Gorham Public Questions & Answers Park Parcel Public Meeting Former Gorham Manufacturing Site Providence, Rhode Island August 23, 2007

Comment No. 1: A community member noted that drums had been found in the pond (1987) and that police divers had gotten rashes during their investigation. These drums were located immediately off the western peninsula within Mashapaug Pond. They suggested that Textron had not looked in this location as part of the previous Cove investigation.

Response: During the August 23, 2007 public meeting Textron agreed to review the 1987 reports regarding this event. The following summarizes the attached memorandum regarding the drums (Attachment A). The November 23, 1987 memo from RI Department of Environmental Management (RIDEM) noted on November 17, 1987 they met with the Providence Police Department regarding a diving investigation in Mashapaug Pond. During a search of the pond bottom the divers discovered several drums and cylinders and a white gooey material. These drums were located along the western peninsula within Mashapaug Pond and were in a very degraded condition. Other drums were found on the hillside leading from the former Gorham parking lot (Parcel C) down to the waters edge. These drums were all empty except for one drum containing an "oily, waxy waste"; a sample was collected from this drum, but was non-detect for metals and PCBs. No other analyses were conducted by RIDEM (November 20, 1987). The police were concerned because one of the divers got a rash on his face. RIDEM stated that any concerns with the contact of these chemicals in the water would be "minimal". The police divers also investigated Mashapaug Cove, but no drums were identified.

In response to previous input from a community member that the Cove had been location of historic dumping, Textron conducted a magnetometer survey and other surveys within the Cove in 2006 to determine if any drums may be present. None were found. Textron also conducted the removal of all metal debris, including drum carcasses from the Park Parcel in 2006. This removal action of the drum carcasses and other debris was photo-documented and a list of removed materials was provided in the September 2006 Slag Removal Action Report. Textron will work with RIDEM to determine what actions are necessary to locate and remove any potential drums immediately along the western peninsula of the Park Parcel as noted by the community. This action will be incorporated into the Supplemental Site Investigation Work Plan

for the Park Parcel Groundwater and Sediment. The need for any further investigation or action along the western peninsula can be done independently of the proposed soil cap on the Park Parcel.

Comment No. 2, Part 1: Mr. Robert Dorr noted that two former USTs at Building N were removed in 1995 by contractors for the City of Providence, but soil sampling was not conducted following the UST removal. He also said he believed that it was possible that solvents may have been stored in these two USTs during the operation of the Gorham facility. Mr. Dorr asked if documentation was to show that these former USTs served as solvent tanks would additional investigation be conducted at this location.

Comment No. 2, Part 2: Mr. Robert Dorr questioned the disposition of soils at locations on the Park Parcel that previously were identified as having high concentrations of contaminants.

Response (Part 1): Textron has done extensive research on the former Building N UST issue. All of the evidence that we have reviewed indicates that these USTs contained water for fire suppression purposes and were closed in 1995. Information obtained from the Brown University archives dating back to the 1930's indicate that the two USTs were used solely for water suppression and not for solvents. Utility drawings document the water withdrawal lines from Mashapaug Cove up to Building N and the distribution of this water for fire suppression throughout the Site. On March 27, 1995, ABB-ES submitted to RIDEM a letter report concerning the investigation of the two underground tanks located to the north of Building N. This letter report is provided herein as Attachment B. The report indicated the following:

- The soils excavated from the sides of the USTs had no detectable VOCs using a PID screening.
- The two USTs were situated above the water table (water table is located approximately 30 feet below the ground surface in this area).
- The eastern tank was filled with water. A water sample tested by PID (headspace screening) did not exhibit detectable VOCs. No sheen was observed on the water. A water sample collected from this tank and submitted to the laboratory for analysis had no detectable VOCs. The western tank interior could not be accessed.
- No vent or fill pipes were observed in the vicinity of the tanks or Building N. Building N did not accommodate a furnace or boiler. This was further evidence the USTs were not used for petroleum storage.

Since the tanks contained water and did not contain petroleum products or hazardous materials there were no further steps needed and they were not regulated by DEM-DWM-UST05-93

Section 5.03 regulations. Therefore, removal of the tanks was not required and was not proposed at that time.

Nonetheless, the Supplemental Site Investigation Work Plan for the Park Parcel will include a magnetometer survey around the former Building N location and collection of a groundwater sample(s) immediately downgradient of the location of these tanks (between the USTs and the Cove). The sample(s) will be analyzed for volatile organic compounds to determine if there is any evidence of a release to groundwater from the area of the tanks.

Response (Part 2): The following locations and soil samples have been discussed previously and the information is presented here to once again document the disposition of soils of interest. Please refer to Figure 2 for sample locations.

- Soil sample SS-SI0008 A small area of soil exceeding the UCL for copper was identified during June 2006 supplemental site investigation (see Figure 1). Soil sample SS-SI0008 was found to contain 14,100 mg/kg copper exceeding the UCL of 10,000 mg/kg. In accordance with the Court Consent Order, dated March 29, 2006, the soil with the UCL exceedance was removed for off-site disposal in August 2006 during the slag removal activities.
- SD-006 a copper UCL exceedance (greater than 10,000 mg/kg) was identified in soil sample SD-006 in 1994 (see Figure 1). Subsequent soil samples were collected on September 13, 2001 (SD-006-002N, S, E, W around the original location as well as SD-006-002-01 and SD-006-002-02 at two depths at the original sampling location) to delineate the location of the copper concentrations above the UCL. None of the 2001 soil samples contained copper concentrations above the UCL. However, the soil at location SD-006 was removed and disposed off-site as part of the slag removal activities conducted in this area in August 2006. The copper concentrations in these samples were as follows:
 - \circ SD-006 15,800 mg/kg
 - \circ SD-006-002-01 4,890 mg/kg
 - o SD-006-002-02 -1,190 mg/kg
 - \circ SD-006-002N 2,420 mg/kg
 - \circ SD-006-002E -72.8 mg/kg
 - \circ SD-006-002S 16.2 mg/kg
 - \circ SD-006-002W 2,030 mg/kg

- SS-1 TPH at a concentration above the TPH UCL (30,000 mg/kg) was identified at soil sample location SS-1 in 1989 (see Figure 1). That location was resampled on September 13, 2001 (two depths SS-001-002-01 and SS-001-002-02) and on the same date, four additional soil samples were collected around the original location (SS-001-002W, -N, -E, and -S) (see Figure 1). Even though extensive soil sampling was conducted, the TPH UCL exceedance could not be reproduced or confirmed; therefore soil removal is not required in this area. The area of SS-1 will be included in the area capped by the proposed soil cover. The analytical data for the follow-up samples are as follows:
 - \circ SS-1 73,800 mg/kg
 - \circ SS-001-002-01 563 mg/kg
 - \circ SS-001-002-02 537 mg/kg
 - \circ SS-001-002N 629 mg/kg
 - o SS-001-002E -500 mg/kg
 - \circ SS-001-002S 258 mg/kg
 - \circ SS-001-002W -1,430 mg/kg

Textron has requested additional information from Mr. Robert Dorr associated with the collection and analysis of soil samples associated with analytical data that were appended to a letter from Mr. Dorr to Mr. Joseph Martella dated September 5, 2007. Once supporting information is reviewed, Textron will evaluate these results accordingly as they relate to Park Parcel investigation activities.

Comment No. 3: An individual identified the historical presence of abandoned tanks on the land surface located in the southwest corner of the Gorham Site near Adelaide Avenue and requested that additional investigation and soil sampling be conducted in this area of the Site.

Response: Textron appreciates the historical knowledge of long-time residents of the neighborhood. Textron has reviewed all available environmental reports prepared for the Site and did not identify the presence of such tanks in any of the documents. As an additional measure Textron inspected this area of the Park Parcel and the adjacent area on Parcel C, but did not observe any evidence of an abandoned tank. If tanks are identified on the Park Parcel in the future, Textron will coordinate the removal of these items for proper off site disposal.

The soil samples already collected on the southwestern corner of the Park Parcel do not indicate contamination that requires additional delineation so no additional soil sampling is planned for this area of the Park Parcel.

Comment No. 4: Bob McMahon, Director of Parks Department, and Senator Juan Pichardo commented on the number and cluster of soil samples collected on the western peninsula of the Park Parcel and if they are clean enough to support the construction of the proposed park?

Response: Sampling performed to date indicates that this area in question can be used as a park without any need for a soil cap. Over the years Textron has taken a large number of soil samples in the Park Parcel and at different depths. Surface soil sample SS-103 (see Figure 1) was collected in May 1998 and analyzed for metals, semi-volatiles and total petroleum hydrocarbons (TPH); only petroleum aromatic hydrocarbons (PAHs) were found to exceed RIDEM standards. The reported PAHs prompted further sampling in the area immediately around SS-103 in December 1998, resulting in a cluster of samples on the peninsula (soil samples SS-211 through SS-216, Figure 1). All of these samples were analyzed for PAHs. No PAHs were detected in the samples SS-211 through SS-216. Subsequently, the location of the 1998 SS-103 sample was resampled and analyzed for PAHs. No PAHs were detected in that sample. Based on the results of all of those samples, it appears the source of the original PAH detections was likely the result of combustion such as a campfire site on the peninsula. Combustion products from the burning of logs create PAHs.

Comment No. 5: Senator Juan Pichardo and other community members asked about the current need and nature of fencing around the Park Parcel as people do currently walk through the Park Parcel area.

Response: Per the terms of the 2006 Consent Order, the City of Providence was required to construct and maintain a barrier fence to prevent access to the Park Parcel until such time when the Park Parcel was remediated to a level sufficient to safely permit recreational use. The school is currently surrounded by a fence to restrict access to the Park Parcel. In addition a second fence runs the length of the Park Parcel. As evidenced by the homeless persons within the Park Parcel, breaches to the fence have been created, repaired by the City and re-opened. Signs posted along the fence in both English and Spanish state that no unauthorized persons should enter the Park Parcel until remediation is complete. Once the remediation of the Park Parcel soils and sediment has been completed to recreational standards the fence can be removed by the City.

Comment No. 6: A community member asked whether a park would be constructed on the capped site?

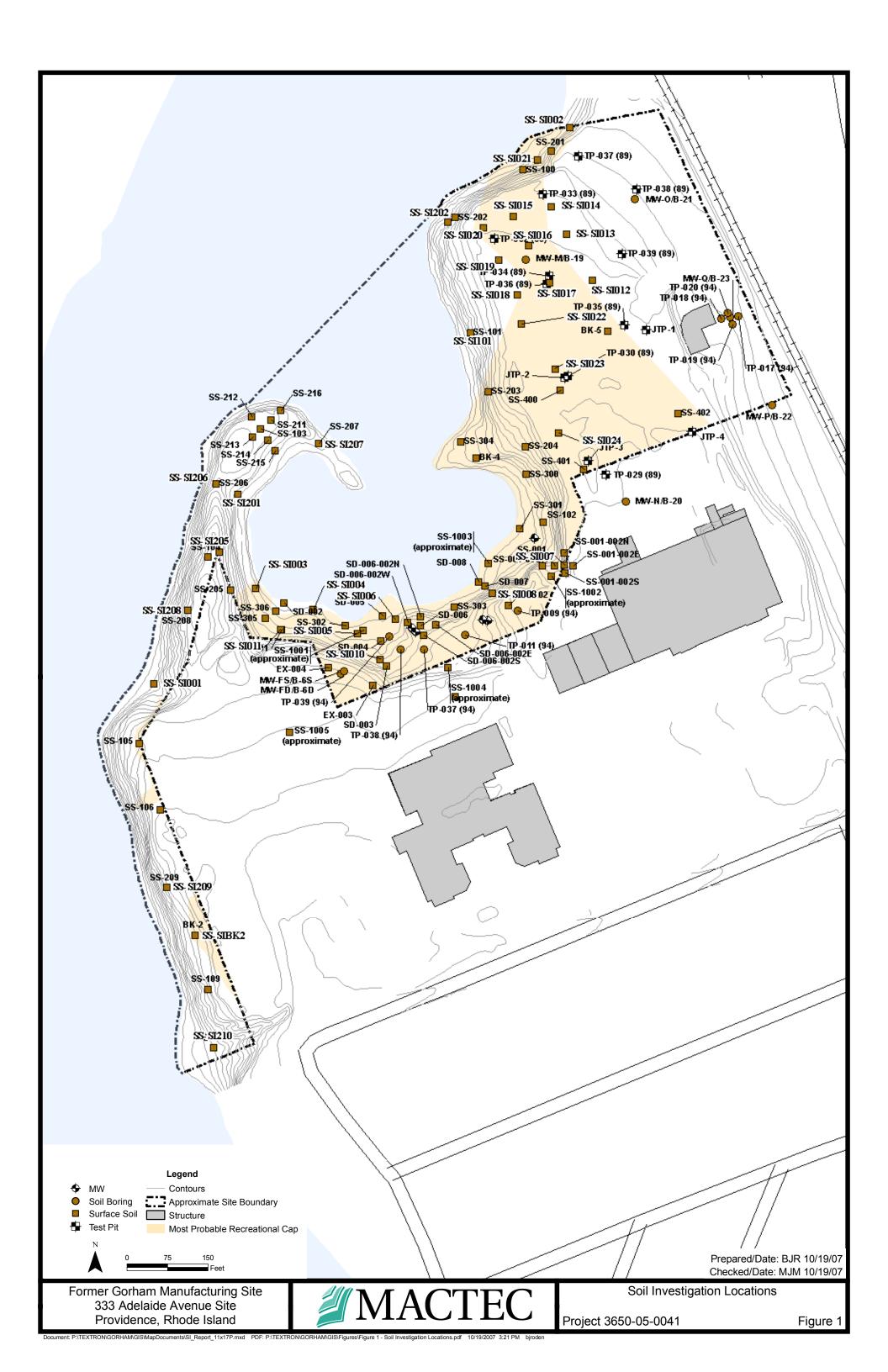
Response: It is Textron's understanding that the City of Providence plans to construct a park on the Park Parcel. Textron's current capping plans include grading for the cap to accommodate future park developments by the City of Providence.

Textron values the Providence community where it is headquartered and its employees work and live. Because of Textron's commitment to the community and future beneficial use of the Park Parcel, Textron is going beyond their agreement with the City of Providence (1994) to remediate to a level of industrial use by remediating the Park Parcel to support recreational land use.

Comment No. 7: Community members would like high school representatives (parents, students, administration) to attend meetings regarding the Park Parcel. A suggestion to expand the meeting mailing list to include all of the Reservoir Triangle area was noted as well.

Response: Textron has engaged the administration of the Adelaide Avenue High School and will work with the administration regarding the most appropriate method for informing the stakeholders of the high school about site activities. Regarding the suggestion to expand the meeting and mailing list to include all of the Reservoir Triangle, a member of the community offered to provide mailing lists for the Reservoir Triangle area and offered to go with Textron representatives and show areas that did not receive previous notices about the project. Textron welcomes this and we'll contact the individual to coordinate such activities for future notices and meetings.

Comment No. 8: A community member noted concern about the presence of some concentrations above the residential direct exposure criteria (RDEC) outside the proposed cap area.


Response: The RIDEM Remediation Regulations contain clear criteria for determining if soil conditions are in compliance with the risk-based direct exposure criteria. Compliance with the criteria means that the site is safe for the land use and activities associated with the criteria.

A review of all of the soil data with RIDEM residential direct exposure criteria resulted in the proposed capping plan to achieve compliance and be protective of residential and recreational land use activities for the entire Park Parcel. These compliance criteria were also used to demonstrate that after capping, the uncapped Park Parcel soil would be in compliance with the residential criteria and would be safe for recreational use. A more detailed response regarding the safety of the uncapped areas is presented in the response to Comment Nos. 2, Part 2, and 4 and within Attachment C of this response to comments.

As indicated in the response to Comment No. 2, Part 2 above, Textron has requested additional documentation for soil data provided by Mr. Dorr in his September 5, 2007 letter. Textron will evaluate and address these data when the additional documentation is available.

Comment No. 9: Senator Juan Pichardo asked to receive a copy of the Textron presentation.

Response: A copy of the presentation was sent to Senator Pichardo on August 27, 2007 and is posted on the RIDEM Gorham project website.

ATTACHMENT A

Mashapaug Pond Investigation November 23, 1987 Memo RI Department of Environmental Management

Reference #3

STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS INTER-OFFICE MEMO

TO:

Thomas D. Getz, Chief

DATE:

DEPT:

Division of Air and Hazardous Materials Environmental Management

23 November 1987

FROM:

DEPT:

Felix Harvey, Sr. Engineer

Division of Air and Hazardous Materials

Environmental Management

SUBJECT:

Investigation of Moshapaug Pond

On Tuesday, 17 November 1987, John Leo and I met with representatives of the Providence Police Department (Contact: Sargeant William Gilblin, Juvenile Division) who had been involved with a diving investigation in Moshapaug Pond. Divers were searching the pond bottom when they discovered several drums and cylinders. They also noted a white gooey material. The areas of concern are located in the proximity of the Gorham Manufacturing Company.

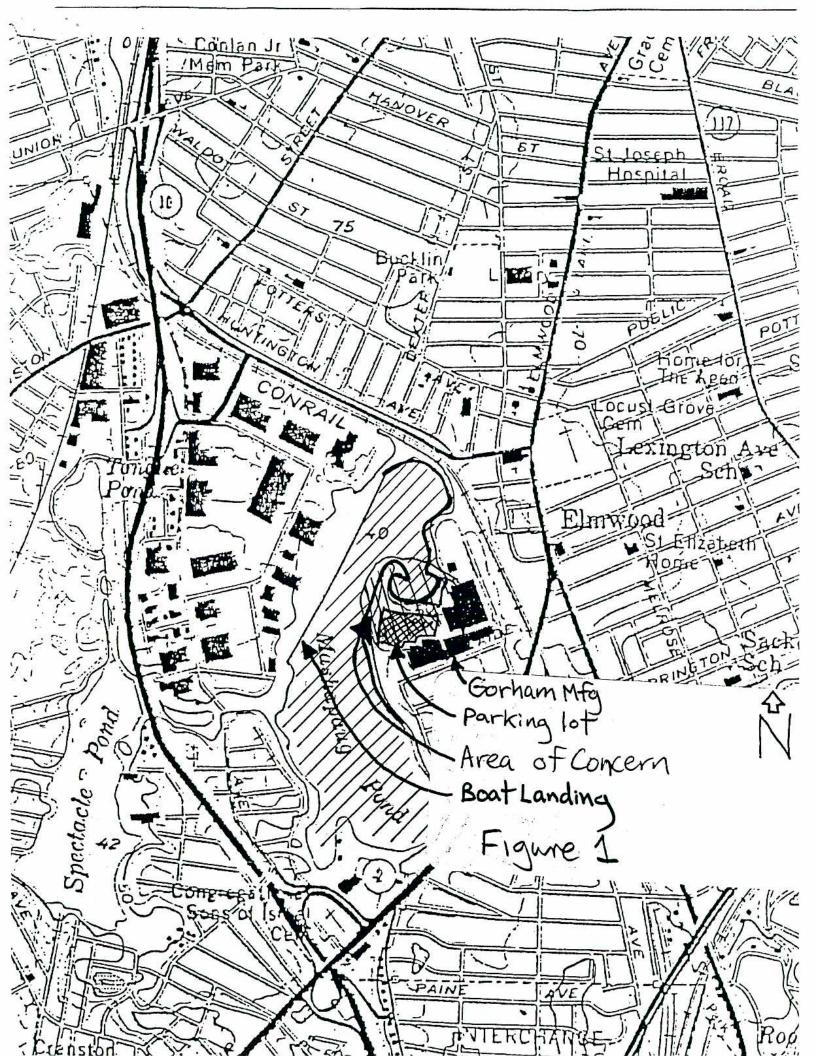
The divers recollected that all the drums were in a very degraded condition. The Police Department was concerned because one of the divers experienced a rash on his face. They concluded that it was from toxic waste. They needed to continue search in the pond and wanted our opinion on any dangers to the divers posed by chemicals. We explained to them that in a situation like this with such large quantities of water, any material in the drums would be quite dilute. It was our judgement that any contact with chemicals in the water would be minimal.

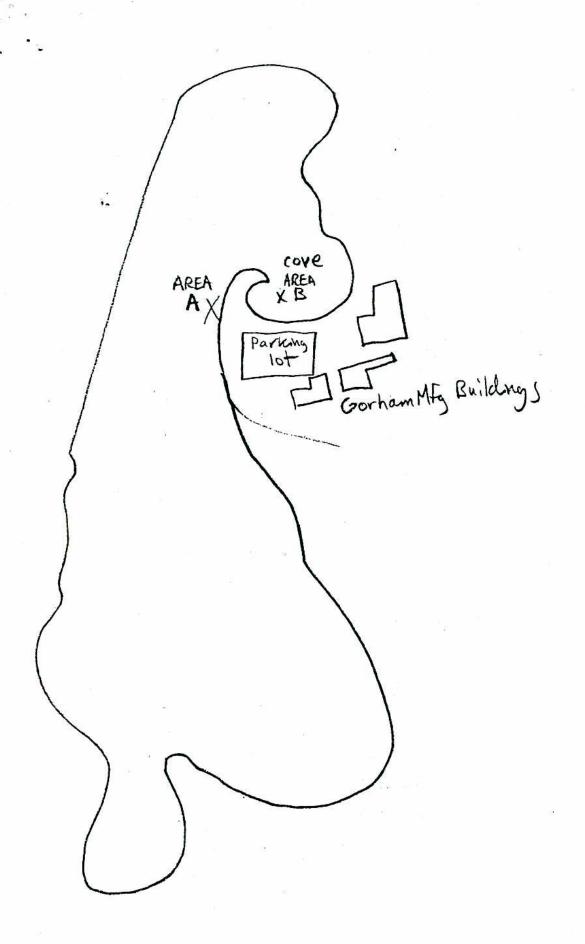
We decided to go to the location and determine whether there were any intact barrels which might contain hazardous waste.

We arrived just before 1:00 PM at the Moshapaug Pond boat ramp. Three members of DFM's investigative unit arrived soon after, followed by the Providence Police and then the Providence Fire Department with their outboard motor boat. John Leo rode with the Fire Department and divers in the boat to the area of concern.

I drove around to the other side of the pond with the Police and other DEM staff members. We approached from the Elmwood Avenue side, through a break in the fence over the tracks and circled around the fenced site of Gorham Manufacturing Company. (See Figures 1 & 2)

There had been quite a bit of dumping in and around Moshapaug Pond. There was a lot of debris including quite a few drums in the pond and on the shore. Most of the drums appeared to be open head or empty. There was one crushed drum labelled potassium cyanide that did not contain any material. I found one severely deteriorated drum which did contain an oily, waxy waste from which I obtained a sample. There was a large parking lot (approximately 300' by 300') located behind the Gorham buildings which seemed to be built on top of fill material. The fill material, as it appeared at the pond side edges of the parking lot, was comprised of solid waste and other debris. There was at least one drainage ditch which seemed to drain from undermeath the parking lot and


the sediments in the ditch had a black sludgy appearance. I obtained a sample from this ditch.


The divers searched the bottom of the pond to relocate the drums and cylinders which were found in the previous search. They located several drums which were not intact due to deterioration (Area A, Figure 2). Several water and sediment samples were taken in this area. The divers also searched the cove (Area B, Figure 2). They found one cylinder which was an old fire extinguisher. Again, no intact drums were found.

John and I entered the grounds to the Gorham Complex and took a quick tour around. There were two drums partially filled with liquid in the parking lot area, nearer to the buildings. There were several large electrical transformers outside one of the buildings, but enclosed within a locked fence. They appeared to be active. One transformer had a small leak, though John thought that the particular transformer did not contain PCBs (Not a PCB type). There were two transformers which did appear to be PCB type, and they seemed to be in good condition.

We left about 3:45 PM. I believe that there may be a hazardous waste situation at the Gorham site. I would recommend that the site be placed on CERCLIS. I researched the deed to the property. The Gorham Corporation sold the property (Plat 51, Lot 170) to Textron, Inc. in 1967. Textron, Inc. sold to Adelaide Development Corporation on 5 August 1986.

FH/kz getz-fh/k7

MOSHAPAUG POND FIG 2

R.I. Analytical Laboratories, Inc.

SPECIALIZING IN ENVIRONMENTAL ANALYSIS

231 ELM STREET WARWICK, R. I. 02888

CERTIFICATE OF ANALYSIS

PHONE: (401) 467-2452

REPORT TO:	R.I. D	Dept. of Environmental Management DATE RECEIVED 11/20/87
	Air &	Hazardous Material/204 Cannon Bldg. 12/09/87
	75 Dav	vis Street, Providence, RI 02903 PURCHASE ORDER NO. 94758
	Attn:	Mr. John P. Leo R.I.A.L. INV. NO G5410
SAMPLE DES	CRIPTION _	One (1) Sediment, one (1) water, one (1) waxy material
		& one (1) soil sample labelled Mashappaug Pond. Prov.

Subject samples have been analyzed by our laboratory with the attached results:

Methodology: <u>Test Methods for Evaluating Solid Waste, Physical/</u>

<u>Chemical Methods</u>, U.S. EPA, SW-846, September 1986,

Third edition.

Guidelines Establishing Testing Procedures For The

Analysis of Pollutants, 40CFR, Part 136, July 1986.

If you have any questions regarding this work or if we may be of further assistance, please contact us.

Page 1 of 3

APPROVED BY Rolet & Hoffen

Certificate of Analysis

RI Dept. of Environmental M Date Collected: 11/18/87 Date Recieved: 11/20/87 Invoice #: G5410 Page 2 of 3	Management XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	J. Brand	1,2 /2 Ser	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ARAMETER	SAMPLE #1	ŝ	SA	SAMPLE #4
il & Grease				75,000 ppm
eristic of E.P. c	Toxicity: <0.01 mg/1	1	<0.01 mg/1	<0.01 mg/1
Barica		1 1	. 00.00	
Cacinium	. 00.0×			
Lead	<0.05	1 1 1	<0.05	
Mercury	<0,0005"		<0.0005"	<0.0005"
Selenium	<0.01 "		<0.01 "	<0.01 "
Silver	<0.01 "		<0.01 "	<0.01 "
Polychlorinated Biphenyls:	QZ		ND	QN
PCB's Detection Limit: 1 pp	waid		ē	
Volatile Organic Compounds: trans-1,2-dichloroethylene 1,1,1-trichloroethane	QZ	11 ppb 3 "	1 1 1 1	Q Z Z
trichloroethylene	OZ Z	19		ND
tetrachloroethylene ===================================		1 "		QZ
Detection Limit:		1 ppb		ppb

A list of volatile organic compounds tested for is attached.

Note:

VOLATILE ORGANIC PRIORITY POLLUTANTS COMPOUNDS

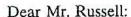
benzene bromoform bromomethane carbon tetrachloride chlorobenzene ch1 or omethane dibromochloromethane chloroethane 2-chloroethylvinyl ether chloroform bromodichloromethane dichlorobenzenes 1.1-dichloroethylene 1.1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,3-dichloropropene (cis & trans) dichlorodiflouromethane ethylbenzene methylene chloride 1,1,2,2-tetrachloroethane tetrachloroethylene toluene trans-1,2-dichloroethylene 1,1,1-trichloroethane 1.1.2-trichloroethane trichloroethylene trichlorofluoromethane vinyl chloride xylenes

RI ANALYTICAL LABORATORIES, INC.

ATTACHMENT B Building N UST Submittal to RIDEM March 27, 1995

LS 28109

March 27, 1995


PN: 09111.09

Mr. Dan Russell
Rhode Island Department of Environmental Management
Division of Waste Management - UST Section
291 Promenade Street
Providence, Rhode Island 02908-5767

Subject:

Underground Storage Tanks

333 Adelaide Avenue, Providence

This letter presents the findings of ABB Environmental Services, Inc.'s (ABB-ES) investigation of the two underground storage tanks (USTs) located behind Building N on the 333 Adelaide Avenue property in Providence, Rhode Island. As you are aware, the tanks were scheduled to be excavated on February 27, 1995 under a closure permit granted by Rhode Island Department of Environmental Management (RIDEM) UST Section. However, prior to commencing tank removal activities, ABB-ES undertook exploratory excavation to determine tank size, orientation and contents.

Results of Tank Investigation

On February 24, 1995, ABB-ES personnel and its subcontractor, Franklin Environmental Services, Inc. (Franklin) were on site to excavate soil surrounding the tanks to expose the tops of the tanks and manways. Results of this investigation showed that there are two USTs located behind (north of) Building N (see attached figure). The tanks are located side by side, with the long axis of the two tanks oriented north/south. An unknown length of the tanks appears to extend beneath the building. Each tank is approximately 30 feet long and 8 feet in diameter with an estimated capacity of approximately 15,000 gallons.

During excavation activities, the excavated soils were field screened with a portable photoionization detector (PID) for volatile organic compounds. PID readings were non-detectable.

No access ports were observed on the excavated portions of the tanks. However, a manway providing access to the eastern tank (Tank 1) was observed inside Building N. This manway had a pump and piping, and one of the pipes leads to an aboveground steel storage tank. An access port to Tank 2 was not found, either within the building or along the excavated top of the tank.

The manway on the eastern tank was opened and the tank appeared to be entirely full of water. No sheen was observed on the water surface. PID readings taken in the manway were non-detectable. A sample of the water collected for headspace analysis was also non-detectable. A sample of the water was collected for analysis of VOCs by EPA Method 8240 at a Rhode Island certified laboratory. No VOC's were detected in this aqueous sample. Laboratory analytical reports are attached.

ABB Environmental Services, Inc.

Mr. Dan Russell March 27, 1995 Page 2

A site-wide Remedial Investigation is currently being undertaken, and a groundwater table map has been developed for the property. The USTs are located above the water table indicating that the tanks are not submerged in groundwater, and that the material housed in the tanks was not the result of groundwater infiltration. Recently, the basement of Building N has flooded due to pipe breaks, and a leaking roof and floor boards. This water may have entered the tanks through gaps in piping or the manway. If oil had been originally contained in the tanks, the water in the basement would have forced oil out of the tank. However, no oil or staining was observed on the basement floor, the manway or the piping.

No vent or fill pipes were identified in the vicinity of the tanks or Building N, offering additional * evidence that these tanks were not used for oil storage. Furthermore, Building N did not accommodate a furnace or a boiler.

Upon completion of the tank investigation activities, the excavation around the tanks was backfilled and the site restored to previous conditions. RIDEM was verbally notified of our findings and tank closure activities planned for February 27, 1995 were canceled.

Conclusions

Based on the information obtained, ABB-ES concludes that the tanks were likely used for water storage for firefighting purposes, and not for the storage of fuel oil or hazardous materials. Since the USTs located behind Building N do not contain petroleum products or hazardous materials, they are not regulated under RIDEM regulations (DEM-DWM-UST05-93, Section 5.03). Because they are not used for fuel or hazardous material storage, and because they extend under the building, we do not propose to remove or close the tanks at this time.

Sincerely,

ABB ENVIRONMENTAL SERVICES, INC.

Kathleen Donovan

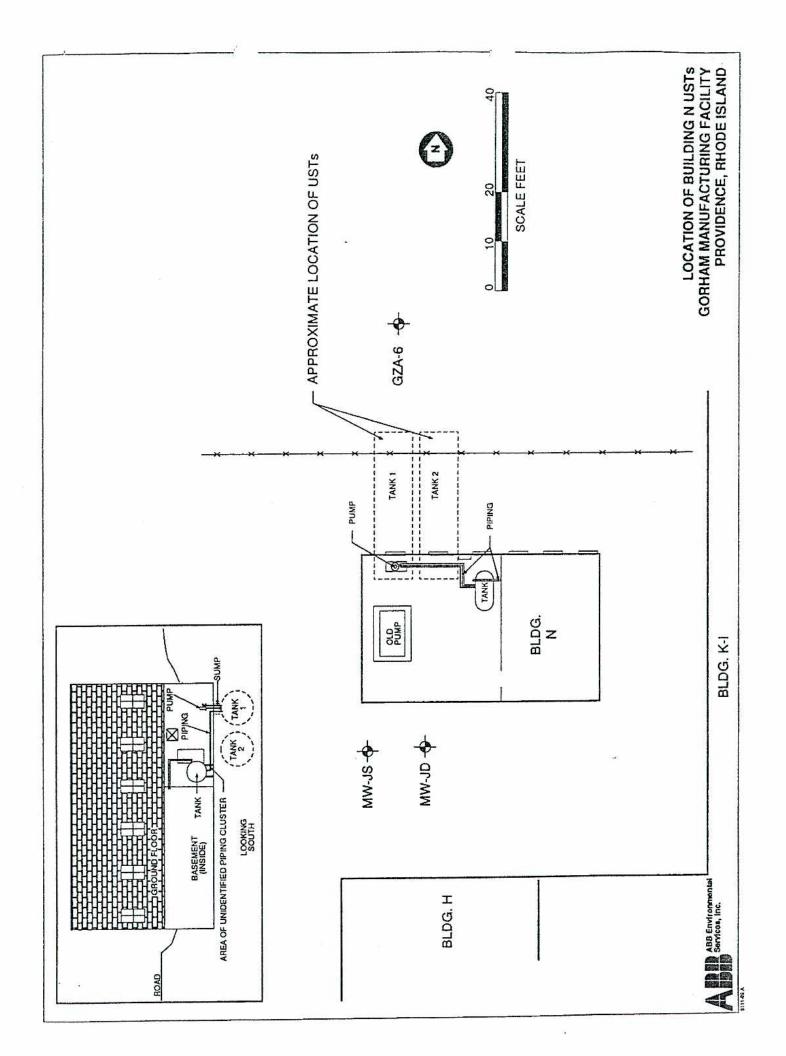
Scientist

cc:

Ellen \$\overline{\psi}\$. Cool, Ph.D.

Regional Project Director

R. Brayley, Textron, Inc.


J. Palmieri, City of Providence, Department of Planning

J. Teverow, Esq.

Kachleen Donovan

G. Benik, McGovern, Noel, & Benik, Esq.

M. Dennen, RIDEM

In Response To The Future

March 9, 1995

Ms. Ellen Cool ABB Environmental Services Corporate Place 128 Bldg. 3 107 Audubon Road Wakefield, MA 01880

Dear Ms. Cool:

Enclosed is the data report of laboratory test results for the analyses of the samples which were received at ESS on February 24, 1995 as part of your Gorham/Textron project number 09111-09.

This letter authorizes the release of your analytical results and should be considered a part of this report. This report should not be copied except in full without the approval of the laboratory.

The Project Invoice for this data report is being forwarded to your Accounts Payable Department. If you have any questions please feel free to call.

Sincerely,

Laboratory Director

Enclosure

CERTIFICATE OF ANALYSIS

In Response To The Future

VOLATILE ORGANICS Method 8240

Client: ABB Environmental Services

Client Project ID: Gorham/Textron

Client Sample ID: Gorham/Textron 2/24

Date Sampled: 2/24/95

Date Analyzed: 3/8/95

ESS Project ID: 950858

ESS Sample ID: 950858-01

Dilution Factor: 1x

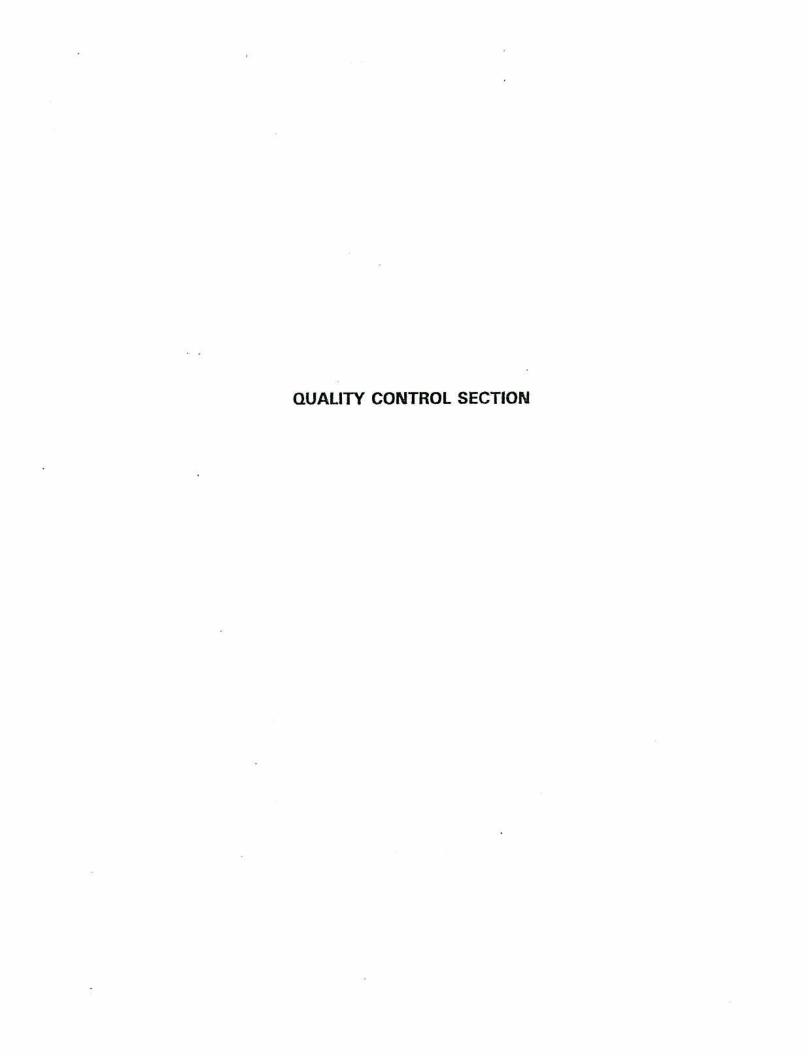
Units: ug/L

Parameter	Result	MRL
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND ·	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5 .
1,1-Dichloroethene	ND	5
Acetone	ND	50
Carbon Disulfide	ND	5 5
Methylene Chloride	ND	5
Methyl tert-Butyl Ether	ND	10
Trans-1,2-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
Cis-1,2-Dichloroethene	ND	05550555555555555555555555555555555555
Methyl Ethyl Ketone	ND	50
Chloroform	ND	5
1,1,1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
	ND	5
Benzene	ND	5
1,2-Dichloroethane	ND	5
Trichloroethene	ND	5
1,2-Dichloropropane	ND	5
Bromodichloromethane	ND	5
Cis-1,3-Dichloropropene	ND ND	50
Methyl Isobutyl Ketone	ND	55
Toluene		7 (
Trans-1,3-Dichloropropene	ND	7
1,1,2-Trichloroethane	ND	5 5 5 5
Tetrachloroethene	ND	50
2-Hexanone	ND	
Dibromochloromethane	ND	5 5 5
Chlorobenzene	ND	5
Ethylbenzene	ND	5
Xylenes (Total)	ND	10
Styrene	ND	5 5 5
Bromoform	ND	5
1,1,2,2-Tetrachloroethane	ND	
Dichlorobenzene (Total)	ND	10

ND = Not Detected above Method Reporting Limit (MRL)

Approved by: Bu full

Date:


3/9/45

Environmental Science Services

REGISTRATION

LERTIFICATE OF ANALYSIS

In Response To The Future

VOA AQUEOUS SURROGATE RECOVERY

Client: ABB Environmental Services

Client

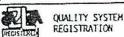
Project ID: Gorham/Textron

Date Sample Analyzed: 3/8/95

ESS

Project ID: 950858

SAMPLE ID	1,2 DICHLOROETHANE-D4 (76-114%)*	TOLUENE-D8 (86-110%)*	BFB (86-115%)*
V0308B1	77%	97%	97ዩ
950858-01	77	96	95


* Acceptance criteria

Approved by:

The sale

Date

3/4/95

ERTIFICATE OF ANALYS!

In Response To The Future

VOLATILE ORGANICS Method 8240

Client: ABB Environmental Services

Client Project ID: Gorham\Textron

Client Sample ID: Method Blank

Date Sampled: N/A

Date Analyzed: 3/8/95

ESS Project ID: 950858

ESS Sample ID: V0308B1

Dilution Factor:

Units: ug/L

Parameter	Result	MRL
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5 5
1,1-Dichloroethene	ND	_5
Acetone	ND	50
Carbon Disulfide	ND	5 5
Methylene Chloride	ND	5
Methyl tert-Butyl Ether	ND	10
Trans-1,2-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5 5
Cis-1,2-Dichloroethene	ND	5
Methyl Ethyl Ketone	ND	50
Chloroform	ND	5
1,1,1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
Benzene	ND	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1,2-Dichloroethane	ND	5
Trichloroethene	ND	5
1,2-Dichloropropane	ND	5
Bromodichloromethane	ND	5
Cis-1,3-Dichloropropene	ND	5
Methyl Isobutyl Ketone	ND	50
Toluene	ND	5
Trans-1,3-Dichloropropene	ND	5
1,1,2-Trichloroethane	ND	5 5 5 5
Tetrachloroethene	ND	
	ND	50
2-Hexanone Dibromochloromethane	ND	5 5 5
	ND	5
Chlorobenzene	ND	
Ethylbenzene	ND	10
Xylenes (Total)	ND	5 5
Styrene	ND	5
Bromoform	ND	5
1,1,2,2-Tetrachloroethane		10
Dichlorobenzene (Total)	ND	/ ™ X

N/A = Not Applicable

ND = Not Detected above Method Reporting Limit (MRL)

Approved by: <

QUALITY SYSTEM REGISTRATION

ATTACHMENT C

Risk Evaluation Park Parcel Soils

ATTACHMENT C

Risk Evaluation Park Parcel Soils

The Park Parcel site investigations have lead to a proposed cap as a remedial action to make the land suitable for recreational use. In order to answer the question about the safe use of the Park Parcel, it is necessary to evaluate the conditions that would exist once the proposed cap is in place as shown in Figure C-1. The cap would be constructed with soil that meets the RIDEM direct exposure criteria for residential land use. Then, the analytical data for the area outside the proposed cap and within the Park Parcel is evaluated to assess the suitability of the Park Parcel for recreational use. In this case, the evaluation for recreational use is conducted by comparing the data to standards for residential land use (there are no standards developed specifically for recreational land use). Obviously, if the property is suitable for residential purposes, it would be suitable for recreational use.

The following demonstration that the soils outside the proposed soil cap at the Park Parcel are safe for use as a park is taken primarily from the Supplemental Site Investigation Report Addendum, dated June 2007. Additional evaluation and explanation of the soil chemical data has been added in response to the questions asked at the August 23, 2007 public meeting.

The following paragraphs, tables, and figure document that the portions of the Park Parcel that are outside the footprint of the proposed "Recreational Use" Cap are in compliance with the RIDEM Residential Direct Exposure Criteria (RDEC). The cap will be constructed with material that meets RDEC, so overall, the soils both inside and outside the footprint of the proposed cap will be in compliance with the health protective RDEC.

Figure C-1 documents the extent of the proposed "Residential" Cap and also shows the soil sampling locations that are outside the footprint of the cap. Those soil sampling locations are representative of potential soil exposures outside the cap footprint. Table C-1 documents the comparison of uncapped soil analytical data to the RDEC and documents that there are no applicable Leachability Criteria for detected analytes. The RDEC was calculated as a Method 2 Risk Assessment activity because the RIDEM Remediation Regulations do not include soil criteria for dioxins. Calculation of the Method 2 RDEC is presented in Appendix F of the July 2006 Supplemental SSIR.

As set forth in Section 8.10 of the RIDEM Remediation Regulations, compliance with soil RDECs is demonstrated as discussed below.

<u>For less than twenty soil samples</u> (this applies to acetone, the pesticides 4,4-dichlorodiphenyldichoroethylene (DDE), 4,4'-dichlorodiphenyltrichloroethane (DDT), delta-BHC, Endosulfan II, Endrin ketone, gamma-chlordane, barium, beryllium, cadmium, chromium, mercury, nickel, silver, zinc, and total petroleum hydrocarbon (TPH)):

• The analytical results for all samples using this approach must be below the appropriate soil objective to demonstrate compliance.

As shown in Table C-1, the maximum detected concentrations and maximum reporting limits for non-detects of 4,4-DDE, 4,4'-DDT, delta-BHC, Endosulfan II, Endrin ketone, gamma-chlordane, barium, beryllium, cadmium, chromium, mercury, nickel, silver, zinc, and TPH in soil samples are below the corresponding RDECs. Therefore, these concentrations from outside the footprint of the "Recreational Use" Cap for these chemical parameters are in compliance with the RDECs.

<u>For twenty or more samples</u> (this applies to the 13 detected polynuclear aromatic hydrocarbon (PAH) compounds, arsenic, copper, lead, and dioxin TEQ):

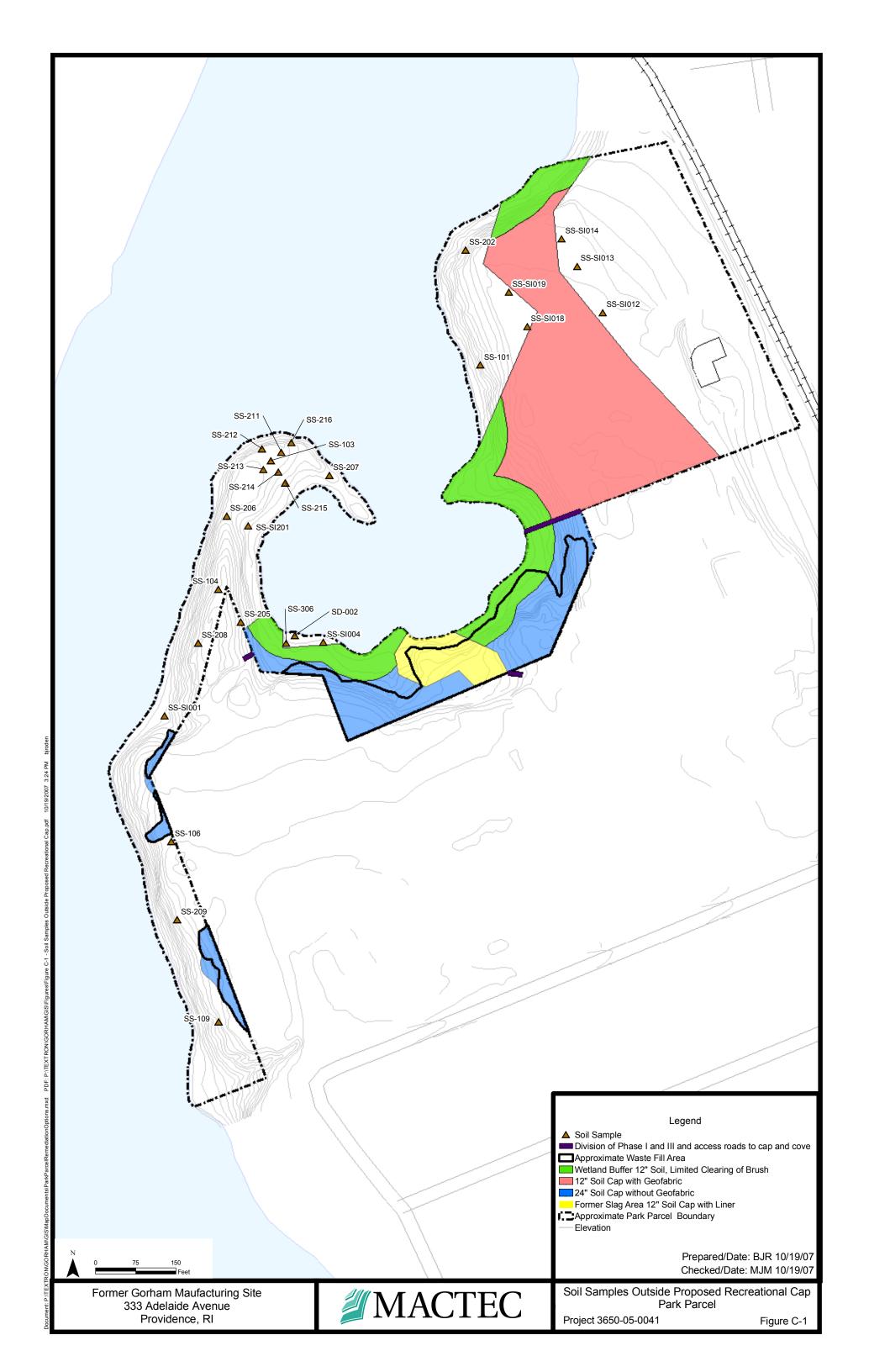
- A statistical approach may be proposed for determining compliance;
- No single sample result exceeds the soil objective by a factor of 5;
- No more than 10% of the individual sample results exceed the soil objective; and
- No single sample result exceeds any Upper Concentration Limit (UCL) as defined by Rule 8.07.

For chemicals with twenty or more samples, the statistical approach selected for determining compliance is that the arithmetic mean concentration for all samples is representative of potential exposures and if the arithmetic mean is below the RDEC and the data set also meets the specific criteria identified above, the data are in compliance with the RDEC. The arithmetic mean is calculated using all sample results, including one-half the reporting limit for non-detects. As shown in Table C-1, the arithmetic mean concentrations of the 13 detected PAH compounds, arsenic, copper, lead, and dioxin TEQ are all below the corresponding RDECs. Therefore, the compliance criteria for these compounds have been met.

In addition, the maximum detected concentrations and the maximum reporting limits for non-detects of arsenic and lead are below the RDEC. Obviously, for arsenic and lead, no single sample result exceeds the soil objective by a factor of 5; and no more than 10% of the individual sample results exceed the soil objective; and no single sample result exceeds any UCL as defined

by Rule 8.07. Therefore arsenic and lead concentrations in soil are in compliance with the RDECs.

Copper was detected in all samples but below the RDEC. Obviously, for copper, no single sample result exceeds the soil objective by a factor of 5; and no more than 10% of the individual sample results exceed the soil objective; and no single sample result exceeds any UCL as defined by Rule 8.07. Therefore copper concentrations in soil are in compliance with the RDECs.


For the detected PAHs, only three compounds (benzo(a)pyrene, benzo(b)fluoranthene, and chrysene) have at least one detected concentration that is greater than the RDEC. However, none of the detected concentrations are more than 5 times the corresponding RDEC. For all three compounds, there is only one detected concentration above the RDEC among 27 samples. Therefore, less than 10% of the samples had a detected concentration greater than the RDEC. Therefore the RIDEM compliance for these compounds is met.

For dioxin TEQ, the arithmetic mean concentration 2.1 parts per trillion (ppt) (2.1 x 10⁻⁶ milligrams per kilogram (mg/kg)) is below the calculated RDEC of 4.3 ppt. The maximum dioxin TEQ concentration is 8.5 ppt (not more than 5 times the RDEC) and only two of twenty samples (10%) have a concentration greater than the RDEC. Therefore, the compliance criteria identified above are met for dioxin TEQ in the portion of the Park Parcel that is outside the "Recreational Use" Cap footprint. Using USEPA computer software, the conservative (health protective) estimate of the average dioxin TEQ concentration was also calculated. The resulting 95% Upper Confidence Limit on the average (3.94 ppt) was also below the RDEC of 4.3 ppt. The documentation of the 95% Upper Confidence limit is shown in Table C-2.

As seen in Table C-1, none of the detected concentrations or reporting limits for any chemical parameters (including the PAH compounds) are above the UCL of 10,000 mg/kg for non-TPH parameters and the TPH concentrations and reporting limits are well below the UCL of 30,000 mg/kg.

In conclusion, the analytical data for soils outside the footprint of the proposed "Recreational Use" Cap have been compiled, summarized, and compared to RDECs and UCLs. Using the criteria contained in Section 8.10 of the Remediation Regulations, the soils in areas outside the proposed "Recreational Use" Cap have arithmetic mean chemical concentrations that are below

the RDECs, no single concentration is greater than 5 times the corresponding RDECs, not more than 10% of the samples have concentrations greater than the RDECs, and no concentrations of chemicals in soil are greater than the soil UCLs. Therefore, the soils outside the proposed "Recreational Use" Cap are in compliance with the RDECs. In the absence of any recreational land use criteria, the RDECs are health protective criteria for recreational land use. The exposure assumptions used to calculate the RDECs would clearly overestimate likely recreational exposures. Therefore, the soils outside the proposed "Recreational Use" Cap represent a health protective condition for recreational land use.

Former Gorham Manufacturing Site 333 Adelaide Avenue Providence, Rhode Island

Parameter	Frequency of Detection	Range of Nondetects	Range of Detected Concentrations	Average of Samples	DEC Leachabiliit Residential (ppm) (ppm)	SD-002 y GMSD0020 0101XX 10/13/1994	SD-002 SD-002D 3/12/2001
Volatile Organics (mg/kg)	2010011011	- range of remadests	range of Detected Consonitiations	- Campios	(PP) (PP)	10/10/1001	0
Acetone	2 / 5	0.0462 - 0.168	0.209 - 0.313	0.14	7800		
Semivolatile Organics (mg/kg)				-			
Anthracene	2 / 27	0.0261 - 3.3	0.0572 - 0.0811	0.177	35	3.3 U	0.468 U
Benzo(a)anthracene	10 / 27	0.0261 - 3.3	0.0332 - 0.623	0.218	0.9	3.3 U	0.468 U
Benzo(a)pyrene	11 / 27	0.0261 - 3.3	0.0273 - 0.694	0.226	0.4	3.3 U	0.468 U
Benzo(b)fluoranthene	10 / 27	0.0261 - 3.3	0.0867 - 1.07	0.252	0.9	3.3 U	0.468 U
Benzo(g,h,i)perylene	6 / 27	0.0261 - 3.3	0.0283 - 0.061	0.180	0.8	3.3 U	0.468 U
Benzo(k)fluoranthene	9 / 27	0.0261 - 3.3	0.0638 - 0.192	0.209	0.9	3.3 U	0.468 U
Chrysene	11 / 27	0.0261 - 3.3	0.0284 - 0.749	0.230	0.4	3.3 U	0.468 U
Dibenzo(a,h)anthracene	2 / 27	0.0261 - 3.3	0.0277 - 0.033	0.174	0.4	3.3 U	0.468 U
Fluoranthene	12 / 27	0.0261 - 3.3	0.0626 - 1.74	0.363	20	3.3 U	0.468 U
Fluorene	1 / 27	0.0261 - 3.3	0.0438 - 0.0438	0.174	28	3.3 U	0.468 U
Indeno(1,2,3-cd)pyrene	7 / 27	0.0261 - 3.3	0.0293 - 0.0682	0.181	0.9	3.3 U	0.468 U
Phenanthrene	10 / 27	0.0261 - 3.3	0.0364 - 0.906	0.239	40	3.3 U	0.468 U
Pyrene	12 / 27	0.0261 - 0.611	0.0375 - 6.92	0.475	13	6.92	0.468 U
Pesticide/PCBs (mg/kg)							
4,4'-DDE	3 / 14	0.00507 - 0.0061	0.0104 - 0.0165	0.0051	1.9		
4,4'-DDT	5 / 14	0.00507 - 0.0061	0.0085 - 0.0253	0.0077	1.9		
delta-BHC	1 / 14	0.00507 - 0.00617	0.00804 - 0.00804	0.0032	0.5		
Endosulfan II	1 / 14	0.00507 - 0.00617	0.0135 - 0.0135	0.0036	470		
Endrin ketone	1 / 14	0.00507 - 0.00617	0.0131 - 0.0131	0.0035	23		
gamma-Chlordane	1 / 14	0.00507 - 0.00617	0.00736 - 0.00736	0.0031	1.8		
Inorganics (mg/kg)							
Arsenic	15 / 20	1 - 3.4	1.5 - 5.1	2.59	7	3	2.75
Barium	6 / 7	13.7 - 13.7	12.6 - 54.9	25.05	5500		
Beryllium	8 / 19	0.06 - 1	0.131 - 0.3	0.15	0.4	1 U	
Cadmium	1 / 19	0.6 - 1	1 - 1	0.458	39	1	
Chromium	17 / 19	3 - 4	4 - 75	10.03	390	75	
Copper	20 / 20		3 - 1260	89.9	3100	1260	25
Lead	17 / 20	6 - 7	6.8 - 153	33.45	150	153	40.3
Mercury	5 / 19	0.032 - 0.5	0.055 - 0.145	0.0595	23	0.5 U	
Nickel	19 / 19		3 - 23	6.40	1000	23	
Silver	11 / 19	0.6 - 1	0.81 - 58	5.581	200	58	
Zinc	19 / 19		8 - 1020	76.2	6000	1020	
Total Petroleum Hydrocarbons (mg/kg)							
Total Petroleum Hydrocarbons	4 / 6	26 - 27	42 - 142	53.42	500	59	
Dioxins/Furans (mg/kg)							
TEQ - Mammal	20 / 20		0.00000087 - 0.0000085	0.0000021	0.0000043		

DEC - Direct Exposure Criteria

TEQ - calculated using 2005 WHO TEFs.

Bolded values indicate a concentration greater than the RI RDEC.

mg/kg - milligrams per kilogram

Former Gorham Manufacturing Site 333 Adelaide Avenue Providence, Rhode Island

	SS-101	1	SS-103	SS-103	SS-104		SS-106		SS-109	
	GMSS101X		GMSS103X	GMSS103X	GMSS104X	SS-104	GMSS106X	SS-106	GMSS109X	SS-109
	01LDXX	SS-101 SS-	01LDXX	01RAXX	01LDXX	SS10401	01LDXX	SS10601	01LDXX	SS10901
Parameter		SI101 6/8/2006		4/15/1999	5/27/1998	2/28/2007	5/27/1998	2/28/2007	5/27/1998	2/28/2007
Volatile Organics (mg/kg)	0/21/1000	01101 0/0/2000	0/21/1000	17 107 1000	0/21/1000	2/20/2001	0/2//1000	2/20/2001	0/2//1000	2/20/2007
Acetone	0.168 U				0.209		0.313		0.161 U	
Semivolatile Organics (mg/kg)	0.100 0				0.200		0.010		0.1010	
Anthracene		0.028 U		0.388 U	0.359 U		0.344 U		0.34 U	
Benzo(a)anthracene		0.108		0.388 U	0.359 U		0.344 U		0.34 U	
Benzo(a)pyrene		0.137		0.388 U	0.359 U		0.344 U		0.34 U	
Benzo(b)fluoranthene		0.174		0.388 U	0.359 U		0.344 U		0.34 U	
Benzo(g,h,i)perylene		0.0342		0.388 U	0.359 U		0.344 U		0.34 U	
Benzo(k)fluoranthene		0.128		0.388 U	0.359 U		0.344 U		0.34 U	
Chrysene		0.141		0.388 U	0.359 U		0.344 U		0.34 U	
Dibenzo(a,h)anthracene		0.028 U		0.388 U	0.359 U		0.344 U		0.34 U	
Fluoranthene		0.429		0.388 U	0.359 U		0.344 U		0.34 U	
Fluorene		0.028 U		0.388 U	0.359 U		0.344 U		0.34 U	
Indeno(1,2,3-cd)pyrene		0.0392		0.388 U	0.359 U		0.344 U		0.34 U	
Phenanthrene		0.123		0.388 U	0.359 U		0.344 U		0.34 U	
Pyrene		0.267		0.388 U	0.359 U		0.344 U		0.34 U	
Pesticide/PCBs (mg/kg)										
4,4'-DDE		0.0061 U								
4,4'-DDT		0.0061 U								
delta-BHC		0.0061 U								
Endosulfan II		0.0061 U								
Endrin ketone		0.0061 U								
gamma-Chlordane		0.0061 U								
Inorganics (mg/kg)										
Arsenic	4		5		3		3		1 U	
Barium										
Beryllium	0.2 U		0.2 U		0.2 U		0.2 U		0.2 U	
Cadmium	1 U		1 U		1 U		1 U		1 U	
Chromium	7		7		5		6		3 U	
Copper	12		13		6		42		3	
Lead	23		29		9		23		6 U	
Mercury	0.1 U		0.1		0.1 U		0.1		0.1 U	
Nickel	5		4		5		6		3	
Silver	2		1		1 U		14		1 U	
Zinc	11		10		11		17		11	
Total Petroleum Hydrocarbons (mg/kg)										
Total Petroleum Hydrocarbons	42		142		27 U		51		26 U	
Dioxins/Furans (mg/kg)										
TEQ - Mammal	DE0 D: 1	0.0000016				0.0000009		0.0000020		0.0000010

DEC - Direct Exposure Criteria

TEQ - calculated using 2005 WHO TEFs.

Bolded values indicate a concentration greater than the RI RDEC.

mg/kg - milligrams per kilogram

Former Gorham Manufacturing Site 333 Adelaide Avenue Providence, Rhode Island

	SS-202		SS-205		SS-206		SS-207		SS-208	
	GMSS202X	SS-202 SS-	GMSS205X	SS-205 SS-	GMSS206X	SS-206 SS-	GMSS207X	SS-207 SS-	GMSS208X	SS-208 SS-
	01RAXX	SI202	01RAXX	SI205	01RAXX	SI206	01RAXX	SI207	01RAXX	SI208
Parameter	12/11/1998	6/7/2006	12/11/1998	6/8/2006	12/11/1998	6/6/2006	12/11/1998	6/6/2006	12/11/1998	6/6/2006
Volatile Organics (mg/kg)		0.11.200		5.5.25		0.0.00		0.0.00		0.0.200
Acetone										
Semivolatile Organics (mg/kg)										
Anthracene		0.0572		0.0268 U		0.611 U		0.0277 U		0.0268 U
Benzo(a)anthracene	i	0.203		0.0268 U		0.611 U		0.0277 U		0.0615
Benzo(a)pyrene		0.203		0.0273		0.611 U		0.0277 U		0.0712
Benzo(b)fluoranthene		0.24		0.0268 U		0.611 U		0.0277 U		0.0867
Benzo(g,h,i)perylene		0.0578		0.0268 U		0.611 U		0.0277 U		0.0268 U
Benzo(k)fluoranthene		0.183		0.0268 U		0.611 U		0.0277 U		0.0728
Chrysene		0.229		0.0284		0.611 U		0.0277 U		0.0877
Dibenzo(a,h)anthracene		0.033		0.0268 U		0.611 U		0.0277 U		0.0268 U
Fluoranthene		0.646		0.0626		0.63		0.0277 U		0.196
Fluorene		0.0295 U		0.0268 U		0.611 U		0.0277 U		0.0268 U
Indeno(1,2,3-cd)pyrene		0.0636		0.0268 U		0.611 U		0.0277 U		0.0268 U
Phenanthrene		0.3		0.0268 U		0.611 U		0.0277 U		0.108
Pyrene		0.45		0.0375		0.611 U		0.0277 U		0.133
Pesticide/PCBs (mg/kg)										
4,4'-DDE		0.00578 U		0.00579 U		0.0136		0.00579 U		0.00559 U
4,4'-DDT		0.0085		0.00579 U		0.0253 P		0.00579 U		0.00559 U
delta-BHC		0.00578 U		0.00579 U		0.00617 U		0.00804 P		0.00559 U
Endosulfan II		0.00578 U		0.00579 U		0.00617 U		0.00579 U		0.00559 U
Endrin ketone		0.00578 U		0.00579 U		0.00617 U		0.00579 U		0.00559 U
gamma-Chlordane		0.00578 U		0.00579 U		0.00617 U		0.00579 U		0.00559 U
Inorganics (mg/kg)										
Arsenic	2.9		2.2		2.4		3.1		3.4	
Barium										
Beryllium	0.2		0.2		0.2		0.2		0.2	
Cadmium	1 U		1 U		1 U		1 U		1 U	
Chromium	5		4 U		4		4		4	
Copper	31		15		10		27		3	
Lead	61		22		25		98		7 U	
Mercury	0.07 U		0.07 U		0.07 U		0.07		0.06 U	
Nickel	8		3		3		3		3	
Silver	5		1 U		1		2		1 U	
Zinc	143		10		8		10		9	
Total Petroleum Hydrocarbons (mg/kg)										
Total Petroleum Hydrocarbons										
Dioxins/Furans (mg/kg)										
TEQ - Mammal		0.0000020		0.0000010		0.0000085		0.0000009		0.0000012

DEC - Direct Exposure Criteria

TEQ - calculated using 2005 WHO TEFs.

Bolded values indicate a concentration greater than the RI RDEC.

mg/kg - milligrams per kilogram

Former Gorham Manufacturing Site 333 Adelaide Avenue Providence, Rhode Island

	SS-209		SS-211	SS-212		SS-213	SS-214	SS-215		SS-216	SS-306
	GMSS209X	SS-209 SS-	GMSS211X	GMSS212X	SS-212	GMSS213X	GMSS214X	GMSS215X	SS-215	GMSS216X	SS306XX01
	01RAXX	SI209	01RAXX	01RAXX	SS21201	01RAXX	01RAXX	01RAXX	SS21501	01RAXX	0-1
Parameter	12/11/1998	6/6/2006	12/11/1998	12/11/1998	2/28/2007	12/11/1998	12/11/1998	12/11/1998	2/28/2007	12/11/1998	8/6/2002
Volatile Organics (mg/kg)											
Acetone											
Semivolatile Organics (mg/kg)											
Anthracene		0.0283 U	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Benzo(a)anthracene		0.0736	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Benzo(a)pyrene		0.0923	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Benzo(b)fluoranthene		0.131	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Benzo(g,h,i)perylene		0.0283	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Benzo(k)fluoranthene		0.0861	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Chrysene		0.102	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Dibenzo(a,h)anthracene		0.0283 U	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Fluoranthene		0.289	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Fluorene		0.0283 U	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Indeno(1,2,3-cd)pyrene		0.03	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Phenanthrene		0.077	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Pyrene		0.175	0.375 U	0.37 U		0.375 U	0.379 U	0.379 U		0.383 U	0.337 U
Pesticide/PCBs (mg/kg)											
4,4'-DDE		0.00528 U									
4,4'-DDT		0.00528 U									
delta-BHC		0.00528 U									
Endosulfan II		0.00528 U									
Endrin ketone		0.00528 U									
gamma-Chlordane		0.00528 U									
Inorganics (mg/kg)											
Arsenic	4.1										3.4 U
Barium											13.7 U
Beryllium	0.3										0.131
Cadmium	1 U										0.687 U
Chromium	5										7.84
Copper	24										87.6
Lead	26										35.5
Mercury	0.06 U										0.0606 U
Nickel	4										3.67
Silver	3										4.81
Zinc	16										29.5
Total Petroleum Hydrocarbons (mg/kg)											
Total Petroleum Hydrocarbons											
Dioxins/Furans (mg/kg)											
TEQ - Mammal	DE0 B: 1	0.0000037			0.0000009				0.0000011		

DEC - Direct Exposure Criteria

TEQ - calculated using 2005 WHO TEFs.

Bolded values indicate a concentration greater than the RI RDEC.

mg/kg - milligrams per kilogram

Former Gorham Manufacturing Site 333 Adelaide Avenue Providence, Rhode Island

	1				1	1	,	
	SS-SI001	SS-SI004	SS-SI012 SS-	SS-SI013 SS	SS-SI014 SS-	SS-SI018 SS-	SS-SI019 SS-	SSSI-201
	SS-SI001	SS-SI004	SI012	SI013	SI014	SI018	SI019	SSSI20101
Parameter	6/6/2006	6/5/2006	6/8/2006	6/8/2006	6/8/2006	6/8/2006	6/8/2006	2/28/2007
Volatile Organics (mg/kg)								
Acetone		0.0462 U						
Semivolatile Organics (mg/kg)	İ							
Anthracene	0.581 U	0.0299 U	0.0277 U	0.0811	0.0261 U	0.0272 U	0.0264 U	
Benzo(a)anthracene	0.623	0.109	0.177	0.193	0.0261 U	0.0717	0.0332	
Benzo(a)pyrene	0.694	0.132	0.211	0.165	0.0261 U	0.0869	0.0585	
Benzo(b)fluoranthene	1.07	0.191	0.244	0.222	0.0261 U	0.125	0.0886	
Benzo(g,h,i)perylene	0.581 U	0.0401	0.061	0.0513	0.0261 U	0.0272 U	0.0264 U	
Benzo(k)fluoranthene	0.581 U	0.139	0.192	0.157	0.0261 U	0.0934	0.0638	
Chrysene	0.749	0.132	0.184	0.195	0.0261 U	0.0766	0.0427	
Dibenzo(a,h)anthracene	0.581 U	0.0299 U	0.0277	0.027 U	0.0261 U	0.0272 U	0.0264 U	
Fluoranthene	1.74	0.493 E	0.495	0.504	0.0261 U	0.273	0.116	
Fluorene	0.581 U	0.0299 U	0.0277 U	0.0438	0.0261 U	0.0272 U	0.0264 U	
ndeno(1,2,3-cd)pyrene	0.581 U	0.0418	0.0682	0.0573	0.0261 U	0.0293	0.0264 U	
Phenanthrene	0.906	0.12	0.0621	0.413	0.0261 U	0.0565	0.0364	
Pyrene	1.08	0.207	0.294	0.438	0.0261 U	0.171	0.0828	
Pesticide/PCBs (mg/kg)	İ							
4,4'-DDE	0.0165	0.0104 P	0.00528 U	0.00514 U	0.00507 U	0.00549 U	0.00554 U	
4,4'-DDT	0.0161	0.0237 P	0.00976	0.00514 U	0.00507 U	0.00549 U	0.00554 U	
delta-BHC	0.0061 U	0.00607 U	0.00528 U	0.00514 U	0.00507 U	0.00549 U	0.00554 U	
Endosulfan II	0.0135	0.00607 U	0.00528 U	0.00514 U	0.00507 U	0.00549 U	0.00554 U	
Endrin ketone	0.0061 U	0.0131 P	0.00528 U	0.00514 U	0.00507 U	0.00549 U	0.00554 U	
gamma-Chlordane	0.00736 P	0.00607 U	0.00528 U	0.00514 U	0.00507 U	0.00549 U	0.00554 U	
norganics (mg/kg)								
Arsenic		5.1	1.9	1.5 U	1.5	1.5 U	1.5 U	
Barium		12.6	12.7	54.9	36.1	29.4	22.8	
Beryllium		0.19	0.06 U	0.31 U	0.06 U	0.06 U	0.06 U	
Cadmium		0.67 U	0.61 U	0.61 U	0.6 U	0.6 U	0.61 U	
Chromium		6.1	7.4	10.8	9.8	11.8	11.4	
Copper		130	8.4	26.3	22.8	28.1	23.7	
Lead		74.7	15.4	8.5	9.3	6.8	6.1 U	
Mercury		0.145	0.055	0.034 U	0.032 U	0.034 U	0.032 U	
Nickel		4.6	3.3	11.1	9.3	10.4	9.3	
Silver		11.2	0.81	0.61 U	0.6 U	0.6 U	0.61 U	
Zinc		19.9	16.2	29.4	27.3	26.2	23.6	
Total Petroleum Hydrocarbons (mg/kg)								
Total Petroleum Hydrocarbons								
	1			1	i e	i		
Dioxins/Furans (mg/kg)								

DEC - Direct Exposure Criteria

TEQ - calculated using 2005 WHO TEFs.

Bolded values indicate a concentration greater than the RI RDEC.

mg/kg - milligrams per kilogram

Table C-2 95 Percent UCLs for Uncapped Park Parcel Soils Data

Former Gorham Manufacturing Site 333 Adelaide Avenue Providence, Rhode Island

							DEC
Damanatan	Frequency of	Dance of Nondatasta	Dance of Datastad Consentrations	Average of	050/ 1101 (4)	Otaliatia	Residential
Parameter	Detection	Range of Nondetects	Range of Detected Concentrations	Samples	95% UCL (1)	Statistic	(ppm)
Volatile Organics (mg/kg) Acetone	2 / 5	0.0462 - 0.168	0.209 - 0.313	0.14	NC		7800
	2 / 5	0.0462 - 0.168	0.209 - 0.313	0.14	NC		7800
Semivolatile Organics (mg/kg)	0 / 0=		0.0550	2 1	0.0044	050/1/04/0/ 5	
Anthracene	2 / 27	0.0261 - 3.3	0.0572 - 0.0811	0.177	0.0811	95% KM (% Bootstrap) UCL	35
Benzo(a)anthracene	10 / 27	0.0261 - 3.3	0.0332 - 0.623	0.218	0.162	95% KM (t) UCL	0.9
Benzo(a)pyrene	11 / 27	0.0261 - 3.3	0.0273 - 0.694	0.226	0.177	95% KM (t) UCL	0.4
Benzo(b)fluoranthene	10 / 27	0.0261 - 3.3	0.0867 - 1.07	0.252	0.253	95% KM (% Bootstrap) UCL	0.9
Benzo(g,h,i)perylene	6 / 27	0.0261 - 3.3	0.0283 - 0.061	0.180	0.0475	95% KM (% Bootstrap) UCL	0.8
Benzo(k)fluoranthene	9 / 27	0.0261 - 3.3	0.0638 - 0.192	0.209	0.138	95% KM (% Bootstrap) UCL	0.9
Chrysene	11 / 27	0.0261 - 3.3	0.0284 - 0.749	0.230	0.186	95% KM (t) UCL	0.4
Dibenzo(a,h)anthracene	2 / 27	0.0261 - 3.3	0.0277 - 0.033	0.174	0.0292	95% KM (t) UCL	0.4
Fluoranthene	12 / 27	0.0261 - 3.3	0.0626 - 1.74	0.363	0.426	95% KM (t) UCL	20
Fluorene	1 / 27	0.0261 - 3.3	0.0438 - 0.0438	0.174	NC		28
Indeno(1,2,3-cd)pyrene	7 / 27	0.0261 - 3.3	0.0293 - 0.0682	0.181	0.0483	95% KM (% Bootstrap) UCL	0.9
Phenanthrene	10 / 27	0.0261 - 3.3	0.0364 - 0.906	0.239	0.205	95% KM (t) UCL	40
Pyrene	12 / 27	0.0261 - 0.611	0.0375 - 6.92	0.475	1.002	95% KM (BCA) UCL	13
Pesticide/PCBs (mg/kg)						, ,	
4,4'-DDE	3 / 14	0.00507 - 0.0061	0.0104 - 0.0165	0.0051	NC		1.9
4,4'-DDT	5 / 14	0.00507 - 0.0061	0.0085 - 0.0253	0.0077	NC		1.9
delta-BHC	1 / 14	0.00507 - 0.00617	0.00804 - 0.00804	0.0032	NC		0.5
Endosulfan II	1 / 14	0.00507 - 0.00617	0.0135 - 0.0135	0.0036	NC		470
Endrin ketone	1 / 14	0.00507 - 0.00617	0.0131 - 0.0131	0.0035	NC		23
gamma-Chlordane	1 / 14	0.00507 - 0.00617	0.00736 - 0.00736	0.0031	NC		1.8
Inorganics (mg/kg)							
Arsenic	15 / 20	1 - 3.4	1.5 - 5.1	2.59	3.255	95% KM (% Bootstrap) UCL	7
Barium	6 / 7	13.7 - 13.7	12.6 - 54.9	25.05	NC	(, μ,	5500
Beryllium	8 / 19	0.06 - 1	0.131 - 0.3	0.15	NC		0.4
Cadmium	1 / 19	0.6 - 1	1 - 1	0.458	NC		39
Chromium	17 / 19	3 - 4	4 - 75	10.03	NC		390
Copper	20 / 20		3 - 1260	89.9	706.3	99% Chebyshev (Mean, Sd) UCL	3100
Lead	17 / 20	6 - 7	6.8 - 153	33.45	50.53	95% KM (BCA) UCL	150
Mercury	5 / 19	0.032 - 0.5	0.055 - 0.145	0.0595	NC NC	007011111 (2071) 002	23
Nickel	19 / 19	0.002 0.0	3 - 23	6.40	NC		1000
Silver	11 / 19	0.6 - 1	0.81 - 58	5.581	NC		200
Zinc	19 / 19	0.0	8 - 1020	76.2	NC		6000
Total Petroleum Hydrocarbons (mg/kg)	19 / 19		0 - 1020	10.2	INC		0000
Total Petroleum Hydrocarbons (mg/kg)	4 / 6	26 - 27	42 - 142	53.42	NC		500
	4 / 0	20 - 21	42 - 142	55.42	INC		500
Dioxins/Furans (mg/kg)	20 / 20		0.0000007 0.000005	0.0000034	0.0000000	OFO/ Chahyahay (Maan Cd) LICI	0.0000042
TEQ - Mammal	20 / 20		0.00000087 - 0.0000085	0.0000021	0.0000039	95% Chebyshev (Mean, Sd) UCL	0.0000043

^{(1) - 95%} Upper Confidence Limit (UCL) calculated using ProUCL version 4.0 using nondetects.

DEC - Direct Exposure Criteria

TEQ - calculated using 2005 WHO TEFs.

mg/kg - milligrams per kilogram NC - Not calculated

	eneral UCL Statistics f	or Data Sets	with Non-Detects		
User Selected Options From File P:	\TEXTRON\GORHAM\	Databasa\D-a	NICL-ScilOutoidoCo	n wet	
Full Precision OF		Database	JUCE-SoliOutsideCa	p.wst	
Confidence Coefficient 95					
Number of Bootstrap Operations 20					
Number of Bootstrap Operations 20	000				
Anthracene					
		General Stat	tistics		
Numb	per of Valid Samples	27		Number of Detected Data	2
Number	r of Unique Samples	2		Number of Non-Detect Data	25
				Percent Non-Detects	92.59%
Raw Statis	stics		L	og-transformed Statistics	
	Minimum Detected	0.0572		Minimum Detected	-2.861
	Maximum Detected	0.0811		Maximum Detected	-2.512
	Mean of Detected	0.0692		Mean of Detected	-2.687
	SD of Detected	0.0169		SD of Detected	0.247
N	Minimum Non-Detect	0.0261		Minimum Non-Detect	-3.646
M	laximum Non-Detect	3.3		Maximum Non-Detect	1.194
Note: Data have multiple DLs - Use of	FKM Method is recomn	nended		Number treated as Non-Detect	27
For all methods (except KM, DL/2, and	d ROS Methods),			Number treated as Detected	C
Observations < Largest ND are treated				O. 1 D. N. D D	100.000/
-		UCL Statis		Single DL Non-Detect Percentage	100.00%
Normal Distribution Test with Shapir				ibution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	nly
Normal Distribution Test with Shapi	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value	y 1	Lognormal Distr	ibution Test with Detected Values O Shapiro Wilk Test Statistic	Only 1
Normal Distribution Test with Shapir 5% Shapir	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level	y 1	Lognormal Distr	ibution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	Only 1
Normal Distribution Test with Shapii 5% Shapir Data not Normal at 5% 3	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level	y 1	Lognormal Distr	ibution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level	Only 1
Normal Distribution Test with Shapii 5% Shapir Data not Normal at 5% 3	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level	y 1	Lognormal Distr	ibution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution	Only 1 N/A
Normal Distribution Test with Shapii 5% Shapir Data not Normal at 5% 3	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level	y 1 N/A	Lognormal Distr	ibution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method	only 1 N/A -2.604
Normal Distribution Test with Shapii 5% Shapir Data not Normal at 5% 3	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level I Distribution Substitution Method Mean	0.177	Lognormal Distr	ibution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean	Only 1 N/A -2.604 1.419
Normal Distribution Test with Shapii 5% Shapir Data not Normal at 5% 3	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL	0.177 0.31	Lognormal Distr	ibution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD	Only 1 N/A -2.604 1.419
Normal Distribution Test with Shapii 5% Shapir Data not Normal at 5% 3 Assuming Normal DL/2	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL timate(MLE) Method	0.177 0.31 0.278	Lognormal Distr	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL	Only 1 N/A -2.604 1.419
Normal Distribution Test with Shapir 5% Shapir Data not Normal at 5% \$ Assuming Normal DL/2 Maximum Likelihood Est	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL timate(MLE) Method	0.177 0.31 0.278	Lognormal Distr	ibution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method	-2.604 1.419 0.623
Normal Distribution Test with Shapir 5% Shapir Data not Normal at 5% \$ Assuming Normal DL/2 Maximum Likelihood Est	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL timate(MLE) Method	0.177 0.31 0.278	Lognormal Distr	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	-2.604 1.419 0.623
Normal Distribution Test with Shapir 5% Shapir Data not Normal at 5% \$ Assuming Normal DL/2 Maximum Likelihood Est	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL timate(MLE) Method	0.177 0.31 0.278	Lognormal Distr	ibution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	-2.604 1.419 0.623 N/A N/A
Normal Distribution Test with Shapir 5% Shapir Data not Normal at 5% \$ Assuming Normal DL/2 Maximum Likelihood Est	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL timate(MLE) Method	0.177 0.31 0.278	Lognormal Distr	ibution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale	-2.604 1.419 0.623 N/A N/A N/A
Normal Distribution Test with Shapir 5% Shapir Data not Normal at 5% \$ Assuming Normal DL/2 Maximum Likelihood Est	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL timate(MLE) Method	0.177 0.31 0.278	Lognormal Distr	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale	-2.604 1.419 0.623 N/A N/A N/A
Normal Distribution Test with Shapir 5% Shapir Data not Normal at 5% \$ Assuming Normal DL/2 Maximum Likelihood Est	n Detected Values Onless of Wilk Test Statistic Test Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL timate(MLE) Method converge properly	0.177 0.31 0.278	Data not Lo	ibution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale 95% Percentile Bootstrap UCL	-2.604 1.419 0.623 N/A N/A N/A N/A N/A
Normal Distribution Test with Shapir 5% Shapir Data not Normal at 5% \$ Assuming Normal DL/2 Maximum Likelihood Est MLE method failed to c	n Detected Values Onless of Wilk Test Statistic Test Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL timate(MLE) Method converge properly	0.177 0.31 0.278	Data not Lo Assu Data Distribu	ibution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value ognormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	0nly 1 N/A -2.604 1.419 0.623 N/A N/A N/A N/A N/A N/A
Normal Distribution Test with Shapir 5% Shapir Data not Normal at 5% \$ Assuming Normal DL/2 Maximum Likelihood Est MLE method failed to c	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL timate(MLE) Method converge properly	0.177 0.31 0.278	Data not Lo Assu Data Distribu	ibution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Degnormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	0nly 1 N/A -2.604 1.419 0.623 N/A N/A N/A N/A N/A N/A
Normal Distribution Test with Shapir 5% Shapir Data not Normal at 5% \$ Assuming Normal DL/2 Maximum Likelihood Est MLE method failed to c	n Detected Values Onless of Wilk Test Statistic To Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL timate(MLE) Method converge properly In Detected Values On Star (bias corrected)	0.177 0.31 0.278 N/A	Data not Lo Assu Data Distribu	ibution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Degnormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	0nly 1 N/A -2.604 1.419 0.623 N/A N/A N/A N/A N/A N/A
Normal Distribution Test with Shapir 5% Shapir Data not Normal at 5% \$ Assuming Normal DL/2 Maximum Likelihood Est MLE method failed to c	n Detected Values Onl ro Wilk Test Statistic ro Wilk Critical Value Significance Level I Distribution Substitution Method Mean SD 95% DL/2 (t) UCL timate(MLE) Method converge properly In Detected Values On Star (bias corrected) Theta Star	y 1 N/A	Data not Lo Assu Data Distribu Data do not fo	ibution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Degnormal at 5% Significance Level ming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	0nly 1 N/A -2.604 1.419 0.623 N/A N/A N/A N/A N/A N/A

	KM) Method	lan-Meier (k	Kap		N/A	ritical Value	5% A-D C		
0.0592	Mean				N/A	est Statistic	K-S T		
0.00661	SD				N/A	ritical Value	5% K-S C		

Data not Gamma Distributed at 5% Sig

MLE method failed to converge properly		Mean in Log Scale	-2.6
ga .aaa ta aanna ga proponij		SD in Log Scale	0.722
		Mean in Original Scale	0.1
		SD in Original Scale	0.114
		95% Percentile Bootstrap UCL	0.14
		95% BCA Bootstrap UCL	0.164
Gamma Distribution Test with Detected Values Or	nly	Data Distribution Test with Detected Values Only	
k star (bias corrected)	1.222	Data appear Gamma Distributed at 5% Significance L	.evel
Theta Star	0.135		
nu star	24.44		
A-D Test Statistic	0.494	Nonparametric Statistics	
5% A-D Critical Value	0.738	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.738	Mean	0.114
5% K-S Critical Value	0.271	SD	0.118
Data appear Gamma Distributed at 5% Significance	Level	SE of Mean	0.0277
		95% KM (t) UCL	0.162
Assuming Gamma Distribution		95% KM (z) UCL	0.16
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.158
Minimum	0.00782	95% KM (bootstrap t) UCL	0.183
Maximum	0.623	95% KM (BCA) UCL	0.17
Mean	0.171	95% KM (Percentile Bootstrap) UCL	0.166
Median	0.203	95% KM (Chebyshev) UCL	0.23
SD	0.123	97.5% KM (Chebyshev) UCL	0.288
k star	1.309	99% KM (Chebyshev) UCL	0.39
Theta star	0.131	Potential UCL a to Use	
Nu star	70.66	Potential UCLs to Use 95% KM (t) UCL	0.162
AppChi2 95% Gamma Approximate UCL	52.31 0.231	95% KW (I) UCL	0.102
95 % Gamina Approximate OCL	0.231		
95% Adjusted Camma LICI			
95% Adjusted Gamma UCL te: DL/2 is not a recommended method.	0.200		
-	0.233		
te: DL/2 is not a recommended method. nzo(a)pyrene	General St		
nzo(a)pyrene Number of Valid Samples	General St	Number of Detected Data	
te: DL/2 is not a recommended method. nzo(a)pyrene	General St	Number of Detected Data Number of Non-Detect Data	16
nzo(a)pyrene Number of Valid Samples	General St	Number of Detected Data	16
nzo(a)pyrene Number of Valid Samples Number of Unique Samples	General St	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	16
Number of Valid Samples Number of Unique Samples Raw Statistics	General St	Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics	10 59.26%
Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected	General St 27 11 0.0273	Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected	59.26% -3.60
Raw Statistics Minimum Detected Maximum Detected	General St 27 11 0.0273 0.694	Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected	-3.60° -0.369
Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected Maximum Detected Mean of Detected	0.0273 0.694 0.171	Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected	-3.60° -0.369 -2.113
Raw Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected	0.0273 0.694 0.171	Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected	-3.60° -0.360° -2.113° 0.834°
Number of Valid Samples Number of Unique Samples Raw Statistics Minimum Detected Maximum Detected Mean of Detected	0.0273 0.694 0.171 0.183 0.0261	Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected	-3.60 -0.369 -2.113 -3.640
Number of Valid Samples Number of Unique Samples Number of Unique Samples Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect	0.0273 0.694 0.171	Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect	-3.60° -0.369 -2.113 0.834 -3.640
Raw Statistics Raw Statistics Minimum Detected Mean of Detected SD of Detected Maximum Non-Detect Maximum Non-Detect	0.0273 0.694 0.171 0.183 0.0261	Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect	-3.601 -0.365 -2.113 0.834 -3.646 1.194
Number of Valid Samples Number of Unique Samples Number of Unique Samples Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect	0.0273 0.694 0.171 0.183 0.0261	Number of Detected Data Number of Non-Detect Data Percent Non-Detects Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect	-3.601 -0.365 -2.113 0.834 -3.646 1.194

	1		
	UCL Stat	istics	
Normal Distribution Test with Detected Values Or		Lognormal Distribution Test with Detected Values O	nlv
Shapiro Wilk Test Statistic	0.653	Shapiro Wilk Test Statistic	0.967
5% Shapiro Wilk Critical Value	0.85	5% Shapiro Wilk Critical Value	0.85
Data not Normal at 5% Significance Level	0.00	Data appear Lognormal at 5% Significance Level	0.00
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.226	Mean	-1.951
SD	0.311	SD	0.999
95% DL/2 (t) UCL	0.328	95% H-Stat (DL/2) UCL	0.607
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	-2.434
		SD in Log Scale	0.692
		Mean in Original Scale	0.115
		SD in Original Scale	0.125
		95% Percentile Bootstrap UCL	0.158
		95% BCA Bootstrap UCL	0.183
'			
Gamma Distribution Test with Detected Values Or	nly	Data Distribution Test with Detected Values Only	
k star (bias corrected)	1.221	Data appear Gamma Distributed at 5% Significance L	.evel
Theta Star	0.14		
nu star	26.87		
A-D Test Statistic	0.487	Nonparametric Statistics	
5% A-D Critical Value	0.742	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.742	Mean	0.126
5% K-S Critical Value	0.259	SD	0.129
Data appear Gamma Distributed at 5% Significance	Level	SE of Mean	0.0298
Accuming Commo Dietribution		95% KM (t) UCL 95% KM (z) UCL	0.177
Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.175 0.174
Minimum	0	95% KM (bootstrap t) UCL	0.174
Maximum	0.694	95% KM (BCA) UCL	0.200
Mean	0.094	95% KM (Percentile Bootstrap) UCL	0.179
Median	0.171	95% KM (Chebyshev) UCL	0.179
SD	0.133	97.5% KM (Chebyshev) UCL	0.230
k star	0.604	99% KM (Chebyshev) UCL	0.422
Theta star	0.283	33 % (Chebyshev) GGE	0.722
Nu star	32.62	Potential UCLs to Use	
AppChi2	20.57	95% KM (t) UCL	0.177
95% Gamma Approximate UCL	0.271	30 % Tull (t) 302	0.177
95% Adjusted Gamma UCL	0.279		
-			
zo(b)fluoranthene			
	General St	atistics	
Number of Valid Samples	27	Number of Detected Data	10
Number of Unique Samples	10	Number of Non-Detect Data	17
Number of offique Samples		Number of Non-Beteet Bata	

	Log-transformed Statistics		Raw Statistics
-2.445	Minimum Detected	0.0867	Minimum Detected
0.0677	Maximum Detected	1.07	Maximum Detected
-1.666	Mean of Detected	0.257	Mean of Detected
0.719	SD of Detected	0.291	SD of Detected
-3.646	Minimum Non-Detect	0.0261	Minimum Non-Detect
1.194	Maximum Non-Detect	3.3	Maximum Non-Detect
27	Number treated as Non-Detect	mended	Note: Data have multiple DLs - Use of KM Method is recom
0	Number treated as Detected		or all methods (except KM, DL/2, and ROS Methods),
100.00%	Single DL Non-Detect Percentage		Observations < Largest ND are treated as NDs
	ics	UCL Sta	
	Lognormal Distribution Test with Detected Values O	-	Normal Distribution Test with Detected Values Or
0.847	Shapiro Wilk Test Statistic	0.556	Shapiro Wilk Test Statistic
0.842	5% Shapiro Wilk Critical Value	0.842	5% Shapiro Wilk Critical Value
	Data appear Lognormal at 5% Significance Level		Data not Normal at 5% Significance Level
	Assuming Lognormal Distribution		Assuming Normal Distribution
	DL/2 Substitution Method		DL/2 Substitution Method
-1.867	Mean	0.252	Mean
1.066	SD	0.337	SD
0.627	95% H-Stat (DL/2) UCL	0.363	95% DL/2 (t) UCL
	Log ROS Method	N/A	Maximum Likelihood Estimate(MLE) Method
-2.072	Mean in Log Scale		MLE method failed to converge properly
0.63	SD in Log Scale		
0.163	Mean in Original Scale		
0.189	SD in Original Scale		
0.231	95% Percentile Bootstrap UCL		
0.281	95% BCA Bootstrap UCL		
	Data Distribution Test with Detected Values Only	ly	Gamma Distribution Test with Detected Values O
	Data appear Lognormal at 5% Significance Level	1.306	k star (bias corrected)
		0.197	Theta Star
		26.12	nu star
	Nonparametric Statistics	1.02	A-D Test Statistic
	Kaplan-Meier (KM) Method	0.737	5% A-D Critical Value
0.182	Mean	0.737	K-S Test Statistic
0.187	SD	0.27	5% K-S Critical Value
0.0408	SE of Mean		Data not Gamma Distributed at 5% Significance Le
0.252	95% KM (t) UCL		
0.25	95% KM (z) UCL		Assuming Gamma Distribution
0.25	95% KM (jackknife) UCL		Gamma ROS Statistics using Extrapolated Data
0.326	95% KM (bootstrap t) UCL	0.0225	Minimum
0.320	95% KM (BCA) UCL	1.07	Maximum
0.253	95% KM (Percentile Bootstrap) UCL	0.266	Mean
	95% KM (Chebyshev) UCL	0.244	Median
ሀ ኃላ	33 /0 Kivi (Cilebysilev) UCL		
	07 EV KM (Chahyahay) 1101	0.001	
0.36 0.437 0.589	97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.201 1.593	SD k star

Nu star	86.04	Potential UCLs to Use	
AppChi2	65.66	95% KM (t) UCL	0.252
95% Gamma Approximate UCL	0.349	95% KM (% Bootstrap) UCL	0.253
95% Adjusted Gamma UCL	0.355		
Note: DL/2 is not a recommended method.			
Benzo(g,h,i)perylene			
	General	Statistics	
Number of Valid Samples	27	Number of Detected Data	6
Number of Unique Samples	6	Number of Non-Detect Data	21
		Percent Non-Detects	77.78%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0283	Minimum Detected	-3.565
Maximum Detected	0.061	Maximum Detected	-2.797
Mean of Detected	0.0455	Mean of Detected	-3.129
SD of Detected	0.0133	SD of Detected	0.307
Minimum Non-Detect	0.0261	Minimum Non-Detect	-3.646
Maximum Non-Detect	3.3	Maximum Non-Detect	1.194
Note: Data have multiple DLs - Use of KM Method is recomm	nended	Number treated as Non-Detect	27
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	C
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	100.00%
Normal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic	0.934	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic	0.932
5% Shapiro Wilk Critical Value	0.788	5% Shapiro Wilk Critical Value	0.788
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.18	Mean	-2.47
SD	0.308	SD	1.286
95% DL/2 (t) UCL	0.281	95% H-Stat (DL/2) UCL	0.574
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	-3.578
<u> </u>		SD in Log Scale	0.347
		Mean in Original Scale	0.0297
		SD in Original Scale	0.0115
		95% Percentile Bootstrap UCL	0.0336
		95% BCA Bootstrap UCL	0.0342
Common Distribution Total with D. C. L. L. L. C. L.		Data Diability than Tantonik Data 1971 Co.	
Gamma Distribution Test with Detected Values Online k star (bias corrected)	6.782	Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level	
Theta Star	0.0067	Data appear Normal at 5 % Significance Level	
	81.39		
nu star	01.38		
	0.291	Nonparametric Statistics	
A-D Test Statistic			
A D Took Chatistis			

0.0369				
	Mean		0.698	K-S Test Statistic
0.0121	SD		0.332	5% K-S Critical Value
0.00383	SE of Mean		Level	Data appear Gamma Distributed at 5% Significance
0.0434	95% KM (t) UCL			
0.0432	95% KM (z) UCL			Assuming Gamma Distribution
0.0429	95% KM (jackknife) UCL			Gamma ROS Statistics using Extrapolated Data
0.044	% KM (bootstrap t) UCL	959	0.0283	Minimum
0.0535	95% KM (BCA) UCL	050/ 1/04 / D	0.0639	Maximum
0.0475	ercentile Bootstrap) UCL	<u> </u>	0.0523	Mean
0.0536	% KM (Chebyshev) UCL		0.058	Median
0.0608	% KM (Chebyshev) UCL		0.00907	SD
0.075	% KM (Chebyshev) UCL	99%	26.16	k star
	JCLs to Use	Detential II	0.002 1413	Theta star
0.0434		Potential C	1327	Nu star
	95% KM (t) UCL	OFO/ I/M /Da	-	AppChi2
0.0475	ercentile Bootstrap) UCL	95% KM (Pe	0.0557 0.0559	95% Gamma Approximate UCL 95% Adjusted Gamma UCL
				Note: DL/2 is not a recommended method.
				Benzo(k)fluoranthene
			General S	
9	umber of Detected Data		27	Number of Valid Samples
18	nber of Non-Detect Data	Num	9	Number of Unique Samples
66.67%	Percent Non-Detects			
	10. 11.11			
	med Statistics	Log-transforr		Raw Statistics
0.750			0 0000	
	Minimum Detected		0.0638	Minimum Detected
-1.65	Minimum Detected Maximum Detected		0.192	Maximum Detected
-1.65 -2.158	Minimum Detected Maximum Detected Mean of Detected		0.192 0.124	Maximum Detected Mean of Detected
-1.65 -2.158 0.404	Minimum Detected Maximum Detected Mean of Detected SD of Detected		0.192 0.124 0.0475	Maximum Detected Mean of Detected SD of Detected
-1.65 -2.158 0.404 -3.646	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect		0.192 0.124 0.0475 0.0261	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect
-1.65 -2.158 0.404 -3.646	Minimum Detected Maximum Detected Mean of Detected SD of Detected		0.192 0.124 0.0475	Maximum Detected Mean of Detected SD of Detected
-1.65 -2.158 0.404 -3.646 1.194	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect	Niverley	0.192 0.124 0.0475 0.0261 3.3	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect
-1.65 -2.158 0.404 -3.646 1.194	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect er treated as Non-Detect		0.192 0.124 0.0475 0.0261 3.3	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect
-1.65 -2.158 0.404 -3.646 1.194	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect er treated as Non-Detect ber treated as Detected	Num	0.192 0.124 0.0475 0.0261 3.3	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recore For all methods (except KM, DL/2, and ROS Methods),
-1.65 -2.158 0.404 -3.646 1.194	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect er treated as Non-Detect	Num	0.192 0.124 0.0475 0.0261 3.3	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect
-1.65 -2.158 0.404 -3.646 1.194 27	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect er treated as Non-Detect ber treated as Detected	Num Single DL	0.192 0.124 0.0475 0.0261 3.3	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recore For all methods (except KM, DL/2, and ROS Methods),
0 100.00%	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect er treated as Non-Detect ber treated as Detected Non-Detect Percentage	Num Single DL	0.192 0.124 0.0475 0.0261 3.3 mmended	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recore For all methods (except KM, DL/2, and ROS Methods),
-1.65 -2.158 0.404 -3.646 1.194 27 0	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect er treated as Non-Detect ber treated as Detected Non-Detect Percentage	Num Single DL istics Lognormal Distribution Tes	0.192 0.124 0.0475 0.0261 3.3 mmended	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recore For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs
-1.65 -2.158 0.404 -3.646 1.194 27 0 100.00%	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect er treated as Non-Detect sher treated as Detected Non-Detect Percentage	Numi Single DL istics Lognormal Distribution Tes Sh	0.192 0.124 0.0475 0.0261 3.3 nmended	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recore For all methods (except KM, DL/2, and ROS Methods), Dbservations < Largest ND are treated as NDs Normal Distribution Test with Detected Values C
-1.65 -2.158 0.404 -3.646 1.194 27 0 100.00%	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect er treated as Non-Detect sher treated as Detected Non-Detect Percentage at with Detected Values Chapiro Wilk Test Statistic apiro Wilk Critical Value	Numi Single DL istics Lognormal Distribution Tes Sh	0.192 0.124 0.0475 0.0261 3.3 nmended UCL Stanly 0.93	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recore For all methods (except KM, DL/2, and ROS Methods), Dbservations < Largest ND are treated as NDs Normal Distribution Test with Detected Values C Shapiro Wilk Test Statistic
-1.65 -2.158 0.404 -3.646 1.194 27 0 100.00%	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect er treated as Non-Detect sher treated as Detected Non-Detect Percentage at with Detected Values Chapiro Wilk Test Statistic apiro Wilk Critical Value	Numi Single DL I sistics Lognormal Distribution Tes Sh 5% Sha Data appear Lognormal	0.192 0.124 0.0475 0.0261 3.3 nmended UCL Stanly 0.93	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recore For all methods (except KM, DL/2, and ROS Methods), Dbservations < Largest ND are treated as NDs Normal Distribution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value
-1.65 -2.158 0.404 -3.646 1.194 27 0 100.00%	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Per treated as Non-Detect Suber treated as Detected Non-Detect Percentage St with Detected Values Compire Wilk Test Statistic Appire Wilk Critical Value at 5% Significance Leve	Numi Single DL I sistics Lognormal Distribution Tes Sh 5% Sha Data appear Lognormal	0.192 0.124 0.0475 0.0261 3.3 nmended UCL Stanly 0.93	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recore For all methods (except KM, DL/2, and ROS Methods), Dbservations < Largest ND are treated as NDs Normal Distribution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level
-1.65 -2.158 0.404 -3.646 1.194 27 0 100.00% nly 0.933 0.829	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect er treated as Non-Detect sher treated as Detected Non-Detect Percentage st with Detected Values Chapiro Wilk Test Statistic apiro Wilk Critical Value at 5% Significance Leve	Numi Single DL I sistics Lognormal Distribution Tes Sh 5% Sha Data appear Lognormal	0.192 0.124 0.0475 0.0261 3.3 nmended UCL Stanly 0.93	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recore For all methods (except KM, DL/2, and ROS Methods), Dbservations < Largest ND are treated as NDs Normal Distribution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution
-1.65 -2.158 0.404 -3.646 1.194 27 0 100.00% nly 0.933 0.829	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Per treated as Non-Detect Suber treated as Detected Non-Detect Percentage St with Detected Values Companion Wilk Test Statistic Appiro Wilk Critical Value at 5% Significance Leve Cormal Distribution L/2 Substitution Method	Numi Single DL I sistics Lognormal Distribution Tes Sh 5% Sha Data appear Lognormal	0.192 0.124 0.0475 0.0261 3.3 nmended UCL Stanly 0.93 0.829	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recore For all methods (except KM, DL/2, and ROS Methods), Deservations < Largest ND are treated as NDs Normal Distribution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method
-1.65 -2.158 0.404 -3.646 1.194 27 0 100.00% nly 0.933 0.829	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect er treated as Non-Detect sher treated as Detected Non-Detect Percentage with Detected Values of the properties of the prope	Numi Single DL I istics Lognormal Distribution Tes Sh 5% Sha Data appear Lognormal Assuming Lognormal	0.192 0.124 0.0475 0.0261 3.3 mmended UCL Stanly 0.93 0.829	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recore For all methods (except KM, DL/2, and ROS Methods), Dbservations < Largest ND are treated as NDs Normal Distribution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean
-1.65 -2.158 0.404 -3.646 1.194 27 0 100.00% nly 0.933 0.829	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Per treated as Non-Detect Siber treated as Detected Non-Detect Percentage St with Detected Values Chapiro Wilk Test Statistic Stapiro Wilk Critical Value ST Significance Leve Cormal Distribution L/2 Substitution Method Mean SD	Numi Single DL I istics Lognormal Distribution Tes Sh 5% Sha Data appear Lognormal Assuming Lognormal	0.192 0.124 0.0475 0.0261 3.3 nmended UCL Straig 0.93 0.829 0.209 0.297	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect M
-1.65 -2.158 0.404 -3.646 1.194 27 0 100.00%	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Per treated as Non-Detect Siber treated as Detected Non-Detect Percentage St with Detected Values Chapiro Wilk Test Statistic Stapiro Wilk Critical Value ST Significance Leve Cormal Distribution L/2 Substitution Method Mean SD	Numi Single DL I istics Lognormal Distribution Tes Sh 5% Sha Data appear Lognormal Assuming Lognormal	0.192 0.124 0.0475 0.0261 3.3 nmended UCL Straig 0.93 0.829 0.209 0.297	Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect M

SD in Log Scale Mean in Original Scale SD in Original Scale Percentile Bootstrap UCL	0.378 0.0971 0.0372
SD in Original Scale	
-	0.0372
Percentile Bootstrap UCL	
r	0.109
95% BCA Bootstrap UCL	0.111
with Detected Values Only	,
at 5% Significance Level	
etric Statistics	
aplan-Meier (KM) Method	
Mean	0.109
SD	0.0467
SE of Mean	0.0143
	0.133
` '	0.132
	0.133
,	0.136
` ' '	0.137
` ′	0.138
	0.171
, , ,	0.198
, , ,	0.251
70 Tan (Griddydridt) GGL	0.20
UCLs to Use	
	0.133
, ,	0.138
creditile Bootstap) con	0.100
Number of Detected Data	11
mber of Non-Detect Data	16
Percent Non-Detects	59.26%
rmed Statistics	
Minimum Detected	-3.561
Maximum Detected	-0.289
Mean of Detected	-2.098
SD of Detected	0.877
Minimum Non-Detect	-3.646
Maximum Non-Detect	1.194
er treated as Non-Detect	27
mber treated as Detected	C
	100.000
Non-Detect Percentage	100.00%
y S	etric Statistics plan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (Chebyshev) UCL 95% KM (Debyshev) UCL 95% KM (Chebyshev) UCL 95% KM (Thebyshev) UCL 9

Named Distribution Test with Detected Values On	di.	Lagrand Distribution Test with Detected Volume O	m.l.,
Normal Distribution Test with Detected Values Or Shapiro Wilk Test Statistic	0.651	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic	0.969
5% Shapiro Wilk Critical Value	0.85	·	0.85
Data not Normal at 5% Significance Level	0.00	Data appear Lognormal at 5% Significance Level	0.00
Data not Normal at 5% digitalicance 25vol		Bata appear Edgitorniai at 0 to digitilicance Edver	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.23	Mean	-1.945
SD	0.314		1.012
95% DL/2 (t) UCL	0.333		0.626
ν,		, ,	
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	-2.451
		SD in Log Scale	0.74
		Mean in Original Scale	0.117
		SD in Original Scale	0.136
		95% Percentile Bootstrap UCL	0.165
		95% BCA Bootstrap UCL	0.195
Gamma Distribution Test with Detected Values Or	nly	Data Distribution Test with Detected Values Only	
k star (bias corrected)	1.131	Data appear Gamma Distributed at 5% Significance L	evel
Theta Star	0.158		
nu star	24.89		
A-D Test Statistic	0.452	Nonparametric Statistics	
5% A-D Critical Value	0.743	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.743	Mean	0.131
5% K-S Critical Value	0.26	SD	0.14
Data appear Gamma Distributed at 5% Significance	Level	SE of Mean	0.0321
		95% KM (t) UCL	0.186
Assuming Gamma Distribution		95% KM (z) UCL	0.184
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.184
Minimum	0		0.214
Maximum	0.749	95% KM (BCA) UCL	0.195
Mean	0.179	, ,	0.189
Median	0.204		0.271
SD	0.139	, , ,	0.331
k star	0.408	, , ,	0.45
Theta star	0.438	, , ,	
Nu star	22.03		
AppChi2	12.36		0.186
95% Gamma Approximate UCL	0.318		2.100
95% Adjusted Gamma UCL	0.310		
Note: DL/2 is not a recommended method.	2.001		
Total DE Z to not a rocommonato a mountain			
Dibenzo(a,h)anthracene			
	General	Statistics	
Number of Valid Samples	27	Number of Detected Data	2
Number of Unique Samples	2	Number of Non-Detect Data	25
rumber of offique eamples		l l	

	Landan and Chatinting		Pau Chaliatian
2 500	Log-transformed Statistics	0.0077	Raw Statistics
-3.586	Minimum Detected	0.0277	Minimum Detected
-3.411	Maximum Detected	0.033	Maximum Detected
-3.499	Mean of Detected	0.0304	Mean of Detected
0.124	SD of Detected	0.00375	SD of Detected
-3.646	Minimum Non-Detect	0.0261	Minimum Non-Detect
1.194	Maximum Non-Detect	3.3	Maximum Non-Detect
27	Number treated as Non-Detect	mended	lote: Data have multiple DLs - Use of KM Method is recom
C	Number treated as Detected		or all methods (except KM, DL/2, and ROS Methods),
100.00%	Single DL Non-Detect Percentage		Observations < Largest ND are treated as NDs
	stics	UCL Sta	
Only	Lognormal Distribution Test with Detected Values C	ly	Normal Distribution Test with Detected Values O
1	Shapiro Wilk Test Statistic	1	Shapiro Wilk Test Statistic
N/A	5% Shapiro Wilk Critical Value	N/A	5% Shapiro Wilk Critical Value
	Data not Lognormal at 5% Significance Level		Data not Normal at 5% Significance Level
	Assuming Lognormal Distribution		Assuming Normal Distribution
	DL/2 Substitution Method		DL/2 Substitution Method
-2.665	Mean	0.174	Mean
1.439	SD	0.311	SD
0.523	95% H-Stat (DL/2) UCL	0.276	95% DL/2 (t) UCL
	Log ROS Method	N/A	Maximum Likelihood Estimate(MLE) Method
N/A	Mean in Log Scale		MLE method failed to converge properly
N/A	SD in Log Scale		
N/A	Mean in Original Scale		
N/A	SD in Original Scale		
N/A	95% Percentile Bootstrap UCL		
N/A	95% BCA Bootstrap UCL		
/	Data Distribution Test with Detected Values Only	ly	Gamma Distribution Test with Detected Values O
5)	Data do not follow a Discernable Distribution (0.09	N/A	k star (bias corrected)
		N/A	Theta Star
		N/A	nu star
	Nonparametric Statistics	0.359	A-D Test Statistic
	Kaplan-Meier (KM) Method		5% A-D Critical Value
	Kapian-Meier (KM) Method	N/A	
0.000	· · · · ·		K-S Test Statistic 5% K-S Critical Value
	Mean	N/A	5% K-S (ritical Value
0.00146	Mean SD	N/A	
0.00146 5.9802E-	Mean SD SE of Mean	N/A	Data not Gamma Distributed at 5% Significance Li
0.00146 5.9802E-4 0.0292	Mean SD SE of Mean 95% KM (t) UCL	N/A	Data not Gamma Distributed at 5% Significance L
0.00146 5.9802E-4 0.0292 0.029	Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL	N/A	Data not Gamma Distributed at 5% Significance Lo
0.00146 5.9802E-4 0.0292 0.029	Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL	N/A vel	Data not Gamma Distributed at 5% Significance Local Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data
0.00146 5.9802E 0.029 0.029 0.0318 Infinity	Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	N/A vel	Data not Gamma Distributed at 5% Significance Lo
0.00146 5.9802E-4 0.0292 0.029 0.0318 Infinity	Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	N/A vel	Data not Gamma Distributed at 5% Significance Lo Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data
0.00146 5.9802E 0.029 0.029 0.0319 Infinit	Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	N/A vel	Data not Gamma Distributed at 5% Significance Locality Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum
0.00146 5.9802E-4 0.0292 0.0318 Infinity 0.033	Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	N/A vel N/A N/A	Data not Gamma Distributed at 5% Significance Locality Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum
0.00140 5.9802E-4 0.0292 0.0311 Infinity 0.033 N/A 0.030	Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	N/A vel N/A N/A N/A N/A	Data not Gamma Distributed at 5% Significance Locality Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean
0.00146 5.9802E-4 0.0292 0.0315 Infinity 0.033 N/A 0.0307	Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	N/A vel N/A N/A N/A N/A N/A	Assuming Gamma Distributed at 5% Significance Local Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median
0.0292 0.0291 0.0315 Infinity 0.033	Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	N/A vel N/A N/A N/A N/A N/A N/A N/A	Assuming Gamma Distributed at 5% Significance Local Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean Median SD

0.0292	95% KM (t) UCL	N/A	AppChi2
N/A	95% KM (% Bootstrap) UCL	N/A	95% Gamma Approximate UCL
		N/A	95% Adjusted Gamma UCL
			Note: DL/2 is not a recommended method.
			Fluoranthene
	atistics	General S	
12	Number of Detected Data	27	Number of Valid Samples
15	Number of Non-Detect Data	12	Number of Unique Samples
55.56%	Percent Non-Detects		
	Log-transformed Statistics		Raw Statistics
-2.771	Minimum Detected	0.0626	Minimum Detected
0.554	Maximum Detected	1.74	Maximum Detected
-1.032	Mean of Detected	0.489	Mean of Detected
0.87	SD of Detected	0.438	SD of Detected
-3.646	Minimum Non-Detect	0.0261	Minimum Non-Detect
1.194	Maximum Non-Detect	3.3	Maximum Non-Detect
27	Number treated as Non-Detect	nended	Note: Data have multiple DLs - Use of KM Method is recom
(Number treated as Detected		For all methods (except KM, DL/2, and ROS Methods),
100.00%	Single DL Non-Detect Percentage		Observations < Largest ND are treated as NDs
0.954	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic	0.746	Normal Distribution Test with Detected Values Or Shapiro Wilk Test Statistic
0.954 0.859	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	y	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value
0.954 0.859	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic	y 0.746	Shapiro Wilk Test Statistic
0.954 0.859	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	y 0.746	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value
0.954 0.859	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level	y 0.746	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level
0.954 0.859	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution	y 0.746	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution
0.954 0.859	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method	0.746 0.859	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method
0.954 0.859 I -1.505 1.095	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean	0.746 0.859 0.363	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean
0.954 0.859 I -1.505 1.095	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD	0.746 0.859 0.363 0.419	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD
0.954 0.859 I -1.505 1.095 0.834	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL	0.746 0.859 0.363 0.419 0.501	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL
0.954 0.859 I -1.505 1.095 0.834	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method	0.746 0.859 0.363 0.419 0.501	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method
0.954 0.859 I -1.505 1.095 0.834 -1.718 0.901	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	0.746 0.859 0.363 0.419 0.501	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method
0.954 0.859 1 -1.505 1.095 0.834 -1.718 0.901 0.28	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	0.746 0.859 0.363 0.419 0.501	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method
0.954 0.859 1 -1.505 1.095 0.834 -1.718 0.901 0.28	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale	0.746 0.859 0.363 0.419 0.501	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method
0.954 0.859	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	0.746 0.859 0.363 0.419 0.501	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method
0.954 0.859 1 -1.505 1.095 0.834 -1.718 0.901 0.28 0.344 0.393 0.444	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL	0.746 0.859 0.363 0.419 0.501	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method
0.954 0.859 1 -1.505 1.095 0.834 -1.718 0.901 0.28 0.344 0.393 0.444	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL	0.746 0.859 0.363 0.419 0.501	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE method failed to converge properly
0.954 0.859 1 -1.505 1.095 0.834 -1.718 0.901 0.28 0.344 0.393 0.444	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only	0.746 0.859 0.363 0.419 0.501	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE method failed to converge properly Gamma Distribution Test with Detected Values Or
0.954 0.859 1 -1.505 1.095 0.834 -1.718 0.901 0.28 0.344 0.393 0.444	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only	0.746 0.859 0.363 0.419 0.501 N/A	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE method failed to converge properly Gamma Distribution Test with Detected Values On k star (bias corrected)
0.954 0.859 1 -1.505 1.095 0.834 -1.718 0.901 0.28 0.344 0.393 0.444	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L	y 0.746 0.859 0.363 0.419 0.501 N/A y 1.348 0.363 32.36	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE method failed to converge properly Gamma Distribution Test with Detected Values Of k star (bias corrected) Theta Star nu star
0.954 0.859 1 -1.505 1.095 0.834 -1.718 0.901 0.28 0.344 0.393 0.444	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L	y 0.746 0.859 0.363 0.419 0.501 N/A y 1.348 0.363 32.36	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE method failed to converge properly Gamma Distribution Test with Detected Values Or k star (bias corrected) Theta Star nu star
0.954 0.859 1 -1.505 1.095 0.834 -1.718 0.901 0.28 0.344 0.393 0.444	Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance L	y 0.746 0.859 0.363 0.419 0.501 N/A y 1.348 0.363 32.36	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method MLE method failed to converge properly Gamma Distribution Test with Detected Values Of k star (bias corrected) Theta Star nu star

		5% K-S Critical \		0.249	SD	0.341	
Data ap	ppear Gamma Distribute	ted at 5% Signific	cance L	_evel	SE of Mean	0.073	
					95% KM (t) UCL	0.426	
	Assuming Gamm				95% KM (z) UCL	0.421	
Ga	amma ROS Statistics us				95% KM (jackknife) UCL	0.419	
			imum	0.0626	, , ,		
			imum	1.74	95% KM (BCA) UCL	0.468	
			Mean	0.48	95% KM (Percentile Bootstrap) UCL		
		Me	edian	0.496	95% KM (Chebyshev) UCL	0.619	
			SD	0.294	97.5% KM (Chebyshev) UCL	0.757	
			k star	3.025	99% KM (Chebyshev) UCL	1.028	
			a star	0.159	Detential LICLs to Liss		
			u star	163.3	Potential UCLs to Use	0.400	
	050/ 00		Chi2	134.8	95% KM (t) UCL	0.426	
		nma Approximate		0.582			
Note: DL/2 is	95% <i>F</i> s not a recommended m	Adjusted Gamma	OCL	0.589			
Indeno(1,2,3	3-cd)pyrene			General S	Statistics		
	Nun	mber of Valid San	nples	27	Number of Detected Data	7	
	Numb	er of Unique San	nples	7	Number of Non-Detect Data	20	
					Percent Non-Detects	74.07%	
	Raw Sta	atistics			Log-transformed Statistics		
		Minimum Dete	ected	0.0293	Minimum Detected	-3.53	
		Maximum Dete		0.0682	Maximum Detected	-2.685	
		Mean of Dete		0.0471	Mean of Detected	-3.107	
		SD of Dete		0.0159	SD of Detected	0.347	
		Minimum Non-D		0.0261	Minimum Non-Detect	-3.646	
		Maximum Non-D	etect	3.3	Maximum Non-Detect	1.194	
Note: Data h	ave multiple DLs - Use	of KM Method is	recomr	mended	Number treated as Non-Detect	27	
	ods (except KM, DL/2, a			nenaca	Number treated as Detected	0	
	s < Largest ND are treat		3),		Single DL Non-Detect Percentage	100.00%	
					gg.		
				UCL St	atistics		
Norr	mal Distribution Test wi	ith Detected Valu	ues Onl	•	Lognormal Distribution Test with Detected Values C	-	
		piro Wilk Test Sta		0.898	Shapiro Wilk Test Statistic	0.901	
		piro Wilk Critical \	√alue	0.803	5% Shapiro Wilk Critical Value	0.803	
					Data appear Lognormal at 5% Significance Leve	I	
D	5% Shap Data appear Normal at 5	5% Significance I	Level		Data appear Lognormal at 5 % Significance Leve		
D			Level		Assuming Lognormal Distribution		
D	Oata appear Normal at 5						
C	Oata appear Normal at 5	nal Distribution /2 Substitution Me		0.181	Assuming Lognormal Distribution	-2.422	
C	Oata appear Normal at 5	nal Distribution /2 Substitution Me	ethod	0.181 0.307	Assuming Lognormal Distribution DL/2 Substitution Method	-2.422 1.242	
C	Oata appear Normal at 5	nal Distribution /2 Substitution Me	ethod Mean SD		Assuming Lognormal Distribution DL/2 Substitution Method Mean		
C	Oata appear Normal at 5	nal Distribution /2 Substitution Me	ethod Mean SD	0.307	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD	1.242	
C	Oata appear Normal at 5	eal Distribution /2 Substitution Me /* 95% DL/2 (t)	ethod Mean SD	0.307	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD	1.242	
C	Oata appear Normal at 5 Assuming Normal DL/	al Distribution /2 Substitution Me /* 95% DL/2 (t) Estimate(MLE) Me	ethod Mean SD UCL	0.307 0.282	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL	1.242	

			Mean in Original Scale	0.0324
			SD in Original Scale	0.0131
			95% Percentile Bootstrap UCL	0.0365
			95% BCA Bootstrap UCL	0.0369
Gamma Distribution Test with Detected			Data Distribution Test with Detected Values Only	/
k star (bias c		5.81	Data appear Normal at 5% Significance Level	
	heta Star	0.0081		
	nu star	81.33		
A-D Tes	t Statistic	0.382	Nonparametric Statistics	
5% A-D Critic	cal Value	0.708	Kaplan-Meier (KM) Method	
K-S Tes	t Statistic	0.708	Mean	0.0397
5% K-S Critic	cal Value	0.312	SD	0.0143
Data appear Gamma Distributed at 5% Sig	nificance	Level	SE of Mean	0.00445
			95% KM (t) UCL	0.0472
Assuming Gamma Distributio	n		95% KM (z) UCL	0.047
Gamma ROS Statistics using Extrapola	ited Data		95% KM (jackknife) UCL	0.047
	Minimum	0.0293	95% KM (bootstrap t) UCL	0.0487
N	/laximum	0.0711	95% KM (BCA) UCL	0.0506
	Mean	0.0542	95% KM (Percentile Bootstrap) UCL	0.0483
	Median	0.0625	95% KM (Chebyshev) UCL	0.05
	SD	0.0129	97.5% KM (Chebyshev) UCL	0.067
	k star	14.16	99% KM (Chebyshev) UCL	0.083
Т	heta star	0.00383		
	Nu star	764.5	Potential UCLs to Use	
	AppChi2	701.4	95% KM (t) UCL	0.0472
95% Gamma Approxim		0.0591	95% KM (Percentile Bootstrap) UCL	0.0483
95% Adjusted Gam	nma UCL	0.0594		
e: DL/2 is not a recommended method.				
nanthrene				
		General	Statistics	
Number of Valid	Samples	27	Number of Detected Data	10
Number of Unique	Samples	10	Number of Non-Detect Data	17
			Percent Non-Detects	62.96%
Raw Statistics			Log-transformed Statistics	
Minimum	Detected	0.0364	Minimum Detected	-3.313
Maximum		0.906	Maximum Detected	-0.098
Mean of		0.22	Mean of Detected	-2.016
SD of	Detected	0.269	SD of Detected	0.99
Minimum No	n-Detect	0.0261	Minimum Non-Detect	-3.64
Maximum No	n-Detect	3.3	Maximum Non-Detect	1.19
e: Data have multiple DLs - Use of KM Metho	d is recom	nmended	Number treated as Non-Detect	2
·			Number treated as Detected	
				100.00%
			5g.c 22.13/1 25/05/1 5/05/10g0	
Name of Distribution Test 20 Days 21	Value C	UCL S		No. le c
e: Data have multiple DLs - Use of KM Methorall methods (except KM, DL/2, and ROS Methorall methods (except KM, DL/2, and ROS Methorall methods (except KM, DL/2, and ROS Methorall methods (except KM, DL/2, and ROS Methods (except KM, DL/2, and Except KM, D	nods),	UCL S	Number treated as Detected Single DL Non-Detect Percentage	

Shapiro Wilk Test Statistic	0.696	Shapiro Wilk Test Statistic	0.936	
5% Shapiro Wilk Critical Value	0.842	5% Shapiro Wilk Critical Value	0.842	
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level		
Assuming Normal Distribution		Assuming Lognormal Distribution		
DL/2 Substitution Method		DL/2 Substitution Method		
Mean	0.239	Mean	-1.997	
SD	0.33	SD	1.131	
95% DL/2 (t) UCL	0.347	95% H-Stat (DL/2) UCL	0.722	
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method		
MLE method failed to converge properly		Mean in Log Scale	-2.657	
		SD in Log Scale	0.891	
		Mean in Original Scale	0.116	
		SD in Original Scale	0.179	
		95% Percentile Bootstrap UCL	0.175	
		95% BCA Bootstrap UCL	0.219	
Gamma Distribution Test with Detected Values O	mlu	Data Distribution Test with Detected Values Only		
k star (bias corrected)	0.859	Data Follow Appr. Gamma Distribution at 5% Significance		
Theta Star	0.055	Data 1 Glow Appr. Gaillina Distribution at 576 Significant	e Level	
nu star	17.19			
112 4 12				
A-D Test Statistic	0.628	Nonparametric Statistics		
5% A-D Critical Value	0.746	Kaplan-Meier (KM) Method		
K-S Test Statistic	0.746	Mean	0.135	
5% K-S Critical Value	0.273	SD	0.182	
Data follow Appr. Gamma Distribution at 5% Significan	ce Level	SE of Mean	0.0409	
		95% KM (t) UCL	0.205	
Assuming Gamma Distribution		95% KM (z) UCL	0.202	
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.2	
Minimum	0	95% KM (bootstrap t) UCL	0.276	
Maximum	0.906	95% KM (BCA) UCL	0.213	
Mean	0.212	95% KM (Percentile Bootstrap) UCL	0.205	
Median	0.245	95% KM (Chebyshev) UCL	0.313	
SD	0.185	97.5% KM (Chebyshev) UCL	0.391	
k star Theta star	0.297 0.713	99% KM (Chebyshev) UCL	0.542	
Nu star	16.05	Potential UCLs to Use		
AppChi2	7.995	95% KM (t) UCL	0.205	
95% Gamma Approximate UCL	0.425	30% Nam (c) 332	0.200	
95% Adjusted Gamma UCL	0.445			
Note: DL/2 is not a recommended method.				
Pyrene				
		Statistics		
Number of Valid Samples	27	Number of Detected Data	12	
Number of Unique Samples	12	Number of Non-Detect Data	15	
		Percent Non-Detects	55.56%	
Raw Statistics		Log-transformed Statistics		
		<u>-</u>		

-3.283	Minimum Detected	0.0375	Minimum Detected
1.934	Maximum Detected	6.92	Maximum Detected
-1.253	Mean of Detected	0.855	Mean of Detected
1.32	SD of Detected	1.93	SD of Detected
-3.646	Minimum Non-Detect	0.0261	Minimum Non-Detect
-0.493	Maximum Non-Detect	0.611	Maximum Non-Detect
	N. I. I. I. N. S. I.		E I DI II (MAN E I'
25	Number treated as Non-Detect	mended	multiple DLs - Use of KM Method is recor
2	Number treated as Detected		except KM, DL/2, and ROS Methods),
92.59%	Single DL Non-Detect Percentage		argest ND are treated as NDs
. 1		UCL Sta	Distribution Test with Detected Volume C
•	Lognormal Distribution Test with Detected Values O	-	Distribution Test with Detected Values C
0.92	Shapiro Wilk Test Statistic	0.437	Shapiro Wilk Test Statistic
0.859	5% Shapiro Wilk Critical Value	0.859	5% Shapiro Wilk Critical Value
el 	Data appear Lognormal at 5% Significance Level		ta not Normal at 5% Significance Level
	Assuming Lognormal Distribution		Assuming Normal Distribution
	DL/2 Substitution Method		DL/2 Substitution Method
-1.666	Mean	0.475	Mean
1.169	SD	1.303	SD
0.75	95% H-Stat (DL/2) UCL	0.903	95% DL/2 (t) UCL
	Log ROS Method	N/A	ximum Likelihood Estimate(MLE) Method
-1.943	Mean in Log Scale		LE method failed to converge properly
1.17	SD in Log Scale		
0.433	Mean in Original Scale		
1.313	SD in Original Scale		
0.91	95% Percentile Bootstrap UCL		
1.218	95% BCA Bootstrap UCL		
	Data Distribution Test with Detected Values Only	nly	Distribution Test with Detected Values C
	Data appear Lognormal at 5% Significance Level	0.482	k star (bias corrected)
		1.773	Theta Star
		11.57	nu star
	Nonparametric Statistics	1.354	A-D Test Statistic
	Kaplan-Meier (KM) Method	0.78	5% A-D Critical Value
0.454	Mean	0.78	K-S Test Statistic
1.28	SD	0.258	5% K-S Critical Value
0.259	SE of Mean	evel	Gamma Distributed at 5% Significance L
0.896	95% KM (t) UCL		
0.8	95% KM (z) UCL		Assuming Gamma Distribution
0.87	95% KM (jackknife) UCL		a ROS Statistics using Extrapolated Data
3.01	95% KM (bootstrap t) UCL	0.0375	Minimum
1.002	95% KM (BCA) UCL	6.92	Maximum
0.94	95% KM (Percentile Bootstrap) UCL	0.863	Mean
1.58	95% KM (Chebyshev) UCL	0.857	Median
2.07	97.5% KM (Chebyshev) UCL	1.255	SD
3.03	99% KM (Chebyshev) UCL	1.06	k star
	, , , , , ,	0.814	Theta star
	Potential UCLs to Use	57.24	Nu star

			1.209	95% Gamma Approximate UCL
			1.236	95% Adjusted Gamma UCL
				Note: DL/2 is not a recommended method.
				A
				Arsenic
		tistics	General St	
15	Number of Detected Data		20	Number of Valid Samples
5	Number of Non-Detect Data	Nu	13	Number of Unique Samples
25.00%	Percent Non-Detects			
	ansformed Statistics	Log-transfo		Raw Statistics
0.405	Minimum Detected		1.5	Minimum Detected
1.629	Maximum Detected		5.1	Maximum Detected
1.098	Mean of Detected		3.157	Mean of Detected
0.336	SD of Detected		1.034	SD of Detected
0.000	Minimum Non-Detect		1	Minimum Non-Detect
1.224	Maximum Non-Detect		3.4	Maximum Non-Detect
1.227			5.4	Maximum Non-Detect
15	Number treated as Non-Detect	Numb	mended	Note: Data have multiple DLs - Use of KM Method is recon
5	Number treated as Detected	Nu		For all methods (except KM, DL/2, and ROS Methods),
75.00%	gle DL Non-Detect Percentage	Single D		Observations < Largest ND are treated as NDs
		4!	LIOI Otal	
alv	on Tost with Detected Values Or		UCL Stat	Normal Distribution Test with Detected Values O
	on Test with Detected Values On	Lognormal Distribution Te	ly	Normal Distribution Test with Detected Values O
0.965	Shapiro Wilk Test Statistic	Lognormal Distribution Te	0.945	Shapiro Wilk Test Statistic
	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	Lognormal Distribution Te	ly	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value
0.965	Shapiro Wilk Test Statistic	Lognormal Distribution Te	0.945	Shapiro Wilk Test Statistic
0.965	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	Lognormal Distribution Te S 5% S Data appear Lognorma	0.945	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value
0.965	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level	Lognormal Distribution Te 5 5% S Data appear Lognorma Assuming Log	0.945	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level
0.965 0.881	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution	Lognormal Distribution Te 5 5% S Data appear Lognorma Assuming Log	0.945	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution
0.965 0.881 0.772	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method	Lognormal Distribution Te 5 5% S Data appear Lognorma Assuming Log	0.945 0.881	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method
0.965 0.881 0.772 0.679	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean	Lognormal Distribution Te 5 5% S Data appear Lognorma Assuming Log	0.945 0.881 2.59	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean
0.965	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level J Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL	Lognormal Distribution Te 5 5% S Data appear Lognorma Assuming Log	0.945 0.881 2.59 1.359	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL
0.965 0.881 0.772 0.679 2.8	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method	Lognormal Distribution Te 5 5% S Data appear Lognorma Assuming Log	2.59 1.359 3.115	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method
0.965 0.881 0.772 0.679 2.8	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	Lognormal Distribution Te 5 5% S Data appear Lognorma Assuming Log	0.945 0.881 2.59 1.359	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean
0.965 0.881 0.772 0.679 2.8 0.934 0.422	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level J Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	Lognormal Distribution Te 5 5% S Data appear Lognorma Assuming Log	2.59 1.359 3.115	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD
0.965 0.881 0.772 0.679 2.8 0.934 0.422 2.764	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale	Lognormal Distribution Te 5 5% S Data appear Lognorma Assuming Log	2.59 1.359 3.115	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean
0.965 0.881 0.772 0.679 2.8 0.934 0.422 2.764 1.141	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level J Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale	Lognormal Distribution Te	2.59 1.359 3.115 2.429 1.468	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD
0.965 0.881 0.772 0.679 2.8 0.934 0.422 2.764 1.141 3.172	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale	Lognormal Distribution Te 5 5% S Data appear Lognorma Assuming Log	2.59 1.359 3.115 2.429 1.468 2.996	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL
0.965 0.881 0.772 0.679	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level J Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale	Lognormal Distribution Te 5 5% S Data appear Lognorma Assuming Log	2.59 1.359 3.115 2.429 1.468 2.996	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL
0.965 0.881 0.772 0.679 2.8 0.934 0.422 2.764 1.141 3.172	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale	Lognormal Distribution Te 5 5 5 S Data appear Lognorma Assuming Log 95%	2.59 1.359 3.115 2.429 1.468 2.996 3.561	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL
0.965 0.881 0.772 0.679 2.8 0.934 0.422 2.764 1.141 3.172	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL	Lognormal Distribution Telescope School Scho	2.59 1.359 3.115 2.429 1.468 2.996 3.561	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (Tiku) UCL
0.965 0.881 0.772 0.679 2.8 0.934 0.422 2.764 1.141 3.172	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	Lognormal Distribution Telescope School Scho	2.59 1.359 3.115 2.429 1.468 2.996 3.561	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL
0.965 0.881 0.772 0.679 2.8 0.934 0.422 2.764 1.141 3.172	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	Lognormal Distribution Telescope School Scho	2.59 1.359 3.115 2.429 1.468 2.996 3.561	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL
0.965 0.881 0.772 0.679 2.8 0.934 0.422 2.764 1.141 3.172	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	Lognormal Distribution Telescope School Scho	2.59 1.359 3.115 2.429 1.468 2.996 3.561	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star
0.965 0.881 0.772 0.679 2.8 0.934 0.422 2.764 1.141 3.172	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	Lognormal Distribution Telescope Science Scien	2.59 1.359 3.115 2.429 1.468 2.996 3.561	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values C k star (bias corrected) Theta Star
0.965 0.881 0.772 0.679 2.8 0.934 0.422 2.764 1.141 3.172	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL Test with Detected Values Only	Lognormal Distribution Telescope School Scho	2.59 1.359 3.115 2.429 1.468 2.996 3.561 ly 7.986 0.395 239.6	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values Company of the Star (bias corrected) Theta Star nu star
0.965 0.881 0.772 0.679 2.8 0.934 0.422 2.764 1.141 3.172	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value normal at 5% Significance Level Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale SD in Original Scale SD SS% Percentile Bootstrap UCL 95% BCA Bootstrap UCL Test with Detected Values Only rmal at 5% Significance Level	Lognormal Distribution Telescope School Scho	2.59 1.359 3.115 2.429 1.468 2.996 3.561 ly 7.986 0.395 239.6	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values Cook star (bias corrected) Theta Star nu star

Data appear Gamma Distributed at 5% Significance	Level	SE of Mean	0.258		
		95% KM (t) UCL	3.226		
Assuming Gamma Distribution		95% KM (z) UCL	3.205		
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	3.199 3.227		
Minimum	1.485	95% KM (bootstrap t) UCL			
Maximum	5.1	95% KM (BCA) UCL			
Median	2.933	95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL			
Median SD	2.95 1.021	95% KM (Chebyshev) UCL	3.904		
k star	7.636	99% KM (Chebyshev) UCL	4.39 5.345		
Theta star	0.384	99 % Kivi (Chebyshev) OCL			
Nu star	305.4	Potential UCLs to Use			
AppChi2	265.9	95% KM (t) UCL	3.226		
95% Gamma Approximate UCL	3.369	95% KM (Percentile Bootstrap) UCL	3.255		
95% Adjusted Gamma UCL	3.406	constrain (constraint 2000 app) 002	0.200		
Note: DL/2 is not a recommended method.					
Copper					
	General	Statistics			
Number of Valid Samples	20	Number of Unique Samples	19		
Raw Statistics		Log-transformed Statistics			
Minimum	3	Minimum of Log Data	1.099		
Maximum	1260	Maximum of Log Data	7.139		
Mean	89.9	Mean of log Data	3.121		
Median	23.85	SD of log Data	1.34		
SD	277.1				
Coefficient of Variation	3.082				
Skewness	4.387				
	Relevant U	CL Statistics			
Normal Distribution Test		Lognormal Distribution Test			
Shapiro Wilk Test Statistic	0.309	Shapiro Wilk Test Statistic	0.892		
Shapiro Wilk Critical Value	0.905	Shapiro Wilk Critical Value	0.905		
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level			
Assuming Normal Distribution		Assuming Lognormal Distribution			
95% Student's-t UCL	197	95% H-UCL	144.3		
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	130.5		
95% Adjusted-CLT UCL		97.5% Chebyshev (MVUE) UCL	164.7		
95% Modified-t UCL	207.2	99% Chebyshev (MVUE) UCL	231.8		
Gamma Distribution Test		Data Distribution			
k star (bias corrected)	0.43	Data do not follow a Discernable Distribution (0.05	5)		
Theta Star	209.3				
nu star	17.18				
Approximate Chi Square Value (.05)	8.802	Nonparametric Statistics			
Adjusted Level of Significance	0.038	95% CLT UCL	191.8		
		250/ 1 11 15 1101	197		
Adjusted Chi Square Value	8.33	95% Jackknife UCL	197		
Adjusted Chi Square Value Anderson-Darling Test Statistic	8.33	95% Standard Bootstrap UCL	187.1 1153		

Anderson-Darling 5% Critical Value	0.81	95% Hall's Bootstrap UCL	752.8	
-		·	211.2	
Kolmogorov-Smirnov Test Statistic	0.342	95% Percentile Bootstrap UCL	281.6	
Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Le		95% BCA Bootstrap UCL		
Data not Gamma distributed at 5% Significance Le	evei	95% Chebyshev(Mean, Sd) UCL	359.9	
A course of Common Distribution		97.5% Chebyshev (Mean, Sd) UCL	476.8	
Assuming Gamma Distribution	475 5	99% Chebyshev(Mean, Sd) UCL	706.3	
95% Approximate Gamma UCL	175.5			
95% Adjusted Gamma UCL	185.4			
Potential UCL to Use		Use 99% Chebyshev (Mean, Sd) UCL	706.3	
ead				
	0	Markatian .		
Number of Valid Samples	General S	Number of Detected Data	17	
· ·				
Number of Unique Samples	16	Number of Non-Detect Data	15 00%	
		Percent Non-Detects	15.00%	
Raw Statistics		Log-transformed Statistics		
Minimum Detected	6.8	Minimum Detected	1.917	
Maximum Detected	153	Maximum Detected	5.03	
Mean of Detected	38.79	Mean of Detected	3.278	
SD of Detected	38.59	SD of Detected	0.887	
Minimum Non-Detect	6	Minimum Non-Detect	1.792	
Maximum Non-Detect	7	Maximum Non-Detect	1.946	
lote: Data have multiple DLs - Use of KM Method is recom	mended	Number treated as Non-Detect	10	
or all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	16	
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	20.00%	
	UCL Sta	atistics		
Normal Distribution Test with Detected Values Or	nly	Lognormal Distribution Test with Detected Values C	nly	
Shapiro Wilk Test Statistic	0.762	Shapiro Wilk Test Statistic	0.96	
5% Shapiro Wilk Critical Value	0.892	5% Shapiro Wilk Critical Value	0.892	
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Leve		
Assuming Normal Distribution		Assuming Lognormal Distribution		
DL/2 Substitution Method		DL/2 Substitution Method		
Mean	33.45	Mean	2.96	
SD	37.74	SD	1.126	
المو	48.04	95% H-Stat (DL/2) UCL	52.8	
05% DL/2 (+) LICI	40.04	33 /0 11-3tat (DL/2) UCL	JZ.00	
95% DL/2 (t) UCL		I I		
95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method		Log ROS Method		
	28.55	Log ROS Method Mean in Log Scale	2.978	
Maximum Likelihood Estimate(MLE) Method	28.55 42.83	_		
Maximum Likelihood Estimate(MLE) Method Mean		Mean in Log Scale	1.096	
Maximum Likelihood Estimate(MLE) Method Mean SD	42.83	Mean in Log Scale SD in Log Scale	1.096	
Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	42.83 45.11	Mean in Log Scale SD in Log Scale Mean in Original Scale	1.096 33.52 37.68	
Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	42.83 45.11	Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	1.096 33.52 37.68 47.5	
Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL	42.83 45.11 45.04	Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	1.096 33.52 37.68 47.5 50.36	
Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	42.83 45.11 45.04	Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% Percentile Bootstrap UCL		

Theta Star	31.24			
nu star	42.21			
A B 7	0.504	No. of the Control of		
A-D Test Statistic	0.504 0.756	Nonparametric Statistics		
5% A-D Critical Value K-S Test Statistic	0.756	Kaplan-Meier (KM) Method Mean	34	
5% K-S Critical Value	0.730	SD	36.35	
Data appear Gamma Distributed at 5% Significance		SE of Mean	8.379	
Bata appear damma biombatoa at 0% organicano	2010.	95% KM (t) UCL	48.48	
Assuming Gamma Distribution		95% KM (z) UCL	47.78	
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	48.24	
Minimum	0	95% KM (bootstrap t) UCL	58.11	
Maximum	153	95% KM (BCA) UCL	50.53	
Mean	32.98	95% KM (Percentile Bootstrap) UCL	49.38	
Median	23	95% KM (Chebyshev) UCL	70.52	
SD	38.15	97.5% KM (Chebyshev) UCL	86.32	
k star	0.198	99% KM (Chebyshev) UCL	117.4	
Theta star	166.5			
Nu star	7.92	Potential UCLs to Use		
AppChi2	2.689	95% KM (BCA) UCL	50.53	
95% Gamma Approximate UCL	97.13			
95% Adjusted Gamma UCL	106.4			
	General			
Number of Valid Samples	20	Number of Unique Samples	20	
Raw Statistics		Log-transformed Statistics		
Minimum	0.871	Minimum of Log Data	-0.138	
Maximum	8.539	Maximum of Log Data	2.145	
Mean	2.078	Mean of log Data		
Median	1.127	SD of log Data	0.463	
SD			0.463 0.685	
	1.918			
Coefficient of Variation	1.918 0.923			
	1.918			
Coefficient of Variation Skewness	1.918 0.923 2.333	CL Statistics		
Coefficient of Variation Skewness Normal Distribution Test	1.918 0.923 2.333 Relevant UC	Lognormal Distribution Test	0.685	
Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic	1.918 0.923 2.333 Relevant UC	Lognormal Distribution Test Shapiro Wilk Test Statistic	0.685	
Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	1.918 0.923 2.333 Relevant UC	Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	0.685	
Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic	1.918 0.923 2.333 Relevant UC	Lognormal Distribution Test Shapiro Wilk Test Statistic	0.685	
Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution	1.918 0.923 2.333 Relevant UC 0.671 0.905	Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution	0.685 0.811 0.905	
Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL	1.918 0.923 2.333 Relevant UC	Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL	0.685 0.811 0.905	
Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	1.918 0.923 2.333 Relevant UC 0.671 0.905	Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL	0.685 0.811 0.905 2.838 3.391	
Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	1.918 0.923 2.333 Relevant UC 0.671 0.905	Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	0.685 0.811 0.905 2.838 3.391 4.001	
Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	1.918 0.923 2.333 Relevant UC 0.671 0.905	Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL	0.685 0.811 0.905 2.838 3.391	
Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	1.918 0.923 2.333 Relevant UC 0.671 0.905	Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	0.685 0.811 0.905 2.838 3.391 4.001	
Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	1.918 0.923 2.333 Relevant UC 0.671 0.905	Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	0.685 0.811 0.905 2.838 3.391 4.001 5.199	

			· ·		1.191	Theta Star				
					69.82	nu star				
	s	netric Statistic	Nonparam		51.59	Value (.05)	Chi Square	Approximate	P	
2.784	% CLT UCL	959			0.038	Significance	ed Level of S	Adjust		
2.82	ckknife UCL	95% Jac			50.35	juare Value	usted Chi So	Adjı		
2.763	otstrap UCL	6 Standard Boo	95%							
3.333	tstrap-t UCL	95% Boot			1.832	est Statistic	on-Darling T	Anderso		
3.425	otstrap UCL	95% Hall's Boo	9		0.752	ritical Value	arling 5% C	Anderson-D		
2.89	otstrap UCL	Percentile Boo	95% F		0.276	est Statistic	v-Smirnov T	Kolmogoro		
3.104	otstrap UCL	95% BCA Boo			0.196	ritical Value	nirnov 5% C	mogorov-Sn	Kol	
3.948	an, Sd) UCL	hebyshev(Mea	95% Ch		vel	nificance Le	ed at 5% Sig	na Distribute	a not Gamn	Data
4.757	an, Sd) UCL	hebyshev(Mea	97.5% Ch							
6.346	an, Sd) UCL	hebyshev(Mea	99% Ch			tion	nma Distribu	suming Gan	Ass	
					2.813	amma UCL	proximate G	95% Ap		
					2.882	amma UCL	Adjusted G	95%		
3.948	an, Sd) UCL	nebyshev (Mea	Use 95% Che				JCL to Use	Potential U		