECT V canisters with ST1-X carbon in petrochemical or chemical industry applications.
- ST1-X carbon can liberate heat by reacting chemically with oxygen. To prevent heat buildup within a canister, the carbon must not be confined without adequate air flow to dissipate the heat. In situations where there is insufficient or disrupted air flow through the vessel, the chemical reaction can be prevented by sealing the inlet and outlet connections to the canister.
- For temperatures greater than 140°F, Calgon Carbon recommends that personnel protection be provided. The form of protection is determined per the end users specific plant practices and standards. Also note that at elevated temperatures, the paint may discolor.

Safety Message

Activated carbon will preferentially remove oxygen from air. In closed or partially dosed containers or vessels, oxygen depletion may reach hazardous levels. If workers are to enter a container or vessel containing activated carbon, appropriate air sampling and work procedures for potentially low oxygen content spaces should be followed, including all applicable Federal and State requirements.

Warranty

Calgon Carbon Corporation warrants that the PROTECT V canister will be free from defects in materials and workmanship for a period of 90 days following the date of purchase. In the event of a breach of this warranty, Calgon Carbon Corporation will, in its discretion, repair or replace any defective parts or the complete unit during the warranty period. This warranty does not apply to defects caused by (i) normal wear and tear, (ii) accident, disaster or event of force majeure, (iii) misuse, fault or negligence of or by Buyer, (iv) use of the PROTECT V canister in a manner for which it is not designed, (v) external causes such as, but not limited to, power failure or electrical power surges, or (vi) improper storage and handling of the PROTECT V canister. Except as expressly provided in this warranty statement, Calgon Carbon Corporation disclaims all other warranties, whether express or implied, oral or written, including without limitations all implied warranties or merchantability or fitness for particular purpose. Calgon Carbon Corporation does not warrant that the PROTECT V canisters are error-free or will accomplish any particular result. Any advice or assistance furnished by Calgon Carbon Corporation in relation to the PROTECT V canister provided for hereunder shall not give rise to any warranty or guarantee of any kind. This warranty will take precedence over any and all other warranties unless specifically disclaimed and referenced by Calgon Carbon Corporation.

Limitations of Liability

Carbon Carbon Corporation' liability and the Buyer's exclusive remedy for any cause of action arising out this transaction, including, but not limited to, breach of warranty, negligence and/or indemnification, is expressly limited to a maximum of the purchase price of the canister sold hereunder. All claims of whatsoever nature shall be deemed waived unless made in writing within forty-five (45) days of the occurrence giving rise to the claim. Under no circumstance shall Calgon Carbon Corporation be liable for any incidental, consequential, punitive, exemplary, or special damages of any kind arising as a result of or in connection with the PROTECT V canisters regardless of the cause giving rise to any claim. Nor shall Calgon Carbon Corporation be liable for loss of profits or fines imposed by governmental agencies. In no event shall Calgon Carbon Corporation's liability exceed the purchase price paid by purchaser, for any reason, whether by reason of breach of contract, tort, indemnification, warranty or otherwise. This limitation of liability statement will take precedence over any and all other liability provisions unless specifically disdaimed and referenced by Calgon Carbon Corporation.

ÇalgonCa	arbon
	Making Water and A

ir Safer and Cleaner

Calgon Carbon Corporation P.O. Box 717 P.O. BOX 717 Pgh, PA USA 15230-0717 1-800-422-7266 Tel: 1-412-787-6700 Fx: 1-412-787-6713

Chemviron Carbon European Operations of Calgon Carbon Corporation Zoning Industriel C de Feluy B-7181 Feluy, Belgium Tel: + 32 (0) 64 51 18 11 Fx: + 32 (0) 64 54 15 91

Calgon Carbon Asia PTE LTD 9 Temasek Boulevard #08-01A Suntec Tower Two Singapore 038989 Tel: + 65 6 221 3500 Fx: + 65 6 221 3554

Your local representative					

AECOM Environment

Attachments 4 and 5

Air Pollution Control Equipment Calculations and Contaminated Liquid Information

QED Air Stripper Model ver. 2.0

10/23/2012

Site Data

Name: David Macone e-mail: David.Macone@AECOM.com

Project: Former Gorham Silver Facility

Units: English Altitude: 75 ft
Air Temp: 55 F Flow: 18 gpm

Water Temp: 55 F

Stripper: EZ-Tray 8.x - Click for details Stripper Air Flow: 420 cfm

Stripper Max Flow: 75 gpm

Water Results						
Contaminant	Influent (ppb)	_	Results	4-Tray % Removal	Results	6-Tray % Removal
trichloroethylene (TCE)	2777.1	0	< 1	100.000	< 1	100.000
tetrachloroethylene (PERC,PCE)	811.1	0	< 1	100.000	< 1	100.000
c-1,2-dichloroethylene	113.1	0	< 1	100.000	< 1	100.000
1,1-dichloroethylene	144.9	0	< 1	100.000	< 1	100.000
vinyl chloride (chloroethylene)	11.9	0	< 1	100.000	< 1	100.000
1,1,1-trichloroethane	3685.2	0	< 1	100.000	< 1	100.000
1,1-dichloroethane	141	0	< 1	100.000	< 1	100.000

Air Results						
Contaminant	4-Tray (ppmV)	4-Tray (lb/hr)	6-Tray (ppmV)	6-Tray (lb/hr)		
trichloroethylene (TCE)	2.8409	0.02503	2.8411	0.02503		
tetrachloroethylene (PERC,PCE)	0.6574	0.00731	0.6574	0.00731		
c-1,2-dichloroethylene	0.1568	0.00102	0.1568	0.00102		
1,1-dichloroethylene	0.2009	0.00131	0.2009	0.00131		
vinyl chloride (chloroethylene)	0.0256	0.00011	0.0256	0.00011		
1,1,1-trichloroethane	3.7132	0.03321	3.7133	0.03321		
1,1-dichloroethane	0.1915	0.00127	0.1915	0.00127		

Notes

Copyright -- QED Treatment Equipment, PO Box 3726, Ann Arbor, MI 48106.

PH-> 1-800-624-2026 or 1-734-995-2547, FX-> 1-734-995-1170. E-mail-><u>info@qedenv.com</u>. WEB-><u>www.qedenv.com</u>.

The QED modeler estimates unit performance for the listed contaminants. **Results** assume -

- 1. Contaminants are in the dissolved-phase, within a water matrix
- 2. Stripper Influent air is contaminant-free
- 3. Influent liquid does not have surfactants, oil, grease, other immiscible phase(s) or other Henry's constant altering additions present, such as dissolved phase polar organic contaminants
- 4. The air stripper is operated within the given parameters listed above and as instructed in the E-Z Tray O&M manual

Stripper performance shall meet or exceed either the required effluent concentration(s) or effluent estimates, whichever is greater, for the conditions supplied and assumes the influent concentrations of each contaminant are less than 25% solubility in water. QED makes no claim of the model's accuracy beyond the 25% solubility in water limit.

Contact Us

Fill out your contact and project information and click Send to have a QED Treatment application specialist contact you.

Name -	David Macone			
Company	Company			
Phone -	Phone	Fax -	Fax	
e-mail -	David.Macone@AECOM.com	Project -	Former Gorham Silver Facility	
Applicat	tion Notes			٨
				*
	Send Reset			

Save Data

Use the following URL to reconstruct your data form for future remodeling with changes. This URL can be saved in any text file for record keeping and later retrieval. This run's URL:

http://64.9.214.199/cgi-bin/remodel.pl? u=e&tw=55&ta=55&f=18&a=75&s=8.x&n=David&e=David.Macone@AECOM.com&p=Fo rme&c=189,2777.1;182,811.1;81,113.1;16,144.9;195,11.9;9,3685.2;15,141 ;

QED Air Stripper Model ver. 2.0

10/23/2012

Site Data

Name: David Macone e-mail: David.Macone@AECOM.com

Project: Former Gorham Silver Facility

Units: English Altitude: 75 ft
Air Temp: 55 F Flow: 18 gpm

Water Temp: 55 F

Stripper: EZ-Tray 8.x - Click for details Stripper Air Flow: 420 cfm

Stripper Max Flow: 75 gpm

Water Results						
Contaminant	Influent (ppb)		Results	4-Tray % Removal	6-Tray Results (ppb)	6-Tray % Removal
trichloroethylene (TCE)	7775.6	0	< 1	100.000	< 1	100.000
tetrachloroethylene (PERC,PCE)	5270.4	0	< 1	100.000	< 1	100.000
c-1,2-dichloroethylene	422.2	0	< 1	100.000	< 1	100.000
1,1-dichloroethylene	224.5	0	< 1	100.000	< 1	100.000
vinyl chloride (chloroethylene)	58.6	0	< 1	100.000	< 1	100.000
1,1,1-trichloroethane	15050	0	< 1	100.000	< 1	100.000
1,1-dichloroethane	543.3	0	< 1	100.000	< 1	100.000

Air Results						
Contaminant	4-Tray (ppmV)	4-Tray (lb/hr)	6-Tray (ppmV)	6-Tray (lb/hr)		
trichloroethylene (TCE)	7.9543	0.07008	7.9547	0.07008		
tetrachloroethylene (PERC,PCE)	4.2719	0.04750	4.2719	0.04750		
c-1,2-dichloroethylene	0.5853	0.00380	0.5854	0.00381		
1,1-dichloroethylene	0.3113	0.00202	0.3113	0.00202		
vinyl chloride (chloroethylene)	0.1260	0.00053	0.1260	0.00053		
1,1,1-trichloroethane	15.1642	0.13564	15.1646	0.13565		
1,1-dichloroethane	0.7378	0.00490	0.7379	0.00490		

Notes

Copyright -- QED Treatment Equipment, PO Box 3726, Ann Arbor, MI 48106.

PH-> 1-800-624-2026 or 1-734-995-2547, FX-> 1-734-995-1170. E-mail-><u>info@qedenv.com</u>. WEB-><u>www.qedenv.com</u>.

The QED modeler estimates unit performance for the listed contaminants. **Results** assume -

- 1. Contaminants are in the dissolved-phase, within a water matrix
- 2. Stripper Influent air is contaminant-free
- 3. Influent liquid does not have surfactants, oil, grease, other immiscible phase(s) or other Henry's constant altering additions present, such as dissolved phase polar organic contaminants
- 4. The air stripper is operated within the given parameters listed above and as instructed in the E-Z Tray O&M manual

Stripper performance shall meet or exceed either the required effluent concentration(s) or effluent estimates, whichever is greater, for the conditions supplied and assumes the influent concentrations of each contaminant are less than 25% solubility in water. QED makes no claim of the model's accuracy beyond the 25% solubility in water limit.

Contact Us

Fill out your contact and project information and click Send to have a QED Treatment application specialist contact you.

Name -	David Macone			
Company	Company			
Phone -	Phone	Fax -	Fax	
e-mail -	David.Macone@AECOM.com	Project -	Former Gorham Silver Facility	
Applicat	tion Notes			۸
				₹
	Send Reset			

Save Data

Use the following URL to reconstruct your data form for future remodeling with changes. This URL can be saved in any text file for record keeping and later retrieval. This run's URL:

http://64.9.214.199/cgi-bin/remodel.pl? u=e&tw=55&ta=55&f=18&a=75&s=8.x&n=David&e=David.Macone@AECOM.com&p=Forme&c=189,7775.6;182,5270.4;81,422.2;16,224.5;195,58.6;9,15050;15,543.3;

QED Air Stripper Model ver. 2.0

10/23/2012

Site Data

Name: David Macone e-mail: David.Macone@AECOM.com

Project: Former Gorham Silver Facility

Units: English Altitude: 75 ft Air Temp: 55 F Flow: 30 gpm

Water Temp: 55 F

Stripper: EZ-Tray 8.x - Click for details Stripper Air Flow: 420 cfm

Stripper Max Flow: 75 gpm

Water Results						
Contaminant	Influent (ppb)	_	Results	4-Tray % Removal	Results	6-Tray % Removal
trichloroethylene (TCE)	2338.1	0	< 1	100.000	< 1	100.000
tetrachloroethylene (PERC,PCE)	905.2	0	< 1	100.000	< 1	100.000
c-1,2-dichloroethylene	97.6	0	< 1	100.000	< 1	100.000
1,1-dichloroethylene	137.7	0	< 1	100.000	< 1	100.000
vinyl chloride (chloroethylene)	11.2	0	< 1	100.000	< 1	100.000
1,1,1-trichloroethane	3111.6	0	< 1	100.000	< 1	100.000
1,1-dichloroethane	119	0	< 1	100.000	< 1	100.000

Air Results					
Contaminant	4-Tray (ppmV)	4-Tray (lb/hr)	6-Tray (ppmV)	6-Tray (lb/hr)	
trichloroethylene (TCE)	3.9857	0.03511	3.9866	0.03512	
tetrachloroethylene (PERC,PCE)	1.2228	0.01360	1.2228	0.01360	
c-1,2-dichloroethylene	0.2254	0.00147	0.2255	0.00147	
1,1-dichloroethylene	0.3182	0.00207	0.3182	0.00207	
vinyl chloride (chloroethylene)	0.0401	0.00017	0.0401	0.00017	
1,1,1-trichloroethane	5.2249	0.04674	5.2255	0.04674	
1,1-dichloroethane	0.2691	0.00179	0.2694	0.00179	

Notes

Copyright -- QED Treatment Equipment, PO Box 3726, Ann Arbor, MI 48106.

PH-> 1-800-624-2026 or 1-734-995-2547, FX-> 1-734-995-1170. E-mail-><u>info@qedenv.com</u>. WEB-><u>www.qedenv.com</u>.

The QED modeler estimates unit performance for the listed contaminants. **Results** assume -

- 1. Contaminants are in the dissolved-phase, within a water matrix
- 2. Stripper Influent air is contaminant-free
- 3. Influent liquid does not have surfactants, oil, grease, other immiscible phase(s) or other Henry's constant altering additions present, such as dissolved phase polar organic contaminants
- 4. The air stripper is operated within the given parameters listed above and as instructed in the E-Z Tray O&M manual

Stripper performance shall meet or exceed either the required effluent concentration(s) or effluent estimates, whichever is greater, for the conditions supplied and assumes the influent concentrations of each contaminant are less than 25% solubility in water. QED makes no claim of the model's accuracy beyond the 25% solubility in water limit.

Contact Us

Fill out your contact and project information and click Send to have a QED Treatment application specialist contact you.

Name -	David Macone			
Company -	Company			
Phone -	Phone	Fax -	Fax	
e-mail -	David.Macone@AECOM.com	Project -	Former Gorham Silver Facility	
Applicat	cion Notes			_
				₹
	Send Reset			

Save Data

Use the following URL to reconstruct your data form for future remodeling with changes. This URL can be saved in any text file for record keeping and later retrieval. This run's URL:

http://64.9.214.199/cgi-bin/remodel.pl? u=e&tw=55&ta=55&f=30&a=75&s=8.x&n=David&e=David.Macone@AECOM.com&p=Forme&c=189,2338.1;182,905.2;81,97.6;16,137.7;195,11.2;9,3111.6;15,119;

QED Air Stripper Model ver. 2.0

10/23/2012

Site Data

Name: David Macone e-mail: David.Macone@AECOM.com

Project: Former Gorham Silver Facility

Units: English Altitude: 75 ft Air Temp: 55 F Flow: 30 gpm

Water Temp: 55 F

Stripper: EZ-Tray 8.x - Click for details Stripper Air Flow: 420 cfm

Stripper Max Flow: 75 gpm

Water Results						
Contaminant	Influent (ppb)	_	Results	4-Tray % Removal	6-Tray Results (ppb)	6-Tray % Removal
trichloroethylene (TCE)	6592.3	0	1.4	99.979	< 1	100.000
tetrachloroethylene (PERC,PCE)	5963.1	0	< 1	100.000	< 1	100.000
c-1,2-dichloroethylene	370.7	0	< 1	100.000	< 1	100.000
1,1-dichloroethylene	220.6	0	< 1	100.000	< 1	100.000
vinyl chloride (chloroethylene)	65.2	0	< 1	100.000	< 1	100.000
1,1,1-trichloroethane	12674	0	1.3	99.990	< 1	100.000
1,1-dichloroethane	464.4	0	< 1	100.000	< 1	100.000

Air Results				
Contaminant	4-Tray (ppmV)	4-Tray (lb/hr)	6-Tray (ppmV)	6-Tray (lb/hr)
trichloroethylene (TCE)	11.2379	0.09901	11.2402	0.09903
tetrachloroethylene (PERC,PCE)	8.0553	0.08957	8.0556	0.08958
c-1,2-dichloroethylene	0.8561	0.00556	0.8566	0.00557
1,1-dichloroethylene	0.5098	0.00331	0.5098	0.00331
vinyl chloride (chloroethylene)	0.2337	0.00098	0.2337	0.00098
1,1,1-trichloroethane	21.2819	0.19037	21.2841	0.19038
1,1-dichloroethane	1.0501	0.00697	1.0513	0.00698

Notes

Copyright -- QED Treatment Equipment, PO Box 3726, Ann Arbor, MI 48106.

PH-> 1-800-624-2026 or 1-734-995-2547, FX-> 1-734-995-1170. E-mail-><u>info@qedenv.com</u>. WEB-><u>www.qedenv.com</u>.

The QED modeler estimates unit performance for the listed contaminants. **Results** assume -

- 1. Contaminants are in the dissolved-phase, within a water matrix
- 2. Stripper Influent air is contaminant-free
- 3. Influent liquid does not have surfactants, oil, grease, other immiscible phase(s) or other Henry's constant altering additions present, such as dissolved phase polar organic contaminants
- 4. The air stripper is operated within the given parameters listed above and as instructed in the E-Z Tray O&M manual

Stripper performance shall meet or exceed either the required effluent concentration(s) or effluent estimates, whichever is greater, for the conditions supplied and assumes the influent concentrations of each contaminant are less than 25% solubility in water. QED makes no claim of the model's accuracy beyond the 25% solubility in water limit.

Contact Us

Fill out your contact and project information and click Send to have a QED Treatment application specialist contact you.

Name -	David Macone			
Company -	Company			
Phone -	Phone	Fax -	Fax	
e-mail -	David.Macone@AECOM.com	Project -	Former Gorham Silver Facility	
Applicat	tion Notes			۸
				₹
	Send Reset			

Save Data

Use the following URL to reconstruct your data form for future remodeling with changes. This URL can be saved in any text file for record keeping and later retrieval. This run's URL:

http://64.9.214.199/cgi-bin/remodel.pl? u=e&tw=55&ta=55&f=30&a=75&s=8.x&n=David&e=David.Macone@AECOM.com&p=Forme&c=189,6592.3;182,5963.1;81,370.7;16,220.6;195,65.2;9,12674;15,464.4;

Pr	-	ct #: ient:					659- on Ir				•		ige: ate:		1) et c	O		2012	2				ı						
		Site:	_				nce		I		-		ate. By:						e, F					1	ΛE		O	M		
S		ject:					Usa				-		ъу. pp.:		<u> </u>	aviu	ivia	COI	е, г					′	\ L		.O	[V]		
	Tub	joot.			, U	7.0	030	ige			-		ρρ	_																
										-	Ь_				_															
Air	r St	ripp	er (Off (Gas	Tre	atm	nen	t - \	/ap	or F	ha	se (Gra	nula	ar A	ctiv	ate	d C	arb	on	Usa	ge	Cal	cula	atio	n			
VG	AC	C Us	age	As	sun	npti	ons	<u>::</u>																						
Da	ta ı	used	to (aen	erat	e th	e V0	GA(C us	sad	e ra	te v	vas	pro	cure	d fr	om	the	follo	owir	na s	our	ces							
				J -						J											<u> </u>									
	1)	Con	กทด	und	con	cer	trati	ions	s are	e ba	aseo	d or	the	O	-D /	۱ir ج	Strip	ner	Mο	delii	าต	with	1 a 4	120	cfm	ar	nd th	ne		
		ticip																•			_								s ·	
		ee a				_										974			J J.										•	
	ζ-				,	,																								
	2)	Ser	vice	Ted	ch Ir	nc, ł	nas :	sup	plie	d th	ne fo	ollo	wing	g eq	uati	on t	o es	stim	ate	the	VG	AC	car	bon	usa	age	per			
	СО	mpc	unc	l:																										
Mo	olec	ular	We	iaht	x C	onc	entr	atic	on (i	วทุก	י (ער	x Ai	r Fla	ow I	Rate) (C	FM)	x 2	χ10	^-5	= #	Ca	rboi	n Cr	วทรเ	ıme	ed n	er Γ)av	
		Juli		۱۱ بو.	, , , J	J. 10	. J. 10	and	۱) ۰۰۰	-411	,	11		1		. (3)	^ _		J	. 11	Ju				٠١٥	J G P	J. L	- ay	
_	_			_																										
Ex	pe	cted	Off	Ga	s C	onc	ent	rati	ons	<u> </u>																				
	L											Ex	pec	ted								Ма	xim	um						_
			Pun	npin	ıg R	ate	(gpr	m):					18										30							
										A	vg				М	ах				Α١	/a				М	ах				
Te	trac	chlor	neth	ovle	ne (PC	=)				574					719				1.22					8.0		;	ppr	n.,	
_				•			-,																		0.0	000				
1,1	, ı-	THU		へんけん	ana					27	122				1 4 1	616	2			ム ')'	つたた			,	24.0	001			H lv	
4 4	_				ane)					133					646					255			2	21.2			ppr		
		ichlo	roe	thar	ne	;				0.1	915	,				646 379				0.20	694				1.0	513	}	ppr	n _v	
			roe	thar	ne)				0.1		,			0.7						694					513	}		n _v	
1,1	-Di	ichlo	roet	thar thyle	ne ene					0.1 0.2	915)			0.7 0.3	379				0.20	694 182				1.0	513 098	} }	ppr	n _v n _v	
1,1 cis	-Di -1,2	ichlo ichlo	roet roet chlo	thar thyle roet	ne ene thyle	ene				0.1 0.2 0.1	915 009	; !			0.7 0.3 0.5	379 113				0.20	694 182 255				1.0 0.5	513 098 566	} } }	ppr ppr	n _v n _v n _v	
1,1 cis	l-Di -1,2 chle	ichlo ichlo 2-Dic oroe	roet roet chlo thyl	thar thyle roet ene	ne ene thyle (TC	ene				0.1 0.2 0.1 2.8	915 009 568 411) 			0.7 0.3 0.5 7.9	379 113 854 547				0.20 0.3 0.22 3.98	694 182 255 866				1.0 0.5 0.8 11.2	513 098 566 2402	3 3 3 2	ppr ppr ppr ppr	n _v n _v n _v	
1,1 cis	l-Di -1,2 chle	ichlo ichlo 2-Dia	roet roet chlo thyl	thar thyle roet ene	ne ene thyle (TC	ene				0.1 0.2 0.1 2.8	915 009 568) 			0.7 0.3 0.5 7.9	379 113 854				0.20 0.3 0.22	694 182 255 866				1.0 0.5 0.8	513 098 566 2402	3 3 3 2	ppr ppr	n _v n _v n _v	
1,1 cis Tri	-Di -1,2 chlonyl (ichlo ichlo 2-Dio oroe Chlo	roet chlo thyl ride	thar thyle roet ene (V(ne ene thyle (TC C)	ene CE)				0.1 0.2 0.1 2.8	915 009 568 411) 			0.7 0.3 0.5 7.9	379 113 854 547				0.20 0.3 0.22 3.98	694 182 255 866				1.0 0.5 0.8 11.2	513 098 566 2402	3 3 3 2	ppr ppr ppr ppr	n _v n _v n _v	
1,1 cis Tri	-Di -1,2 chlonyl (ichlo ichlo 2-Dic oroe	roet chlo thyl ride	thar thyle roet ene (V(ne ene thyle (TC C)	ene CE)				0.1 0.2 0.1 2.8	915 009 568 411) 			0.7 0.3 0.5 7.9	379 113 854 547				0.20 0.3 0.22 3.98	694 182 255 866				1.0 0.5 0.8 11.2	513 098 566 2402	3 3 3 2	ppr ppr ppr ppr	n _v n _v n _v	
1,1 cis Tri	-Di -1,2 chlonyl (ichlo ichlo 2-Dio oroe Chlo	roet chlo thyl ride	thar thyle roet ene (V(ne ene thyle (TC C)	ene CE)				0.1 0.2 0.1 2.8	915 009 568 411) 			0.7 0.3 0.5 7.9	379 113 854 547				0.20 0.3 0.22 3.98	694 182 255 866				1.0 0.5 0.8 11.2	513 098 566 2402	3 3 3 2	ppr ppr ppr ppr	n _v n _v n _v	
1,1 cis Tric Vir	-1,2 chlonyl (ichlo ichlo 2-Dio oroe Chlo	roet chlo thyl ride	than thyle roet ene (VC	ne ene thyle (TC C)	ene CE)		· Ra		0.1 0.2 0.1 2.8 0.0	915 009 568 411 256				0.7 0.3 0.5 7.9	379 113 854 547				0.20 0.3 0.22 3.98	694 182 255 866 401				1.0 0.5 0.8 11.2	513 098 566 2402	3 3 3 2	ppr ppr ppr ppr	n _v n _v n _v	
1,1 cis Tric Vir	-1,2 chlonyl (ichlo ichlo 2-Did oroe Chlo	roet chlo thyl ride	than thyle roet ene (VC	ne ene thyle (TC C)	ene CE)		· Ra		0.1 0.2 0.1 2.8 0.0	915 009 568 411 256				0.7 0.3 0.5 7.9	379 113 854 547				0.20 0.3 0.22 3.98 0.04	694 182 255 866 401				1.0 0.5 0.8 11.2	513 098 566 2402	3 3 3 2	ppr ppr ppr ppr	n _v n _v n _v	
1,1 cis Tric Vir	-1,2 chlonyl (ichlo ichlo 2-Did oroe Chlo	roet chlo thyl ride	than thyle roet ene (VC	ne ene thyle (TC C)	ene CE)		· Ra		0.1 0.2 0.1 2.8 0.0	915 009 568 411 256				0.7 0.3 0.5 7.9 0.1	379 113 854 547				0.20 0.3 0.22 3.98 0.04	694 182 255 366 401				1.0 0.5 0.8 11.2 0.2	513 098 566 2402	3 3 3 2	ppr ppr ppr ppr	n _v n _v n _v	
1,1 cis Tric Vir	-1,2 chlonyl (ichlo ichlo 2-Did oroe Chlo	roet chlo thyl ride	thar thyle roet ene (VC	ne ene thyle (TCC) oad	ene (E)			ate (0.1 0.2 0.1 2.8 0.0	915 009 568 411 256				0.7 0.3 0.5 7.9 0.1	379 1113 854 547 260				0.20 0.3 0.22 3.90 0.04	694 182 255 866 401				1.0 0.5 0.8 11.2 0.2	513 098 566 240 337	3 3 3 2	ppr ppr ppr ppr	n _v n _v n _v	
1,1 cis Tric Vir	-1,2 chlonyl (ichlo ichlo 2-Did oroe Chlo	roet chlo thyl ride	thar thyle roet ene (VC	ne ene thyle (TCC) oad	ene (E)	low		ate (0.1 0.2 0.1 2.8 0.0	915 009 568 411 256 M):				0.7 0.3 0.5 7.9 0.1	379 1113 854 547 260				0.20 0.3 0.22 3.90 0.04	694 182 255 866 401				1.0 0.5 0.8 11.2 0.2	513 098 566 2402 3337	3 3 3 2	pprr pprr pprr	n _v n _v n _v	
1,1 cis Tric Vir	-1,2 chlonyl (ichlo ichlo 2-Dic oroe Chlo	roet chlo thyl ride	thar thyle roet ene (VC	ne ene thyle (TC) oad	ene (E)	low		ate (0.1 0.2 0.1 2.8 0.0	915 009 568 411 256 M):				0.7 0.3 0.5 7.9 0.1	379 1113 854 547 260				0.20 0.3 0.22 3.90 0.04	694 182 255 866 401				1.0 0.5 0.8 11.2 0.2	513 098 566 2402 3337	3 3 3 2	pprr pprr pprr	n _v n _v n _v	
1,1 cis Tric Vir	-1,2 chlonyl (ichlo ichlo 2-Dic oroe Chlo	roet chlo thyl ride	thar thyle roet ene (VC	ne ene thyle (TC) oad	ene (E)	low		ate (0.1 0.2 0.1 2.8 0.0	915 009 568 411 256 M):				0.7 0.3 0.5 7.9 0.1	379 1113 854 547 260				0.20 0.3 0.22 3.90 0.04	694 182 255 866 401				1.0 0.5 0.8 11.2 0.2	513 098 566 2402 3337	3 3 3 2	pprr pprr pprr	n _v n _v n _v	
1,1 cis Tric Vir	-1,2 chlonyl (ichlo ichlo 2-Dic oroe Chlo	roet chlo thyl ride	thar thyle roet ene (VC	ne ene thyle (TC) oad	ene (E)	low		ate (0.1 0.2 0.1 2.8 0.0	915 009 568 411 256 M):				0.7 0.3 0.5 7.9 0.1	379 1113 854 547 260				0.20 0.3 0.22 3.90 0.04	694 182 255 866 401				1.0 0.5 0.8 11.2 0.2	513 098 566 2402 3337	3 3 3 2	pprr pprr pprr	n _v n _v n _v	
1,1 cis Tric Vir	-1,2 chlonyl (ichlo ichlo 2-Dic oroe Chlo	roet chlo thyl ride	thar thyle roet ene (VC	ne ene thyle (TC) oad	ene (E)	low		ate (0.1 0.2 0.1 2.8 0.0	915 009 568 411 256 M):				0.7 0.3 0.5 7.9 0.1	379 1113 854 547 260				0.20 0.3 0.22 3.90 0.04	694 182 255 866 401				1.0 0.5 0.8 11.2 0.2	513 098 566 2402 3337	3 3 3 2	pprr pprr pprr	n _v n _v n _v	

						216 extr		9-03			-		ge:		2			of or	201	2				ı						
		ite:						e, R	<u> </u>		-		ие. Ву:						ne, I					4	Αŀ	EC	O	Μ		
9		ect:						e, r.			-		ъу. pp.:		D	avic	I IVIC	100	ne, i			•		ı						
	ubj	JUI.				7, 10		uge			-	7.1	·γ						_											_
							L																							+
Exp	рес	ted	۷G	AC	Us	age																								_
														Ex	pec	ted						Ма	xim	num	1					_
		Р	um	ping	g R	ate	(gp	m):							18								30							_
								ļ ,	Mol	е																				_
								W	/eig	ht		1	Avg	J			Max	(Ανς	3			Max	X				
Tet	rac	hlor	oeth	nyle	ne	(PC	E)	1	65.8	83		0.	.915	57		5	.950)6		1	.703	33		11	1.22	12	# c	arb	on/	d
1,1,	,1-٦	rich	lor	oeth	ane	е		1	33.4	41		4.	161	3		16	6.99	41		5	.85	59		23	3.85	19	# c	arb	on/	d
1.1	-Dio	chlo	roet	har	ne			ç	98.9	96		0.	159	92		0	.613	34		0	.223	39		0	.87	39	# c	arb	on/	d
		chlo				,			96.9				163				.253				.259				.41		# C	•		
						ene			96.9				127				.476				.183				.69		# c	•		
						CE)			31.				135				.779				.399				2.40		# C	•		
			_			J⊑)	\vdash																					•		
V I[]	yı C	hlo	iiue	(۷	رر			- (52.4		461		.013				.066				.02				.12		# c			
										10	tal:		8.7				33.1	ı			12.6)			49.0	0	# C	arb	on/	đ
Ads	<u>sor</u>	ptic	n C	apa	acit	у о	f Ca	arbo	<u>n</u>																					4
																														4
														E	хрє	ecte	ed							N	laxi	imu	m			4
				Pun	npir	ng R	Rate	gp)	m):						1	8									3	30				_
					ļ	Ads	orpt	tion	Cap	aci	ty of	Ca	rbor	า (#	VO	C/1	00 :	# C	arbo	n):					18	.50				
Exp	pec	ted	۷G	AC	Ch	anc	ie (Outs	;																					1
																														1
				Nun	nhe	r of	۷C	AC	s in	Ser	ies:				2															†
				· ·				on p							000		(50	A 2	ttac	nm.	ante	for	٧G	Δ٢	ene	cific	atic	ne)		†
					π		ait								5%		(30		llac	11110	1110	101	VO	AC.	Spe	Ciric	Jane	113)		1
								Sai	ецу	rac	tor:					اء ء ا						NA -								┪
				_				,	`					ΕX	pec	tea						IVIa		num	1					┥
				Pun	npır	ng K	ate	gp)	m):						18								30							+
													Avg				Max		-		Ανς				Ma					4
			V	SAC	Da	ays	to E	Exha	ust	ion:			184				48				127	,			32					4
								_		_									_											1
Ads	sor	ptic	n C	ycl	e T	ime																								1
		Н	ur (of C)pei	ratic	n p	er D	ay:											2	24									
														Ex	рес	ted						Ма	xim	num)					T
				Pun	npir	ng R	Rate	gp)	m):						18								30							1
						Ĭ		,51-	,-				Avg	ı			Max	(Ανς	1			Max	X				†
					C	vole	Tiı	me (hr۱۰	Т			,42				1,15				3,03				774					†
		_		_	U	y Ole	, 111).	_					chn			J		,	,,00	J				•				_

Table 1 - RW-1 Expected System Influent Concentrations

Textron, Inc.

333 Adelaide Avenue

Providence, Rhode Island

							RW-1	AREA							
		MW-234S		MW-230S		MW-234I			MW-234D		MW-230D	R\	W1	MW-JS	
Compound	11/30/09	06/03/11	06/10/11	12/02/09	11/30/09	06/03/11	06/10/11	12/02/09	06/03/11	06/10/11	12/01/09	07/27/11	07/29/11	May-1989	Avg
Total Suspended Solids												5000	5000		5000.00
1,1 - Dichloroethane	166	18.1		131	4.2	5.2		3.7	<1		0.9	17.2	95.2		62.41
1,1 - Dichloroethylene	37.1	<1.0		32.3	13.4	11.6		19.6	13.5		1.7	1.2	41.2		19.61
1,1,1 - Trichloroethane	1060	35		697	8.5	27.6		12	24		5.8	47.7	917		398.97
Vinyl Chloride	0.5	<1.0		0.4	0.6	<1.0		2.7	2.4		1	<1	<20		1.86
Trichloroethylene	489	35		3484	20.8	27.6		23.2	24		34.4	29.6	772		694
cis-1,2 - Dichloroethylene	100	<1.0		87.4	22.1	27.5		97.9	95.8		1.6	2.9	33.8		39.17
Tetrachloroethylene	2.6	3.3		1.3	1	<1.0		1	1.3	-	0.2	1.1	<20		2.83
Silver		<0.25	<5			<0.25	<5		<0.25	<5				<10	
Arsenic		<1.5	<4			<1.5	<4		<1.5	<4				<10	
Cadmium		<0.2	<2.5			<0.2	<2.5		<0.2	3		<3	<3	<5	
Copper		1	<5			1.1	<5		1.4	97.8		<2.4	4.8	<20	3.30
Total Iron			6,360				30,100			89,800		49	24.9	<100	41.30
Nickel		<0.2	<5			2.6	5.1		31.6	169		<9	<5	<4	2.76
Lead		<0.2	<7.5			<0.2	<7.5		<0.2	11		<7.5	<0.28	5	2.16
Selenium		<1.0	<15			<1.0	<15		<1.0	<15				<10	
Zinc		<4.5	<7.5			<4.5	<5		<4.5	89.6		26.8	16.9	<20	9.21
Trivalent Chromium			<5				<5			<5					
Hexavelent Chromium			<5				<5			<5					
Antimony		<0.8	<6			<0.8	<6		<0.8	19		<6	<6	<100	

Note: Based on groundwater data presented in the Shaw - Status Report Actives for February and August 2011 and February and August 2012, AECOM - Preliminary Hydrogeologic Evaluation of Groundwater Pump and Treat Remediation submitted in December 2011, AECOM - RIPDES Application and RIPDES Discharge Monitoring Report (DMR) for July 1, 2011 through September 30, 2001 submitted on July 8 and October 13, 2011 respectively, and the Hunter Inc - Soil and Groundwater Contamination Site Assessment submitted on May 25, 1989 for groundwater metals data only.

Data not used in averaging or considered a maximum concentration.

* = Filtered Sample

Table 2 - RW-2 Expected System Influent Concentrations

Textron, Inc.

333 Adelaide Avenue

Providence, Rhode Island

					RW-2 AREA					
	DP2S	DP2D	MW-222S	MW-224S	MW-228D	MW-228S	MW-220S	GZA-4	MW-105	
Compound	03/12/08	03/13/08	03/28/08	03/28/08	04/01/08	04/01/08	7/28/2011	May-1989	May-1989	Avg
Total Suspended Solids										
1,1 - Dichloroethane	<50	1710	270	577	9.7	44.3				439.3
1,1 - Dichloroethylene	194	748	139	447	422	103				342.2
1,1,1 - Trichloroethane	1030	52800	4500	17800	3.5	114				12707.9
Vinyl Chloride	<50	<100	<100	<100	1.9	<1				29.6
Trichloroethylene	23900	21600	2070	6440	912	578				9250.0
cis-1,2 - Dichloroethylene	408	1260	<100	244	76.4	16.5				342.5
Tetrachloroethylene	<500	107	<100	<100	5.4	3610				678.7
Silver								1	<1	0.75
Arsenic								<10	<1	
Cadmium								<5	<5	
Copper								60	150	105.00
Total Iron							85.2	<100	600	245.07
Nickel								<40	70	45.00
Lead								22	<5	12.25
Selenium								<10	<10	
Zinc								70	140	105.00
Trivalent Chromium									-	
Hexavelent Chromium										
Antimony								<100	<100	

Note: Based on groundwater data presented in the Shaw - Status Report Actives for February and August 2011 and February and August 2012, AECOMs - Preliminary Hydrogeologic Evaluation of Groundwater Pump and Treat Remediation submitted in December 2011, and Hunter Inc - Soil and Groundwater Contamination Site Assessment submitted on May 25, 1989 for proundwater metals data only

Table 3 - RW-3 Expected System Influent Concentrations

Textron, Inc.

333 Adelaide Avenue

Providence, Rhode Island

										RW-3	AREA									
		MW-	101D			MW	-101S			MW-	201D			MW-	-202D			MW-	-2025	
Compound	02/28/11	08/23/11	08/28/12	08/08/12	02/28/11	08/23/11	08/28/12	08/08/12	02/28/11	08/23/11	08/28/12	08/08/12	02/28/11	08/23/11	08/28/12	08/08/12	02/28/11	08/23/11	08/28/12	08/08/12
Total Suspended Solids																				
1,1 - Dichloroethane	<10	<10	<10	<5	<1	<1	<1	<0.5	<100	<10	<50	<5	<10	<1	<10	<0.5	<1	<1	<1	<0.5
1,1 - Dichloroethylene																		-		
1,1,1 - Trichloroethane																				
Vinyl Chloride	<20	<20	<20	<5	<2	<2	<2	<0.5	<200	<20	<100	<5	<20	<2	<20	<0.5	<2	<2	<2	<0.5
Trichloroethylene	<20	<20	58	<5	<2	<2	<2	<0.5	380	230	150	210	<20	<2	<20	<0.5	<2	<2	<2	<0.5
cis-1,2 - Dichloroethylene	<20	<20	200	<5	11	3.3	6.9	14	<200	<20	<100	<5	<20	2.9	<20	<0.5	<2	5.7	3	2.5
Tetrachloroethylene	570	3800	220	490	16	34	45	29	9600	8400	10000	6600	5100	210	200	610	30	56	120	73
Silver																				
Arsenic																				
Cadmium												-								
Copper																				
Total Iron																				
Nickel																				
Lead																				
Selenium																				
Zinc																				
Trivalent Chromium																				
Hexavelent Chromium																				
Antimony																				

										RW-3 AREA										
		MW-	207D			MW-	-207S			MW-	-218D			MW	-2185		MW-213	MW-101S	MW-R	
Compound	02/28/11	08/23/11	08/28/12	08/08/12	02/28/11	08/23/11	08/28/12	08/08/12	02/28/11	08/23/11	08/28/12	08/08/12	02/28/11	08/23/11	08/28/12	08/08/12	7/28/2011	May-1989	May-1989	Avg
Total Suspended Solids																				
1,1 - Dichloroethane	<1	<1	<1	<0.5	<10	<1	<10	<0.5	<10	<1	<1	<0.5	<1	<1	<1	<0.5				3.67
1,1 - Dichloroethylene																				
1,1,1 - Trichloroethane																				
Vinyl Chloride	<2	<2	<2	<0.5	<20	<2	<20	<0.5	<20	<2	<2	<0.5	<2	<2	<2	4.5				7.17
Trichloroethylene	<2	23	<2	<0.5	45	<2	<20	23	<20	12	11	17	<2	<2	<2	<0.5				33.46
cis-1,2 - Dichloroethylene	<2	30	<2	<0.5	40	<2	20	15	<20	<2	<2	2.7	<2	<2	<2	8.5				15.97
Tetrachloroethylene	10	1100	120	34	1300	130	340	530	300	300	190	230	<2	2.3	<2	2.3				1399.08
Silver																		<10	<10	
Arsenic																		<10	<10	
Cadmium																		<5	<5	
Copper																		<20	<20	
Total Iron																	77.6	100	<100	75.87
Nickel																		<40	<40	
Lead																		15	12	13.50
Selenium																		<10	<10	
Zinc																		<20	20	15.00
Trivalent Chromium																				
Hexavelent Chromium																				
Antimony																		<100	<100	

Note: Based on groundwater data presented in the Shaw - Status Report Actives for February and August 2011 and February and August 2012, AECOMs - Preliminary Hydrogeologic Evaluation of Groundwater Pump and Treat Remediation submitted in December 2011, and Hunter Inc - Soil and Groundwater Contamination Site Assessment submitted on May 25, 1989 for groundwater metals data only.

Table 4 - Expected System Influent Concentrations

Textron, Inc.
333 Adelaide Avenue
Providence, Rhode Island

Average & Maximum System Influent Concentrations

	RV	W-1	RW-2	2 Area	RW-3	3 Area
Compound	Avg	Max	Avg	Max	Avg	Max
Total Suspended Solids						
1,1 - Dichloroethane	62.4	166.0	439.3	1,710.0	3.7	50.0
1,1 - Dichloroethylene	19.6	41.2	342.2	447.0	100.0	200.0
1,1,1 - Trichloroethane	399.0	1,060.0	12,707.9	52,800.0	100.0	200.0
Vinyl Chloride	1.9	1.0	29.6	50.0	7.2	100.0
Trichloroethylene	694.0	3,484.0	9,250.0	23,900.0	33.5	380.0
cis-1,2 - Dichloroethylene	39.2	100.0	342.5	1,260.0	16.0	100.0
Tetrachloroethylene	2.8	3.3	678.7	3,610.0	1,399.1	9,600.0
Silver			0.75	1.00		
Arsenic						
Cadmium						
Copper	3.30	4.80	105.00	150.00		
Total Iron	41.30	49.00	245.07	600.00	75.87	100.00
Nickel	2.76	5.10	45.00	70.00		
Lead	2.16	5.00	12.25	22.00	13.50	15.00
Selenium						
Zinc	9.21	26.80	105.00	140.00	15.00	20.00
Trivalent Chromium						
Hexavelent Chromium						
Antimony						

Note: 1) Where compound sometimes detected, convert ND to 1/2 ND, but not used when detections were never above the detection limit.

2) Italic values indicate detection limits were used.

Expected Flow Rate

					Total Pumping Rate
Pumping	Rate (gpm):	5.0	5.0	8.0	18.0

Maximum Flow Rate

				Total Pumping Rate
Pumping Rate (gpm):	7.0	7.0	16.0	30.0

Weighed Average & Maximum System Influent Concentrations

	Expected System Influent Concentrations @ 18 gpm		Expected System Influent Concentrations @ 30 gpm	
Compound	Avg	Max	Avg	Max
Total Suspended Solids	5000	5000	5000	5000
1,1 - Dichloroethane	141.0	543.3	119.0	464.4
1,1 - Dichloroethylene	144.9	224.5	137.7	220.6
1,1,1 - Trichloroethane	3,685.2	15,050.0	3,111.6	12,674.0
Vinyl Chloride	11.9	58.6	11.2	65.2
Trichloroethylene	2,777.1	7,775.6	2,338.1	6,592.3
cis-1,2 - Dichloroethylene	113.1	422.2	97.6	370.7
Tetrachloroethylene	811.1	5,270.4	905.2	5,963.1
Silver	0.75	1.00	0.75	1.00
Arsenic				
Cadmium				
Copper	69.00	77.40	54.15	77.40
Total Iron	113.26	224.72	107.28	204.77
Nickel	23.88	37.55	23.88	37.55
Lead	10.00	14.17	10.56	14.30
Selenium				
Zinc	38.39	55.22	34.65	49.59
Trivalent Chromium				
Hexavelent Chromium				
Antimony				